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Scope of the lecture course: 
 
1. Kinematics of particles 

−  Basic definitions and revision 
−  Rectilinear motion under constant and varying acceleration 
−  Plane curvilinear motion problems 
−  Rectangular coordinates (x-y) 
−  Tangential and normal coordinates (t-n) 
−  Polar coordinates (r-θ) 
 
2. Plane kinematics of rigid bodies 
−  What is rigid body motion? 
−  Rotation 
−  Relative velocity 
−  Instantaneous centre of rotation 
 
3. Kinematic analysis of mechanisms 
−  Graphical and analytical approaches 
−  Analysis of mechanisms by velocity diagram 
−  Example applications: 

−  Crank-slider mechanisms 
−  Four-bar chain 
−  Whitworth quick-return mechanism 

−  Some practical applications 
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Preface 
 
How this lecture course is organised 
 
This course covers the following key topics: 
 
Plane kinematics of particles: rectilinear and curvilinear motion in rectangular, 
normal-tangential, and polar coordinates. Relative motion (translating, but not 
rotating, axes).  Plane kinematics of rigid bodies: translation, rotation, and general 
plane motion; relative velocity; rotation about a fixed axis. Velocity diagrams for 
simple planar assemblies of rigid bodies including bars, pin joints, and sliding joints. 
 
Kinematics of particles  
Most of this topic will be discussed in the first lecture, and will consist of the 
development of the equations for the kinematics of a particle moving along a straight 
or curved path under conditions of constant or varying acceleration. Initially we will 
use rectangular coordinates, so I expect that this topic will be familiar to most of 
you from the Physics and Mathematics work that you completed at school. We will 
then go further, and consider descriptions of particle motion using tangential-normal 
(t-n) and polar (r-θ) coordinates. For further information on this topic I recommend 
Chapter 2 in the second volume (Dynamics) of Meriam and Kraige (see reference list 
below). 
 
Kinematics of rigid bodies 
This topic will be covered in the second and third lectures. We will recognise that 
solid bodies can not only translate, but also rotate, and use the concepts of angular 
velocity and angular acceleration to describe rotation. We will discuss relative motion 
and introduce and use the relative velocity equation. We will also develop the idea of 
the instantaneous centre of rotation to describe rigid body motion. Once again, I 
would like to refer you to the book by Meriam and Kraige (Chapter 5) for additional 
information. 
 
Kinematic Analysis of Mechanisms 
This section of the course will be the subject of lectures three and four, and will help 
you understand how kinematics is used to analyse the behaviour of engineering 
mechanisms. This will be a new topic for most of you, and will be based mainly on the 
use of a graphical technique, called the velocity diagram, to calculate linear and 
angular velocities in simple mechanisms involving pins, rigid bars and sliders. This 
graphical technique may be used to obtain solutions either by scale drawing or on the 
basis of an analysis of the geometry of the velocity diagram. 
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Experience shows that undergraduates usually find the fundamental concepts on 
which the velocity diagram is based to be reasonably straightforward. What is more 
difficult is learning to apply these concepts to real problems. To help you with this, I 
will be working through a series of examples, in the hope that you will be able to apply 
the method yourself when you have seen it demonstrated in this way during the 
lectures. The various examples I will be describing have been selected to start at a 
fairly fundamental level, and then to gradually build up in complexity so that you are 
exposed to new topics at a steady pace.  
 
Unfortunately few textbooks give a good coverage of the topic of velocity diagrams. 
The books by Drabble and also Grosjean (see reference list below), however, do gie a 
reasonable (but rather brief) coverage of the topic. 
 
What is the purpose of the lecture notes? 
The lecture notes contain a certain amount of theory: I hope that this will be of use 
to you when you tackle the ‘P4F Kinematics’ tutorial sheet and (eventually) paper P4 in 
the Prelims. Much of the lecture course will consist of working through example 
problems, however, and in the notes I have provided an outline of each example. The 
handouts contain space for you to fill in the solutions to the examples during the 
lectures themselves. I hope you will want to take this opportunity to make your own 
notes in the spaces provided in the handouts. This should mean that, at the end of 
the lecture course, you will have obtained a complete set of notes and, in the process, 
you will have gained some good experience in solving the equations of motion in 
different coordinates and drawing velocity diagrams. 
 
Recommended reading 
Meriam, J.L. and Kraige, L.G. (1999) Engineering Mechanics vol.2: Dynamics, 
MacMillan. 
Drabble, G.E. (1990) Dynamics Programmes 2 and 4, MacMillan. 
Fawcett, J.T. and Burdess, J.S. (1988) Basic Mechanics with Engineering 
Applications, Arnold. 
Grosjean, J. (1991) Kinematics and Dynamics of Mechanisms, McGraw-Hill. 
Norris, C.H., Wilber, J.B. and Utku, S. (1991) Elementray Structural Analysis,  
McGraw-Hill. 
 
Other reading 
Mabie, H.H. and Ocvirk, F.W. Mechanics and Dynamics of Machinery, John Wiley. 
Prentice, J.M. Dynamics of Mechanical Systems, Longman. 
Hannah, J. And Stephens, R.C. Mechanics of Machines: Elementary theory and 
Examples, Arnold. 
Wilson, C.E. and Sadler, J.P. Kinematics and Dynamics of Machinery, Addison- 
Wesley. 
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Kinematics 
 
Kinematics is the branch of dynamics that consists of the study of motion without 
the reference to the forces that cause, or are developed by, the motion. 
 
In this lecture course, three distinct areas of kinematic analysis are dealt with. The 
first section consists of the analysis of the kinematics of linear motion of a particle 
under constant and varying acceleration; much of this material will be familiar to you 
from your previous work in Physics.  
 
In the second section of the course the kinematics of curvilinear motion is analysed 
using tangential-normal and polar coordinates. Relative motion is considered, and 
expressions for velocities and accelerations with respect to different reference 
frames are used to solve example problems.  
 
In the third section of the course, a discussion is given of the analysis of the 
kinematics of simple mechanisms. This analysis requires consideration of the various 
constraints to the motion of the mechanism that arise as a result of the way in which 
the mechanism is connected.  
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1. Kinematics of a Particle 
 
A particle is a body that is assumed to have mass but negligible physical dimensions. 

Whenever the dimensions of a body are irrelevant to the problem then the use of 

particle mechanics may be expected to provide accurate results. Typical applications 

would be the analysis of the motion of a spacecraft orbiting the earth, or the 

trajectory of a golf ball after it has been struck. Later on in your course you will 

learn about rigid-body mechanics which is an approach that needs to be adopted when 

the dimensions of the body cannot be neglected.  

 



P4 Kinematics Lecture Notes 

- 7 - 

 
1.1 Linear Motion of a Particle under Variable Acceleration   
 

x 

 
 

Fig. 1-1 
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The acceleration equation is often the starting point for solving the equations of 
motion, since Newton’s law states that it is equal to F/m, where F is the resultant 
force acting upon the particle of mass m. 
 
The above equations can be integrated to give: 
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For constant acceleration a this gives  
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The expression for particle acceleration may be re-cast in an alternative way: 
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This new expression for acceleration may be integrated as follows: 
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When the acceleration is constant, this integral may be evaluated to give: 
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2
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           where,
22

xxsas
vv −==− .   (1.1.9) 

This is the same as the equation familiar from school Physics: 
 
    asvv 22

0
2 += .     (1.1.10) 
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Example 1-A. A parachutist jumps out of a plane and free falls. His downward 
acceleration arises due to combination of gravity and air resistance (drag), and is 
given by a = g – kv2, where v is the velocity. 
 
(a) Find the expression for the terminal velocity. 
 
(b) Assume that the terminal velocity is 20m/s. How fast will the parachutist be 

travelling after falling 50m? 
 
(c) Find out how long it takes to fall 100m. 

______________________________________________ 
a. Terminal velocity is reached when no further acceleration or deceleration is taking 
place, i.e. a=0. Hence g – kvt2 =0, and vt = vg/k . 
 
b. Rewrite the expression for acceleration using equation (1.1.7): 
 

2kvg
dx
dv

va −== . 
 
Think of velocity as the variable and position as the function: express the increment 
dx in terms of v and dv: 
 

2kvg
vdv

dx
−

= . 

 
Both sides of this expression can now be integrated. The left hand side yields the 
total drop x. The right hand side must be integrated from the initial velocity 0 to v:  
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The graph of velocity vs position is shown in Fig.1-2. The speed for x=50m can be 
determined from the graph, or by expressing v in terms of x from the above formula. 

(Ans.:   


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Fig.1-2. 

 
c. A similar trick can be used in order to determine t as a function of v: 

2kvg
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dv
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The graph of position vs time can be obtained by combining the above results, and is 
shown in Fig.1-3.  
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Fig.1-3. 

 
The time to travel 100m can now be read off Fig.1-3.  
(Ans.:  t=6.4 s) 
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1.2 Two-Dimensional Motion of a Particle 

                                                
x

y
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Fig. 1-2 

 
We consider motion of a particle with respect to a fixed coordinate system.  
 
Consider a Cartesian rectangular coordinate system, with a pair of orthogonal basis 
vectors i and j defined. The particle position is given by 
     jir yx +=      (1.2.1) 
 
Since the orientation of the coordinate vectors i and j does not change during motion, 
differentiation of the above equation gives 
    jijirv yx vvyx +=+== &&&     (1.2.2) 
    jijira yx aayx +=+== &&&&&&     (1.2.3) 
When the m-component of acceleration (m=x or m=y) is prescribed as a function of 
time, the above expressions can be integrated to solve the equations of motion, i.e. 
determine the position sm and velocity vm components for the particle at any moment: 
    ∫+=
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mmm dttavtv
0

0 )()(     (1.2.4) 
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If am is constant, the integration can be performed explicitly: 
    tavtv mmm += 0)(      (1.2.6) 
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2
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Example 1-B. A ball is thrown from point A to land at B (Fig. 1-5). Find suitable values 
of v0 and α. 

                
Fig. 1-5. 

 
The acceleration is constant and ax=0, ay=-g. The position of the ball as a function of 
time can be determined from equation (1.2.7): 
 
   x = v0 cosα t,      y = v0 sinα t - gt2 .     
 
Elimination of t from the above pair of equations leads to 
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We find trajectories passing through point B by putting x=d and y=-h into the above:  
 
    

α
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Using trigonometry this can be expressed as  
 
    ( ) 0tan1

2
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tan 2
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v
gd

d
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The values of tanα (and hence α) and v0/vgd  can be found for any specified value of 
h/d. The solutions are plotted in Fig.1-6. 
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Fig. 1-6. 

 
Note from the graph that, for some values of v0 and d, there exist two different 
solutions for α, a high and a low value. In this case for the same initial velocities and 
target position, two different trajectories are available (Fig.1-7). 
 
 
 

 
Fig.1-7. 
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1.3 Normal and Tangential Coordinates 
 
It is often convenient to describe curvilinear motion using path variables, i.e. 

measurements made along the tangent t and normal n to the path. The frame can be 

pictured as a right-angled bracket moving along with the particle. The t arm always 

points in the direction of travel, while the n arm points towards the centre of 

curvature. Unit vectors et and en are shown in Fig.1-8.  

 
Fig.1-8. 

 
As during time dt particle moves from A to A’, the increment of path variable s is 
 
     βρ dds = ,     (1.3.1) 
 
where ρ is the path curvature. The speed is then βρβρ &=== dtddtdsv // . The velocity 
vector is tangential to the path: 
 
     tvev = ,     (1.3.2) 
     βρ &=v .     (1.3.3) 
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Fig.1-9.   Fig.1-10. 

 
To find the acceleration vector we must differentiate velocity vector, dtd /va = . 
Acceleration vector reflects the change in both magnitude and direction of v     
(Fig.1-9). To perform differentiation, apply standard product rule to equation (1.3.2): 
 
     tt vv eea && += .     (1.3.4) 
 
Fig.1-10 illustrates how the derivative of vector et is found: its end swings by dβ in 
the direction of en.  Dividing this increment by dt we establish 
 
     nt ee β&& = .     (1.3.5) 
 
Substituting this into (1.3.4) and using (1.3.3) leads to the following series of 
expressions for acceleration: 
 
     nt

v
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Circular Motion 
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Fig.1-11. 

 
 
Circular motion is an important special case (Fig.1-11).  
 
We replace ρ with circle radius r, angle β with θ, and repeat the formulas: 
 
 
     θρ &=v      (1.3.3a) 
     θ&&& rvat ==      (1.3.7a) 

     θθρ
ρ

&& v
v

an === 2
2

    (1.3.8a) 
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Example 1-C. A water-skier is drawn forward on a line at u =7.1 m/s, and follows a 
curved path (Fig.1-12), which can be approximated by a circular arc of r=20 m. Find 
the velocity and acceleration components when angle θ=45º. 
 
 

θr u v
atan

θr u v
atan

 
Fig.1-12. 

 
 
Since forward speed 2/cos vvu == θ must equal 7.1 m/s, then v=10 m/s. 
 
Since θ&rv −= , then 

θ
θ

cosr
u−=& =-0.5 rad/s (the sign shows that θ is decreasing).  

 
Tangential component of acceleration is given by θ&&& rvat −== . By differentiation  
 

( ) θθθθ
θ

θ tansin
cos

2
2

&&&& =−




=

r
u =0.25, 

 
so that at=-5 m/s2 (the skier is decelerating).  
 
Normal component of acceleration is == 2θ&ran 5 m/s2.  
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1.4 Polar Coordinates  
 
The third option is to locate the particle by the radial distance r and angular position 
θ with respect to a chosen fixed direction. We choose unit vectors er and eθ as shown 
in Fig.1-13.  
 

                    
θ

r er

eθ

θ
r er

eθ

     
Fig.1-13.    Fig.1-14. 

 
The position vector can be expressed as 
 
     rrer = .     (1.4.1) 
 
To find velocity vector v we need to differentiate r with respect to time using the 
product rule. Using the same vector construction we used for normal-tangential 
analysis, we first find (Fig.1-14) 
 
     θθ θθ dddd rr eeee −== , .   (1.4.2) 
 
Then diving both sides by dt, we establish 
 
     rr eeee θθ θθ

&&&& −== , .   (1.4.3) 
 
We now find the velocity 
 
    θθeeeerv &&&&& rrrr rrr +=+== .   (1.4.4) 
 
In terms of components  
 
     rvr &=       (1.4.5) 
     θθ

&rv =      (1.4.6) 
     22

θvvv r +=  .    (1.4.7) 
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To obtain acceleration, we differentiate the velocity vector v according to the same 
rules. Note that in the term θθe&r  each factor must be differentiated in turn.  
 
    )()( θθθ θθθ eeeeeva &&&&&&&&&&& rrrrr rr ++++== .   
 
Collecting the terms 
 
    θθθθ eea )2()( 2 &&&&&&& rrrr r ++−= .   (1.4.8) 
 
In terms of components  
 
     2θ&&& rrar −=      (1.4.9) 
     θθθ

&&&& rra 2+=      (1.4.10) 
     22

θaaa r +=  .   (1.4.11) 
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Example 1-D. A rocket is fired vertically and tracked by the radar shown in Fig.1-15. 
For θ=60º, the measurements show r =9 km, r&&=21 m/s2, and θ&=0.02 rad/s. Find the 
velocity and acceleration of the rocket at this position. 
 

r

θ

r

θ
 

Fig.1-15. 
 
 
Start with velocity component θθ

&rv = =180 m/s.  
 
Note that θθ cosvv = , hence find v=360 m/s.  
 
Also, θsinvrvr == & =312 m/s. 
 
Radial acceleration component is 2θ&&& rrar −= =17.4 m/s2.  
 
Since the rocket moves along a straight vertical line, total acceleration must also be 
vertical. Hence we find θsin/raa = =20 m/s2, and θθ tan/raa = =10 m/s2.  
 
Finally, rra /)2( θθ θ

&&&& −= =-0.0003 rad/s2.  
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2. Kinematics of a Rigid Body 
 
Rigid bodies are different from particles: rigid bodies are extended in space, and the 
connection between different parts of a rigid body are permanent and unchanged 
throughout their motion.  
 
When we try to imagine the position of a rigid body, we may first think of an 
arbitrary point, a marker (let’s call it A), on that body. The position and motion of 
this chosen point can be described in exactly the same way we used for particles, e.g. 
using rectangular or polar coordinates. However, this description is insufficient to 
describe the motion of the rigid body, since the body as a whole may rotate around 
point A.  In order to fix the position of the body we must specify a direction from 
point A to another arbitrarily chosen point on the body, say B.  Once the position of A 
is fixed, and the direction from A to B is given as well, position of the rigid body is 
fully specified. E.g. a rigid rod connecting two points A and B is a rigid body.  
 
A rigid body is in plane motion if all point of the body move parallel to one plane, 
which is called the plane of motion. We can classify the kinds of plane motion into: 
 

(a) translation (rectilinear) 
(b) translation (curvilinear) 
(c) rotation (around fixed axis) 
(d) general plane motion 

 
In translation every line in the body remains parallel to its original position, and no 
rotation is allowed. The trajectory of motion is the line traced by a point in the body. 
Translation is rectilinear if this line is straight, and curvilinear otherwise. 

 
Rotation about a fixed axis is the angular motion 
about this axis, when all points on the body follow 
concentric circular paths. It is important to picture 
and understand that all lines on the solid body, even 
those that do not pass through the centre, rotate 
through the same angle in the same time.  

 
 
 

General plane motion of a rigid body is a combination of translation and rotation. We 
will discuss the concept of relative motion in order to describe this case.  
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2.1 Rotation 
 
Consider any two lines 1 and 2 attached to (or drawn on) a rigid body, which have 
angular orientations described by θ1 and θ2 = θ1 +β.  Because the body is rigid, β is 
fixed, so that 12 θθ ∆=∆ . Differentiation with respect to time gives 

1212              , θθθθ &&&&&& == . 

 
The angular velocity ω  is the time derivative of the angular position of the body,  
 
     θθω &==

dt
d .     (2.1.1) 

 
The angular acceleration α is the second time derivative of the angular position 
coordinate of the body,  
 
     θθωωα &&& ==== 2

2

dt
d

dt
d .   (2.1.2) 

 
When a body rotates about a fixed axis, all points follow concentric circular paths. 
The linear velocity and acceleration of an arbitrary point can be written using the 
formulas we introduced in our discussion of particle kinematics: 
 
     rv ω=  
     rvran /22 ==ω     (2.1.3) 
     rat α=  
 

All lines on a rigid body have the same angular displacement, the same angular 
velocity and the same angular acceleration. 
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It is useful for you to learn how these quantities can be expressed using the cross-
product vector notation. A cross-product ω×r of two vectors ω  and r is a vector v of 
magnitude φω sinrv = , where φ is the angle between ω  and r. Vector v points normal 
to both ω  and r (and therefore normal to the plane of ω  and r) in the direction 
defined by the right-hand rule (Fig.2-1). Note that interchanging the order of ω  and r 
in the cross-product changes the sign of v. 
 

 
Fig.2-1. 

 
The case is illustrated in Fig.2-1. Angular velocity ω  is a vector of magnitude θ& and 
pointing in the direction normal to the plane of motion in accordance with the right-
hand rule. Using the cross-product notation we can write down the following result: 
 
     r?

r
rv ×===

dt
d&     (2.1.4) 

 
The significance of this formula is as follows: if a vector r is constant and attached 
to a solid body which is rotating around a fixed axis with angular velocity ω , then its 
time derivative is given by the cross-product of ω  into r. 
 
Note that this applies to any fixed vector attached to the solid body. However, it is 
wrong to use this formula if the vector itself is changing in direction or magnitude.  
 
For the acceleration one obtains: 
 
 ( ) ( ) tndt

d
dt
d

aarar??r?r?r?
v

va +=×+××=×+×=×=== &&& . (2.1.5) 
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Fig.2-2. 

 
Example 2-A. A T-shaped pendulum rotates about a horizontal axis through point O. 
At the instant shown in Fig.2-2 its angular velocity is ω=3 rad/s and its angular 
acceleration is α=14 rad/s2 in the directions indicated. Determine the velocity and 
acceleration of point A and point B, expressing the results in terms of components 
along the n- and t-axes shown. 
 
 
Velocities:   ( ) tnntnt vvr?r?rr?r?v −=×+×=+×=×= . 
Point A is only moving tangentially (vn=0) at speed − ωrn=1.2m/s. 
 
Point B is moving normally at speed ωrt=0.3m/s and tangentially at speed − ωrn=1.2m/s. 
 
Total speed of B is 1.24 m/s. 
 
Accelerations:  ran

2ω= ,   ran α= . 
 
Point A has normal acceleration an= 32 · 0.4 = 3.6 m/s2 towards point 0, and tangential 
acceleration at= -14 · 0.4 = -5.6 m/s2.  
 
Distance OB=0.412m. Point B has acceleration 32 · 0.412 = 3.71 m/s2 towards point 0, 
and also acceleration -14 · 0.412 = -5.77 m/s2 perpendicular to OB.   
 
Projected onto the t- and n-axes this leads to the following values for the 
acceleration components:  
 
at =(-5.77 · 0.4/0.412 - 3.71 · 0.1/0.412) m/s2 =-6.5 m/s2  
an = (3.71 · 0.4/0.412 + 5.77 · 0.1/0.412) m/s2 = 5 m/s2.  
 
Note that neither component is the same as for point A. Generally, a point on a solid 
body is likely to experience higher acceleration the further it lies from the centre of 
rotation.  
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2.2 Relative motion 
 
Let A and B be two points on the rigid body.  We start with the following vector 
relation: 
 
     rA=rB+rA/B .      (2.2.1) 
 
Here rA and rB represent absolute position vectors of A and B with respect to some 
fixed axes, and rA/B stands for the relative position vector of A with respect to B. 
 
By differentiating the above equation with respect to time, we obtain the basis of 
the relative motion analysis, known as the relative velocity equation: 
 
     vA=vB+vA/B .     (2.2.2) 
 
To determine the velocity of A with respect to the fixed axes (the absolute velocity 
vA) we represent it as the sum of the absolute velocity of point B, vB, and the relative 
velocity of point A with respect to point B, vA/B (Fig.2-3). 
 

vB

vA vB vA/B

vB

vA/B

vB
vAvB

vA vB vA/B

vBvB

vA/B

vB
vA

 
Fig.2-3. 

 
When the solid body is rotating around a fixed axis with angular velocity ω , all 
vectors on that solid body also rotate with the same angular velocity. In fact, we 
know from equation (2.1.4) that vA/B, which is the time derivative of vector rA/B, can 
be represented by the cross-product of ω  and rA/B, 
 
     vA/B = ω × rA/B .    (2.2.3) 
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This result merits some discussion.   Some very useful conclusions can be drawn. 

 

Note that vector vA/B is directed normally to both ω  and rA/B. (see e.g. the definition 

of cross-product). This makes sense: if we observe the motion of A from B, it 

appears to simply rotate at the end of a fixed link BA.  

 

The component of the relative velocity of A with respect to B along the line AB must 

be zero. This makes sense again: because the link between B and A is rigid, its length 

must not change. Coming back to the absolute velocities vA and vB, this means that 

points A and B must have the same velocity along the line connecting them. Although 

most of this is self-evident from the definition of a rigid body, the results are very 

useful for velocity analysis, as we will see later on in this course. 
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Example 2-B. The wheel of radius r=300mm rolls to the right without slipping and has 
a velocity vO=3m/s of its centre O.  Calculate the velocity of point A on the wheel 
shown in Fig.2-4. 

    

r=300mm

r0=200mm

C

O
vO=3m/s30°

r=300mm

r0=200mm

C

O
vO=3m/s30°

  

r=300mm

r0=200mm

C

O
vO=3m/s

vO
vA/O

vA

r=300mm

r0=200mm

C

O
vO=3m/s

vO
vA/O

vA

 
Fig.2-4.     Fig.2-5. 
 

Since the motion of point O is given, choose it as the reference point for the relative 
velocity equation:  
 
     vA=vO+vA/O . 
 
Consider also point C in contact with the ground at the instant considered, for which 
 
     vC=vO+vC/O = 0. 
 
From equation (2.2.3) we know that the relative velocity vC/O points in the direction of 
rotation of the wheel, i.e. opposite vO, and has the magnitude ωr.  We thus establish 
that v=ωr. The angular velocity ω  of the wheel (as well as of any line fixed on that 
wheel, e.g. OA) is equal to vO/r = 10 rad/s.   
 
Returning to the relative velocity equation for points O and A we now determine that 
the relative velocity vA/O has the magnitude ωrO= (10 · 0.2) m/s = 2 m/s, and is 
pointing normally to OA in the direction of rotation, i.e. clockwise. It remains to 
determine vA from the vector sum of vO and vA/O, as shown on the diagram in Fig.2-5. 
The magnitude of vA is found from the cosine rule: 
 

vA2 = 32 + 22 + 2 · 3 · 2 cos60°= 19 (m/s)2,       vA = 4.36 m/s. 
 
Note that alternatively the contact point C could be used as the reference point in 
the relative velocity equation. Since point C is stationary (at the particular moment 
considered !), the relative velocity of A with respect to C gives the final answer to 
the problem. The direction of vA is perpendicular to the line CA. 
 
 
 



P4 Kinematics Lecture Notes 

- 27 - 

 
2.3 Instantaneous centre of rotation 
 
In solving the example problem we discovered that judicious choice of the reference 
point in the relative velocity equation (2.2.2) may lead to great simplification of the 
analysis. In particular, if we always choose the point C which is momentarily 
stationary at the instant considered, the relative velocity equation for any point A on 
the body simplifies to 
 
      vA = vA/C = ω × rA/C .   (2.3.1) 
 
As far as the velocities are concerned, the body may be thought to be in pure 
rotation about an axis normal to the plane of motion and passing through point C.  
 
It is very important for you to understand that generally point C is NOT fixed 
permanently. It moves both with respect to the body and the absolute axes. Point C 
can be taken as the centre of rotation only at the given instant, and is therefore 
known as the instantaneous centre of rotation.  
 
The location of the instantaneous centre can be easily determined by construction in 
Fig.2-6. Let us assume first that, for two chosen points A and B the directions of 
absolute velocities are not parallel, as in Fig.2-6(a). If there is a point with respect to 
which point A is in a state of pure rotation at that instant, it must lie on the normal 
to vA through A. Similar reasoning applies for point B. The intersection of these two 
normals (which always exists since vA and vB are not parallel) is the instantaneous 
centre C. Tha magnitude of w is found from  
 

|vA|= |ω ||CA|. 
 
The magnitudes and directions of all absolute velocities are now determined using 
equation (2.3.1). 
 

vB

vArA

rB
C

vB
vA

C

(a) (b)

vB

vArA

rB
C vB

vArA

rB
C

vB
vA

C
vB

vA

C

(a) (b)  
Fig.2-6. 
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(a) (b)

vB

vArA

rB
C vB

vArA

rB
C

vB
vA

C
vB

vA

C

(a) (b)  
Fig.2-6. 

 
 
Let’s consider what happens if the velocities of the two chosen points A and B are 

parallel, as in Fig.2-6(b). If vA = vB, then the body is not rotating, but only translating, 

and all points have the same velocity. If vA is not equal to vB, then the line joining 

them must be normal to both vA and vB (can you prove that it is so?). The location of 

the instantaneous centre C is found by direct proportion. 

 

NB: the instantaneous centre does not have to lie within the solid body. However, it is 

sometimes convenient to imagine extending the solid body to include the 

instantaneous centre. This thought exercise does not affect the answer in any way. 
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Example 2-C. Arm OB of the linkage has a clockwise angular velocity of 10 rad/s in 
the position shown where θ=45° (Fig.2-7). Determine the angular velocity of link AB 
for the instant shown, and the velocities of points A and D on this link. 
 
 

   
 Fig.2-7.      Fig.2-8. 
 
 
The velocities of A and B are normal to the links AO’ and BO, connecting them to the 
fixed centres O’ and O, respectively. The instantaneous centre for the link AB, to 
which both of these points belong, lies at the intersection of the normals to the 
velocities, and can be found by extending the links AO’ and BO. The distances AC, BC 
and DC are found from trigonometry or scaled diagram.  
 
 
We now extend the solid body to include point C (Fig.2-8). The link BC is a line on this 
body, and rotates with the same angular velocity as the whole. We seek the angular 
velocity as follows 
 
   ωBC = vB/BC = ωOB OB/BC = 4.29 rad/s CCW = (ωAB). 
 
(Since AB and BC belong to the same solid body, they must have the same angular 
velocity).   
 
The velocities of A and D are now 
 
   vA = ωAB CB = 4.29 · 0.35 = 1.5 m/s 
 
   vD = ωAB CD = 4.29 · 0.381 = 1.63 m/s 
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3. Kinematics of Mechanisms 
 
Ideas discussed in the context of kinematics of particles and rigid bodies will now be 

used in the analysis of mechanisms. It is often useful to keep this kinematic analysis 

of a system separate from a consideration of how the mechanism responds to the 

application of forces. 

 

This section of the lecture course deals, primarily, with the analysis of mechanism 

kinematics. The objective of kinematic analysis of a mechanism is to determine the 

linear and angular velocities of the various components of the mechanism when some 

part of it is subjected to a known linear or angular velocity.  

 

Although this is a course on kinematics, examples are given of how a kinematic 

analysis of a mechanism can lead on naturally to an analysis of the dynamics of the 

system. 
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3.1 Methods of Kinematic Analysis of Mechanisms 
 
Various techniques are available to carry out kinematic analysis of mechanisms as 
described below.  
 
Analytical methods. In this approach a set of equations is written down to describe 
the geometry of the mechanism and also the various constraints that determine its 
motion. (Common forms of contraint are (i) the length of a rigid link cannot change , 
or (ii) the end of a link may be fixed, or (iii) a point on a link may be constrained to 
move in a particular direction, i.e. in a slider joint). These geometric equations are 
then differentiated to obtain further equations relating the linear and angular 
velocities of the various components of the mechanism. 
 
The approach is based on conventional geometry and differential calculus. The 
approach is not very systematic, however, and careful thought is needed to set up the 
geometric equations for any particular problem. The main drawback of the method is 
that it often involves the manipulation and differentiation of rather lengthy 
expressions. This means that the solution process usually becomes very long-winded 
and tedious. 
 
Although I will be showing you how to use an analytical approach for a simple 
mechanism (see example D), I would only recommend this method for general use (at 
least as far as Paper P4 is concerned) if you feel confident performing the fairly long 
algebraic manipulations required.  
 
Graphical methods. Graphical methods are based on a geometric representation of 
the kinematics of a mechanism. Two main types of graphical methods are described in 
the textbooks on this subject: the method of instantaneous centres and the velocity 
diagram method. These lectures will dwell on the velocity diagram method. This 
method may be developed to include an analysis of accelerations (using an 
acceleration diagram) but this is well beyond the scope of this lecture course. 
 
Computer methods. In engineering practice, of course, any kinematic analysis of a 
mechanism will use computer analysis in which the various constraints to motion are 
dealt with in a systematic way. Computer methods of analysis are, however, also 
beyond the scope of this course. 
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3.2 Kinematics of a Crank-Slider Mechanism using an Analytical Approach 
 
The crank-slider is used in a variety of mechanisms, most importantly in the piston – 
connecting rod – crankshaft mechanism in an internal combustion engine.  

              
Fig.3-1. Cross-section through a Jaguar 3.8-litre six-cylinder engine (after Morrison 
and Crossland, ‘Mechanics of Machines’, Longman), and the schematic mechanism. 
 
Example 3-A (see below) consists of the analysis of a typical crank-slider mechanism 

of the sort that might be used in the engine of a typical family car. This example is 

solved below using an analytical procedure to define the geometry of the mechanism; 

the resulting geometric equations are then differentiated to provide expressions for 

the linear and angular velocities of the component parts of the mechanism. We will 

return to this problem to obtain a more rapid solution using the velocity diagram. 
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Example 3-A. Find the velocity of C and the angular velocity of link BC in the crank-
slider mechanism at the instant shown below. The crank AB is rotating anti-clockwise 
with angular velocity ω = dθ/dt = 500 rad/s (approx. 4800 rpm). 
 

 
Fig.3-2. 

 
 
Using the analytical approach, we first write down equations defining the geometry of 
the mechanism: 
 
 
    φθ coscos lrz +=  
    φθ sinsin0 lr −=  
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Next, we need to differentiate the expressions for z and cosφ. The derivative of the 
expression for z gives: 
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We are now able to calculate the velocity of point C by inserting the appropriate 
values of r, θ, dθ/dt and l into the above expression (noting that dθ/dt is simply the 
angular velocity of link AB and therefore equal to 500 rad/s). In this partciular case 
this leads to the solution  
 
     m/s 7.48−=

dt
dz . 
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The angular velocity of link BC is given by dφ/dt. To evaluate this expression we 
differentiate the expression for sinφ (above) to give: 
 
     

dt
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d θθφφ coscos =  
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If specific values of r, θ, dθ/dt and l are substituted into the above expression then 
this gives a value for the angular velocity of link BC of 189 rad/s.  
 
 

 
Fig.3-3. 

 
 
In addition to computing the values of linear and angular velocity for the particular 
position of the mechanism shown in the example, the results of the analysis can also 
be used to determine the kinematics of the mechanism for all values of θ. 
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Fig.3-4. 
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3.3 Introduction to the use of velocity diagrams 
 
Kinematic constraints. The velocity diagram is a graphical representation of the 

velocity vectors for different points within the mechanism. When several points are 

considered, the velocity diagram has a form of a polygon, with vertices representing 

velocities of different points. The velocity diagram is constructed by considering 

various kinematic constraints that are imposed on the mechanism.  

 
Fig.3-5. 

One general constraint is that the bars must remain connected in the same 

configuration. Several further types of constraint may be identified (Fig.3-5): 

(i) Points that are fixed in space (e.g. point A in the crank-slider 

mechanism) 

(ii) Points on different parts of the mechanism which are connected 

together (e.g. as at point B in the crank-slider mechanism) 

(iii) Points which are constrained to move only in certain directions (e.g. point 

C in the crank-slider mechanism) 

(iv) The lengths of all rigid links that must remain constant. 

 

Constraints of type (i) to (iii) are included fairly simply in the velocity diagram. 
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To deal with constraints of type (iv) we recall our discussion of the relative velocity.  

We established that two points A and B lying on the same rigid body must have the 
same velocity along the line connecting them (Fig.3-6). 
 
Denote the distance between A and B by s, and express the rate of change of this 
distance with time as 
 

ds/dt = |vB|cos θB – |vA|cos θA . 
 
When AB is a rigid link, the distance s must remain constant. This constraint may be 
by the equation 
 
     |vB|cos θB = |vA|cos θA .    (3.3.1) 
 
Otherwise we can express the same condition by requiring that the relative velocity 
vA/B is normal to the orientation of link BA.  
 
 

     
  Fig.3-6.      Fig.3-7. 
 
 
A possible velocity diagram for the link AB is shown in Fig.3-7. We use lower case 
letters o,a,b to denote the ends of velocity vectors for points O,A,B, etc. Point o 
denotes the (zero) velocity of a stationary point. Let point a be already given or 
found. Then point b must lie on the line drawn through a perpendicular to link AB. If 
the direction of velocity of point B is know, this condition is usually sufficient to find 
point b graphically from intersection.  
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Example 3-A (revisited). We start by noting the various kinematic constraints on the 
system, and then express them on the velocity diagram, until velocities of all joints 
are found.  
 

         
   Fig.3-8.      Fig.3-9. 
 
The velocity diagram is constructed by the sequence of operations below: 
 

(i) Find the orientations of all the links (in this case, from simple geometry 
determine φ = 20.7º) 

(ii) Identify points with zero velocity and plot them on the velocity diagram 
(in this case, point A is the only one fixed, so a coincides with o, origin) 

(iii) Identify points with known velocity and plot them on the velocity 
diagram (in this case, point B has the velocity of magnitude 50 m/s in the 
direction shown in Fig.3-8). The line ab on the velocity diagram should 
have a length corresponding to 50 m/s and be drawn in the direction θ to 
the vertical. At this stage it is necessary to establish a suitable scale 
for the diagram. 

(iv) Draw lines on the velocity diagram corresponding to the remaining 
kinematic constraints. Since point C is on a slider joint, it is constrained 
to move horizontally, so point c lies on a horizontal line through o. This 
can be shown on the diagram by a line indicated c?. Since link BC is rigid, 
the velocity of C with respect to B must be normal to this link, so point c 
also lies on a line through point b inclined at φ to the vertical. This 
establishes another c?? line. The intersection of the c? and c?? lines 
gives the position of point c. 
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Fig.3-9. 

 
 
Now that the velocity diagram is complete, values of the linear and angular velocities 
of link BC can be found. The velocity of C is represented by the vector oc on the 
diagram. The magnitude of vC can be found from simple application of the sine rule: 
 

)90sin(
)sin(
φ

φθ
−

+= oobvC =48.7 m/s 
 
(given that ob=|vB|=50 m/s). This result is identical to that obtained from a rather 
lengthy analytical derivation earlier. The direction of the velocity is given by the 
relative position of points o and c on the diagram: since c lies to the left of o, vC is 
directed horizontally to the left. 
 
In order to determine the angular velocity of link BC, we note that the relative 
velocity of C with respect to B, vC/B, is given on the diagram by the vector bc. The 
sine rule gives 
 

)90sin(
)90sin(

φ
θ

−
−= o

o

obbc =37.8 m/s 

 
It remains to find the angular velocity by 
 

ω  =|vC/B| / BC = 189 rad/s. 
 
The direction of rotation is determined simply from the relative positions of points b 
and c on the velocity diagram. In this case it is clear that BC is rotating in the 
clockwise direction. 
 
 The angular velocity of a link can be determined simply by dividing the 

magnitude of the relative velocity of two ends by the length of the link. 
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3.4 Further Use of Velocity Diagrams 
 
If you have followed the previous example then you will have understood the main 

features of the velocity diagram method of analysis. Further complexities may arise, 

and we will illustrate them by means of the following three examples. Firstly, we will 

look at a four-bar chain mechanism which requires more complex procedures to obtain 

the angular orientations of the links than for the crank-slider. Next, we will consider 

the useful topic of velocity images in which the velocity diagram is used to determine 

the velocity of an arbitrary point within a link. Finally, we will study a mechanism 

containing a more complicated form of a slider joint.  
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Example 3-B: four-bar chain. 
 
The four-bar chain consists of four rigid links connected together. Usually, one of 
the links is fixed, as in this example. The four-bar chain is capable of a large variety 
of motions depending on the relative length of the bars. 

 
Fig.3-10. 

The link AB in the four-bar chain shown in Fig.3-10 is rotating clockwise with angular 
velocity ω . Find the velocity of C and the angular velocity of CD.  
 
We use a similar approach to that for the crank-slider mechanism in Example 3-A. In 
the example considered here there are not one, but two bars with unknown angular 
velocities. Also, the determination of the angular orientation of the bars in the four-
bar chain needs rather more complex geometrical analysis. In order to establish the 
angular orientation of all bars we use a scale drawing, finding the values φ=18º and 
φ=22º approximately. 
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Alternatively, more accurate values may be obtained by the use of the cosine and sine 
rules (Fig.3-11). 
 
 

 
Fig.3-11. 

 
 
 
For triangle ABD:  BD2 = AB2 + AD2  - 2 AB AD cos 60º    => BD = 0.2646 m 
 
For triangle BCD:  CD2 = BD2 + BC2  - 2 BD BC cos α    =>  α = 48.943º 
 
For triangle ABD:  AB2 = AD2 + BD2  - 2 AD BD cos β    =>  β = 19.08º 
 
ψ  + α + β = 90º  =>  ψ  = 21.97º 
 
For triangle BCD: CD / sin α = BC / sin (β + φ )  =>  φ = 18.0º 
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The velocity diagram is now drawn in the following stages: 

(i) Choose position of origin o, and draw points a and d to coincide with o. 
(ii) Draw position of point b (this is straightforward since velocity of B is 

equal to AB ω  and inclined at an angle θ to the vertical) 
(iii) Draw a line through b in a direction orthogonal to BC (a c? line) 
(iv) Draw a line through d in a direction orthogonal to DC (a c?? line), and 

find c as intersection. 
 
The velocity diagram is complete. 
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Four-bar chains are used in a variety of applications. Some examples are illustrated 
below: 

 
 
Fig.3-12. 
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Fig.3-13. 
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Example 3-C: velocity images. 
 
It is often useful to use velocity diagrams to indicate the velocity of points at 
arbitrary positions within a rigid link, rather than only consider velocities at joints. 
The idea of velocity images is useful for this, as illustrated below. 

 
Fig.3-14. 

 
To find the velocities of points B, C and D on the rigid link shown in Fig.3-14, we use 
the following construction: 
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We now use this approach to analyse the front wheel suspension system of a car, 
shown in Fig.3-15. 

 
Fig.3-15. 

Find the horizontal velocity of the point where the wheel is in contact with the road 
for the case when the car has a downwards velocity of 1 m/s. 
 
This is a four-bar chain mechanism for which the use of velocity images proves rather 
useful.  
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Example 3-D: mechanisms with sliders. 
 
Mechanisms can have slider joints rather than pins. This situation is treated by 
careful consideration of the kinematic constraint set up by the sliding joint, as 
illustrated below. 

 
Fig.3-16. 

 
The mechanism shown above is known as the Whitworth quick-return mechanism. Plot 
the approximate variation of h with θ. For the case when θ =30º, find the value of 
dh/dt and the angular velocity of DC. 
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Before proceeding with the velocity diagram it is necessary to distinguish carefully 
between the following points: point B on the crank AB, and point B’ on the rocker CD. 
The two points, at the moment considered, occupy the same position in space, but 
they have different velocities. 

 
 

 
Fig.3-16. 
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3.5 Application of the Results of Kinematic Analysis 
 
Results of kinematic analysis can be used to investigate the dynamic behaviour of a 
mechanism. 
 
Example 3-E. 
In the crank-slider mechanism shown in Fig.3-17 the link AB is connected to a 
flywheel with the moment of inertia 100 kg m2. A force of 10 kN is applied to the 
piston. Find the angular acceleration of the flywheel assuming that the masses of the 
piston and the connecting rod can be neglected.  
 
 

 
Fig.3-17. 

 
 
In the absence of frictional losses the power produced by the piston, F vC, is equal to  
the rate of increase of the flywheel’s kinetic energy, Iω2: 
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The angular acceleration can be found as  
 

B

CC

v
v

I
ABF

I
Fv ||==
ω

ω& , 

 
where ω|| ABvB =  was used. The velocity ratio does not depend on their magnitudes, 
but only on the dimensions and angles of the mechanism.  
 
The solution from Example 3-A can be used, for which vC=48.7 m/s and vB=50 m/s, 
giving angular acceleration    ω&  =9.74 rad/s2.  
 
 


