P4 Kinematics

Dr Alexander M. Korsunsky

Hilary Term 2001

LR1 Thom Building
WK 5: M. 11, T. 12, Th. 12
WK 6: M. 11

Scope of the lecture course:

1. Kinematics of particles

- Basic definitions and revision
- Rectifine ar motion under constant and varying acceleration
- Plane curviline ar motion problems
- Rectangular coordinates ($x-y$)
- Tangential and normalcoordinates ($\mathbf{t - n)}$
- Polar coordinates (r- θ)

2. Plane Kinematics of rigid Godies

- What is rigid body motion?
- Rotation
- Relative velocity
- Instantaneous centre of rotation

3. Kinematic analysis of mechanisms

- Grapfical and analytical approackes
- Analysis of mechanisms by velocity diagram
- Example applications:
- Crank-slider mechanisms
- Four-Gar chain
- Whitworthquick-return mechanism
- Some practical applications

How this lecture course is organised

This course covers the following key topics:

Plane Kine matics of particles: rectiline ar and curviline ar motion in rectangular, normal-tangential, and polar coordinates. Relative motion (translating, but not rotating, axes). Plane Kinematics of rigid bodies: translation, rotation, and general plane motion; relative velocity; rotation about a fixed axis. Velocity diagrams for simple planar assemblies of rigid bodies including bars, pin joints, and sliding joints.

Kinematics of particles
Most of this topic will be discussed in the first lecture, and will consist of the development of the equations for the kine matics of a particle moving along a straight or curved path under conditions of constant or varying acceleration. Initially we will use rectangular coordinates, so I expect that this topic will be familiar to most of you from the Physics and Mathematics work that you comple ted at school. We will thengo further, and consider descriptions of particle motion using tangential-normal $(t-n)$ and polar ($r-\theta$) coordinates. For further information on this topic I recommend Chapter 2 in the second volume (Dynamics) of Meriam and Zraige (see reference list be (ow).

Kinematics of rigid bodies
This topic will be covered in the second and third lectures. We will recognise that solid bodies can not onfy translate, but also rotate, and use the concepts of angular velocity and angular acceleration to describe rotation. We will discuss relative motion and introduce and use the relative velocity equation. We will also develop the ide a of the instantaneous centre of rotation to describe rigid body motion. Once again, I would like to refer you to the book by Meriam and Kraige (Chapter 5) for additional information.

Kine matic Analysis of Mechanisms
This section of the course will be the subject of lectures three and four, and will help you understand how kine matics is used to analyse the Gehaviour of engine ering mechanisms. This will be a ne w topic for most of you, and will be based mainly on the use of a grapfical technique, called the velocity diagram, to calculate line ar and angular velocities in simple mechanisms involving pins, rigid 6ars and sliders. This graphicaltechnique may be used to obtain solutions either by scale drawing or on the Gasis of an analysis of the geometry of the velocity diagram.

Experience shows that undergraduates usually find the fundamentalconcepts on which the velocity diagram is based to be reasonably straightforward. What is more difficult is le arning to apply these concepts to realproblems. To help you with this, I will be working through a series of examples, in the hope that you will be able to apply the method yourself when you have seen it demonstrated in this way during the lectures. The various examples I will be describing have been selected to start at a fairly fundamentallevel, and then to gradually build up in complexity so that you are exposed to new topics at a steady pace.

Unfortunately few textbooks give a good coverage of the topic of velocity diagrams. The books by Drabble and also Grosje an (see reference list below), however, do gie a reasonable (but rather brief) coverage of the topic.

What is the purpose of the lecture notes?
The lecture notes contain a certain amount of theory: I hope that this will be of use to you when you tackle the 'p4F Kine matics'tutorial sheet and (eventually) paper $P^{2} 4$ in the Prelims. Much of the lecture course will consist of working through example problems, however, and in the notes I have provided an outline of eachexample. The findouts contain space for you to fill in the solutions to the examples during the lectures themselves. I hope you will want to take this opportunity to make your own notes in the spaces provided in the findouts. This should mean that, at the end of the lecture course, you will have obtained a complete set of notes and, in the process, you will have gaine d some good experience in solving the equations of motion in different coordinates and drawing velocity diagrams.

Recommended reading
Meriam, g.L. and Xraige, L. G. (1999)Engineering Mechanics vol.2: Dynamics, MacMillan.
Drabble, G.E. (1990) Dynamics Programmes 2 and 4, MacMillan.
Fawcett, J.T. and Burdess, J.S. (1988) Basic Mechanics with Engine ering Applications, Arnold.
Grosjean, I. (1991) Kinematics and Dynamics of Mechanisms, Mc Graw-Hill.
 Mc Graw-Hill.

Other reading
$\mathcal{M a b i e}, \mathcal{H} . \mathcal{H}$. and Ocvirk, $\mathcal{F} . \mathcal{W}$. Mechanics and Dynamics of Mackinery, Iofn Wiley. Prentice, g.M. Dynamics of Mechanical Systems, Longman.
Hannah, g. And Stephens, R.C. Mechanics of Machines: Elementary the ory and Examples, Arnold.
Wilson, C.E. and Sadler, I.P. Kinematics and Dynamics of Mackinery, $\mathcal{A d d i s o n - ~}$ Wesley.

Kinematics

Kine matics is the branch of dynamics that consists of the study of motion without the reference to the forces that cause, or are developed by, the motion.

In this lecture course, three distinct are as of kinematic analysis are dealt with. The first section consists of the analysis of the kine matics of line ar motion of a particle under constant and varying acceleration; much of this material will be familiar to you from your previous work in Physics.

In the second section of the course the kine matics of curviline ar motion is analysed using tangential-normal and polar coordinates. Relative motion is considered, and expressions for velocities and accelerations with respect to different reference frames are used to solve example problems.

In the third section of the course, a discussion is given of the analysis of the Kine matics of simple mechanisms. This analysis requires conside ration of the various constraints to the motion of the mechanism that arise as a result of the way in which the mechanism is connected.

1. Kinematics of a Particle

\mathcal{A} particle is a body that is assumed to fave mass but negligible physical dimensions.

Whenever the dimensions of a body are irrelevant to the problem then the use of particle mechanics may be expected to provide accurate results. Typical applications would be the analysis of the motion of a spacecraft orbiting the earth, or the trajectory of agolf ball after it has been struck. Later on in your course you will Le arn about rigid-body mechanics which is an approach that needs to be adopted when the dimensions of the body cannot be neglected.
1.1 Linear Motion of a Particle under Variable Acceleration

Fig. 1-1

$$
\begin{gather*}
\text { Velocity } \quad v=\frac{d x}{d t}=\dot{x} \tag{1.1.1}\\
\text { Acceleration } \quad a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=\ddot{x} \tag{1.1.2}
\end{gather*}
$$

The acceleration equation is of ten the starting point for solving the equations of motion, since $\mathcal{N e}$ wton's lawstates that it is equal to F / m, where F is the resultant force acting upon the particle of mass m.

The above equations can be integrated to give:

$$
\begin{equation*}
v(t)=v_{0}+\int_{0}^{t} a(t) \mathrm{d} t \quad x(t)=x_{0}+\int_{0}^{t} v(t) \mathrm{d} t \tag{1.1.3}
\end{equation*}
$$

For constant acceleration a this gives

$$
\begin{equation*}
v(t)=v_{0}+a t \quad x(t)=x_{0}+v_{0} t+1 / 2 a t^{2} \tag{1.1.4}
\end{equation*}
$$

The expression for particle acceleration may be re-cast in an alternative way:

$$
\begin{gather*}
a=\ddot{x}=\frac{d \dot{x}}{d t} \tag{1.1.5}\\
\frac{d \dot{x}}{d t}=\frac{d \dot{x}}{d x} \frac{d x}{d t}=\dot{x} \frac{d \dot{x}}{d x}=v \frac{d v}{d x} \tag{1.1.6}
\end{gather*}
$$

This newexpression for acceleration may be integrated as follows:

$$
\begin{align*}
& v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{v^{2}}{2}\right)=a \tag{1.1.7}\\
& \frac{v^{2}}{2}-\frac{v_{0}^{2}}{2}=\int_{x_{0}}^{x} a(x) \mathrm{d} x \tag{1.1.8}
\end{align*}
$$

When the acceleration is constant, this integral may be evaluated to give:

$$
\begin{equation*}
\frac{v^{2}}{2}-\frac{v_{0}^{2}}{2}=a s, \quad \text { where } \quad s=x-x_{0} \tag{1.1.9}
\end{equation*}
$$

This is the same as the equation familiar from school Pfysics:

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a s \tag{1.1.10}
\end{equation*}
$$

Example 1-A.A parachutist jumps out of a plane and free falls. His downward acceleration arises due to combination of gravity and air resistance (drag), and is given by $a=g-k v^{2}$, where v is the velocity.
(a) Find the expression for the terminal velocity.
(6) Assume that the terminalvelocity is $20 \mathrm{~m} / \mathrm{s}$. How fast will the parachutist be trave lling after falling 50 m ?
(c) Find out fow long it takes to fall 100 m .
a. Terminal velocity is reached whenno further acceleration or deceleration is taking place, i.e. $a=0$. Hence $g-k v_{t}^{2}=0$, and $v_{t}=v g / k$.
6. Rewrite the expression for acceleration using equation (1.1.7):

$$
a=v \frac{d v}{d x}=g-k v^{2}
$$

Think of velocity as the variable and position as the function: express the increment $d x$ in terms of v and $d v$:

$$
d x=\frac{v d v}{g-k v^{2}}
$$

Both sides of this expression can now be integrated. The left fand side yields the totaldrop x. The right fand side must be integrated from the initial velocity 0 to v :

$$
x=\int_{0}^{v} \frac{v d v}{g-k v^{2}}=-\frac{v_{t}^{2}}{2 g} \ln \left|1-\left(\frac{v}{v_{t}}\right)^{2}\right|
$$

The graph of velocity vs position is shown in Fig.1-2. The speed for $x=50 \mathrm{~m}$ can be determined from the graph, or byexpressing vin terms of xfom the above formula. $\left(\mathcal{A n s}:: \quad v=v_{t} \sqrt{1-\exp \left(-\frac{2 g x}{v_{t}{ }^{2}}\right)}, v=18.3 \mathrm{~m} / \mathrm{s}\right.$ at $\left.\chi=50 \mathrm{~m}\right)$

Fig.1-2.
c. A similar trick can be used in order to determine t as a function of v :

$$
\begin{gathered}
a=\frac{d v}{d t}=g-k v^{2}, \quad d t=\frac{d v}{g-k v^{2}}, \text { fence } \\
t=\int_{0}^{v} \frac{d v}{g-k v^{2}}=\frac{v_{t}}{2 g} \ln \left|\frac{v_{t}+v}{v_{t}-v}\right|
\end{gathered}
$$

The graph of position vs time can be obtained by combining the above results, and is shown in Fig.1-3.

Fig.1-3.

The time to travel 100 m can now be read off Fig.1-3.
(Ans .: $t=6.4 \mathrm{~s}$)

Fig. 1-2

We consider motion of a particle with respect to a fixed coordinate system.

Consider a Cartesian rectangular coordinate system, with a pair of orthogonal basis vectors i and j defined. The particle position is given by

$$
\begin{equation*}
\mathbf{r}=x \mathbf{i}+y \mathbf{j} \tag{1.2.1}
\end{equation*}
$$

Since the orientation of the coordinate vectors i and j does not change during motion, differentiation of the above equation gives

$$
\begin{align*}
\mathbf{v} & =\dot{\mathbf{r}}=\ddot{x} \mathbf{i}+\ddot{y} \mathbf{j}=v_{x} \mathbf{i}+v_{y} \mathbf{j} \tag{1.2.2}\\
\mathbf{a} & =\ddot{\mathbf{r}}=\dddot{x} \ddot{\mathrm{i}}+\dddot{y} \mathbf{j}=a_{x} \mathbf{i}+a_{y} \mathbf{j} \tag{1.2.3}
\end{align*}
$$

When the m-component of acceleration ($m=x$ or $m=y$) is prescribed as a function of time, the above expressions can be integrated to solve the equations of motion, i.e. determine the position s_{m} and velocity v_{m} components for the particle at any moment:

$$
\begin{align*}
& v_{m}(t)=v_{m 0}+\int_{0}^{t} a_{m}(t) d t \tag{1.2.4}\\
& s_{m}(t)=s_{m 0}+\int_{0}^{t} v_{m}(t) d t \tag{1.2.5}
\end{align*}
$$

If a_{m} is constant, the integration can be performed explicitly:

$$
\begin{align*}
& v_{m}(t)=v_{m 0}+a_{m} t \tag{1.2.6}\\
& s_{m}(t)=s_{m 0}+v_{m 0} t+1 / 2 a_{m} t^{2} \tag{1.2.7}
\end{align*}
$$

Example 1-B. \mathcal{A} ball is thrown from point \mathcal{A} to land at \mathcal{B} (Fig. 1-5). Find suitable values of v_{0} and α.

Fig. 1-5.

The acceleration is constant and $a_{\chi}=0, a_{y}=-g$. The position of the 6 all as a function of time can be determined from equation (1.2.7):

$$
x=v_{0} \cos \alpha t, \quad y=v_{0} \sin \alpha t \cdot g t^{2} .
$$

Elimination of from the above pair of equations leads to

$$
y=x \tan \alpha-1 / 2 g\left(\frac{x}{v_{0} \cos \alpha}\right)^{2}
$$

We find trajectories passing through point \mathcal{B} by putting $x=d$ and $y=-\hbar$ into the above:

$$
-h=d \tan \alpha-\frac{g d^{2}}{2 v_{0}^{2} \cos ^{2} \alpha}
$$

Ulsing trigonometry this can be expressed as

$$
\frac{h}{d}+\tan \alpha-\frac{1}{2}\left(1+\tan ^{2} \alpha\right) \frac{g d}{v_{0}^{2}}=0
$$

The values of tand (and fience α) and $v_{0} / v g d$ can be found for any specif ie d value of f/d. The solutions are plotted in Fig.1-6.

Fig. 1-6.
\mathcal{N} ote from the graph that, for some values of v_{0} and d, there exist two different solutions for α, a figh and a low value. In this case for the same initial velocities and target position, two different trajectories are available (Fig.1-7).

Fig.1-7.

1.3 Normal and Tangential Coordinates

It is often convenient to descrige curviline ar motion using path variables, i.e. measurements made along the tangent t and normaln to the path. The frame can be pictured as a right-angled bracket moving along with the particle. The tarm always points in the direction of travel, while the n arm points towards the centre of curvature. Unit vectors e_{t} and e_{n} are shown in Fig.1-8.

Fig.1-8.
\mathcal{A} s during time dt particle moves from \mathcal{A} to \mathcal{A}, the increment of path variable s is

$$
\begin{equation*}
d s=\rho d \beta \tag{1.3.1}
\end{equation*}
$$

where ρ is the path curvature. The speed is then $v=d s / d t=\rho d \beta / d t=\rho \dot{\beta}$. The velocity vector is tangential to the path:

$$
\begin{align*}
& \mathbf{v}=v \mathbf{e}_{t} \tag{1.3.2}\\
& v=\rho \dot{\beta} . \tag{1.3.3}
\end{align*}
$$

Fig.1-9.

Fig.1-10.

To find the acceleration vector we must differentiate velocity vector, $\mathbf{a}=d \mathbf{v} / d t$. Acceleration vector reflects the change in both magnitude and direction of v (Fig.1-9). To perform differentiation, apply standard product rule to equation (1.3.2):

$$
\begin{equation*}
\mathbf{a}=\dot{v} \mathbf{e}_{t}+v \dot{\mathbf{e}}_{t} . \tag{1.3.4}
\end{equation*}
$$

Fig.1-10 illustrates how the derivative of vector e_{t} is found: its end swings by d β in the direction of e_{n}. Dividing this increment bydt we establish

$$
\begin{equation*}
\dot{\mathbf{e}}_{t}=\dot{\beta} \mathbf{e}_{n} . \tag{1.3.5}
\end{equation*}
$$

Substituting this into (1.3.4) and using (1.3.3) le ads to the following series of expressions for acceleration:

$$
\begin{align*}
& \mathbf{a}=\dot{v} \mathbf{e}_{t}+\frac{v^{2}}{\rho} \mathbf{e}_{n} \tag{1.3.6}\\
& a_{t}=\dot{v}=\ddot{s} \tag{1.3.7}\\
& a_{n}=\frac{v^{2}}{\rho}=\rho \dot{\beta}^{2}=v \dot{\beta} \tag{1.3.8}\\
& a=\sqrt{a_{t}^{2}+a_{n}^{2}} \tag{1.3.9}
\end{align*}
$$

Circular Motion

Fig.1-11.

Circular motion is an important specialcase (Fig.1-11).

We replace ρ with circle radius r, angle β with θ, and repe at the formulas:

$$
\begin{align*}
& v=\rho \dot{\theta} \tag{1.3.3a}\\
& a_{t}=\dot{v}=r \dot{\theta} \tag{1.3.7a}\\
& a_{n}=\frac{v^{2}}{\rho}=\rho \dot{\theta} \dot{2}^{2}=v \dot{\theta} \tag{1.3.8a}
\end{align*}
$$

Example 1-C.A water-skier is drawn forward on a line at $u=7.1 \mathrm{~m} / \mathrm{s}$, and follows a curved path (Fig.1-12), which can be approximated by a circular arc of $r=20 \mathrm{~m}$. Find the velocity and acceleration components when angle $\theta=45^{\circ}$.

Fig.1-12.

Since forward speed $u=v \cos \theta=v / \sqrt{2}$ must equal $7.1 \mathrm{~m} / \mathrm{s}$, then $v=10 \mathrm{~m} / \mathrm{s}$.

Since $v=-r \dot{\theta}$, then $\dot{\theta}=-\frac{u}{r \cos \theta}=-0.5 \mathrm{rad} / \mathrm{s}$ (the sign shows that θ is de creasing).

Tangential component of acceleration is given $b y a_{t}=\dot{v}=-r \ddot{\theta}$. By differentiation

$$
\ddot{\theta}=\left(\frac{u}{r \cos ^{2} \theta}\right)(-\sin \theta) \dot{\theta}=\dot{\theta}^{2} \tan \theta=0.25
$$

so that $a_{t}=-5 \mathrm{~m} / \mathrm{s}^{2}$ (the skier is decelerating).
\mathcal{N} (ormalcomponent of acceleration is $a_{n}=r \dot{\theta}^{2}=5 \mathrm{~m} / \mathrm{s}^{2}$.

1.4 Polar Coordinates

The third option is to locate the particle by the radial distance r and angular position θ with respect to a chosenfixed direction. We choose unit vectors e_{r} and e_{θ} as shown in Fig.1-13.

Fig.1-13.

Fig.1-14.

The position vector can be expressed as

$$
\begin{equation*}
\mathbf{r}=r \mathbf{e}_{r} . \tag{1.4.1}
\end{equation*}
$$

To find velocity vectorv we need to differentiate r with respect to time using the product rule. Ulsing the same vector construction we used for normal-tangential analysis, we first find (Fig.1-14)

$$
\begin{equation*}
d \mathbf{e}_{r}=\mathbf{e}_{\theta} d \theta, \quad d \mathbf{e}_{\theta}=-\mathbf{e}_{r} d \theta . \tag{1.4.2}
\end{equation*}
$$

Then diving both sides bydt, we establish

$$
\begin{equation*}
\dot{\mathbf{e}}_{r}=\dot{\theta} \dot{\mathbf{e}}_{\theta}, \quad \dot{\mathbf{e}}_{\theta}=-\dot{\theta} \dot{\mathbf{e}}_{r} . \tag{1.4.3}
\end{equation*}
$$

We now find the velocity

$$
\begin{equation*}
\mathbf{v}=\dot{\mathbf{r}}=\dot{r} \mathbf{e}_{r}+r \dot{\mathbf{e}}_{r}=\dot{\mathbf{r}} \mathbf{e}_{r}+r \dot{\theta} \dot{\mathbf{e}}_{\theta} . \tag{1.4.4}
\end{equation*}
$$

Interms of components

$$
\begin{align*}
& v_{r}=\dot{r} \tag{1.4.5}\\
& v_{\theta}=r \dot{\theta} \tag{1.4.6}\\
& v=\sqrt{v_{r}^{2}+v_{\theta}^{2}} . \tag{1.4.7}
\end{align*}
$$

To obtain acceleration, we differentiate the velocity vector vaccording to the same rules. \mathcal{N} ote that in the term $r \boldsymbol{\theta} \mathbf{e}_{\theta}$ each factor must Ge differentiated in turn.

$$
\mathbf{a}=\dot{\mathbf{v}}=\left(\ddot{\mathbf{r}}{ }_{r}+\dot{\mathbf{r}} \dot{\mathbf{e}}_{r}\right)+\left(\dot{r} \dot{\theta} \dot{\mathbf{e}}_{\theta}+r \ddot{\theta} \ddot{\mathbf{e}}_{\theta}+r \dot{\theta} \dot{\mathbf{e}}_{\theta}\right)
$$

Collecting the terms

$$
\begin{equation*}
\mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta} . \tag{1.4.8}
\end{equation*}
$$

Interms of components

$$
\begin{align*}
& a_{r}=\ddot{r}-r \dot{\theta}^{2} \tag{1.4.9}\\
& a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} \tag{1.4.10}\\
& a=\sqrt{a_{r}^{2}+a_{\theta}^{2}} \tag{1.4.11}
\end{align*}
$$

Example 1-D. A rocket is fired vertically and tracked by the radar shown in Fig.1-15. For $\theta=60^{\circ}$, the measurements show $r=9 \mathrm{Km}, \ddot{r}=21 \mathrm{~m} / \mathrm{s}^{2}$, and $\dot{\theta}=0.02 \mathrm{rad} / \mathrm{s}$. Find t he velocity and acceleration of the rocket at this position.

Fig.1-15.
S tart with velocity component $v_{\theta}=r \dot{\theta}=180 \mathrm{~m} / \mathrm{s}$.
\mathcal{N} ote that $v_{\theta}=v \cos \theta$, fence find $v=360 \mathrm{~m} / \mathrm{s}$.
\mathcal{A} lso, $v_{r}=\dot{r}=v \sin \theta=312 \mathrm{~m} / \mathrm{s}$.

Radial accele ration component is $a_{r}=\ddot{r}-r \dot{\theta}^{2}=17.4 \mathrm{~m} / \mathrm{s}^{2}$.

Since the rocket moves along a straight verticalline, totalacceleration must also be vertical. Hence we find $a=a_{r} / \sin \theta=20 \mathrm{~m} / \mathrm{s}^{2}$, and $a_{\theta}=a_{r} / \tan \theta=10 \mathrm{~m} / \mathrm{s}^{2}$.

Finally, $\ddot{\theta}=\left(a_{\theta}-2 \dot{r} \dot{\theta}\right) / r=-0.0003 \mathrm{rad} / \mathrm{s}^{2}$.

2. Kinematics of a Rigid Body

Rigid bodies are different from particles: rigid bodies are extended in space, and the connection betweendifferent parts of a rigid body are permanent and unchanged throughout their motion.

When we try to imagine the position of a rigid body, we may first think of an arbitrary point, a marker (Let's call it \mathcal{A}), on that body. The position and motion of this chosen point can be described in exactly the same way we used for particles, e.g. using rectangular or polar coordinates. However, this description is insufficient to describe the motion of the rigid body, since the body as a whole may rotate around point \mathcal{A}. In order to fix the position of the body we must specify a direction from point \mathcal{A} to another arbitrarily chosen point on the body, say \mathcal{B}. Once the position of \mathcal{A} is fixed, and the direction from \mathcal{A} to \mathcal{B} is given as well, position of the rigid body is fully specified. E.g. a rigid rod connecting two points \mathcal{A} and \mathcal{B} is a rigid body.

A rigid body is in plane motion if all point of the body move parallel to one plane, which is called the plane of motion. We canclassify the kinds of plane motion into:
(a) translation (rectiline ar)
(b) translation (curviline ar)
(c) rotation (around fixed axis)
(d) generalplane motion

In translation everyline in the body remains parallel to its original position, and no rotation is allowed. The trajectory of motion is the line traced by a point in the body. Translation is rectiline ar if this line is straight, and curviline ar otherwise.

Rotation about a fixed axis is the angular motion about this axis, when all points on the body follow concentric circular paths. It is important to picture and understand that all lines on the solid body, even those that do not pass througf the centre, rotate through the same angle in the same time.

Gene ral plane motion of a rigid body is a combination of translation and rotation. We will discuss the concept of relative motion in order to describe this case.

2.1 Rotation

Consider any two line s 1 and 2 attached to (or drawn on) a rigid body, which fave angular orientations described by θ_{1} and $\theta_{2}=\theta_{1}+\beta$. Because the body is rigid, β is fixed, so that $\Delta \theta_{2}=\Delta \theta_{1}$. Differentiation with respect to time gives

$$
\dot{\theta_{2}}=\dot{\theta_{1}}, \quad \ddot{\theta_{2}}=\ddot{\theta_{1}} .
$$

All lines on a rigid body fave the same angular displacement, the same angular velocity and the same angular acceleration.

The angular velocity ω is the time derivative of the angular position of the body,

$$
\begin{equation*}
\omega=\frac{d \theta}{d t}=\dot{\theta} \tag{2.1.1}
\end{equation*}
$$

The angular acceleration α is the second time derivative of the angular position coordinate of the body,

$$
\begin{equation*}
\alpha=\frac{d \omega}{d t}=\dot{\omega}=\frac{d^{2} \theta}{d t^{2}}=\ddot{\theta} . \tag{2.1.2}
\end{equation*}
$$

When a body rotates about a fixed axis, all points follow concentric circular paths. The line ar velocity and acceleration of an arbitrary point can be written using the formulas we introduced in our discussion of particle kinematics:

$$
\begin{align*}
& v=\omega r \\
& a_{n}=\omega^{2} r=v^{2} / r \tag{2.1.3}\\
& a_{t}=\alpha r
\end{align*}
$$

It is usefulfor you to le arn how the se quantities can be expressed using the cross. product vector notation. Across-product $\omega \times r$ of two vectors ω and r is a vectorv of magnitude $v=\omega r \sin \phi$, where ϕ is the angle between ω and r. Vector v points normal to 6 oth ω and r (and therefore normal to the plane of ω and r) in the direction defined by the right-hand rule (Fig.2-1). Note that interchanging the order of ω and r in the cross-product changes the sign of v.

Fig.2-1.
The case is ilfustrated in Fig.2-1. Angular velocity ω is a vector of magnitude $\dot{\theta}$ and pointing in the direction normal to the plane of motion in accordance with the right. hand rule. Ulsing the cross-product notation we can write down the following result:

$$
\begin{equation*}
\mathbf{v}=\dot{\mathbf{r}}=\frac{d \mathbf{r}}{d t}=\boldsymbol{?} \times \mathbf{r} \tag{2.1.4}
\end{equation*}
$$

The significance of this formula is as follows: if a vector r is constant and attached to a solid body which is rotating around a fixed axis with angular velocity ω, then its time de rivative is given $6 y$ the cross-product of ω intor .
\mathcal{N} ote that this applies to any fixed vector attached to the solid body. However, it is wrong to use this formula if the vector itself is changing in direction or magnitude.

For the acceleration one obtains:

$$
\begin{equation*}
\mathbf{a}=\dot{\mathbf{v}}=\frac{d \mathbf{v}}{d t}=\frac{d}{d t}(\mathbf{?} \times \mathbf{r})=\mathbf{?} \times \dot{\mathbf{r}}+\boldsymbol{?} \times \mathbf{r}=? \times(\boldsymbol{?} \times \mathbf{r})+\mathbf{a} \times \mathbf{r}=\mathbf{a}_{n}+\mathbf{a}_{t} \tag{2.1.5}
\end{equation*}
$$

Fig.2-2.

Example 2-A. \mathcal{A} T-shaped pendulum rotates about a forizontal axis through point O. At the instant shown in Fig.2-2 its angular velocity is $\omega=3 \mathrm{rad} / \mathrm{s}$ and its angular acceleration is $\alpha=14 \mathrm{rad} / \mathrm{s}^{2}$ in the directions indicated. Determine the velocity and acceleration of point \mathcal{A} and point \mathcal{B}, expressing the results in terms of components along the n - and t-axes shown.

Velocities:

$$
\mathbf{v}=\boldsymbol{?} \times \mathbf{r}=\boldsymbol{?} \times\left(\mathbf{r}_{t}+\mathbf{r}_{n}\right)=\boldsymbol{?} \times \mathbf{r}_{t}+\boldsymbol{?} \times \mathbf{r}_{n}=\mathbf{v}_{n}-\mathbf{v}_{t}
$$

Point \mathcal{A} is only moving tangentially $\left(v_{n}=0\right)$ at speed $-\omega r_{n}=1.2 \mathrm{~m} / \mathrm{s}$.

Point \mathcal{B} is moving normally at speed $\omega r_{t}=0.3 \mathrm{~m} / \mathrm{s}$ and tangentially at speed $-\omega r_{n}=1.2 \mathrm{~m} / \mathrm{s}$.

Totalspeed of \mathcal{B} is $1.24 \mathrm{~m} / \mathrm{s}$.

Accelerations: $\quad a_{n}=\omega^{2} r, \quad a_{n}=\alpha r$.

Point \mathcal{A} fas normalacceleration $a_{n}=3^{2} \cdot 0.4=3.6 \mathrm{~m} / \mathrm{s}^{2}$ towards point 0 , and tangential acceleration $a_{t}=-14 \cdot 0.4=-5.6 \mathrm{~m} / \mathrm{s}^{2}$.

Distance $O \mathcal{B}=0.412 \mathrm{~m}$. Point \mathcal{B} fas acceleration $3^{2} \cdot 0.412=3.71 \mathrm{~m} / \mathrm{s}^{2}$ towards point 0 , and also acceleration $-14 \cdot 0.412=-5.77 \mathrm{~m} / \mathrm{s}^{2}$ perpendicular to $O \mathcal{B}$.

Projected onto the t - and n-axes this leads to the following values for the acceleration components:
$a_{t}=(-5.77 \cdot 0.4 / 0.412 \cdot 3.71 \cdot 0.1 / 0.412) \mathrm{m} / \mathrm{s}^{2}=-6.5 \mathrm{~m} / \mathrm{s}^{2}$
$a_{n}=(3.71 \cdot 0.4 / 0.412+5.77 \cdot 0.1 / 0.412) \mathrm{m} / \mathrm{s}^{2}=5 \mathrm{~m} / \mathrm{s}^{2}$.
\mathcal{N} ote that ne ither component is the same as for point \mathcal{A}. Generally, a point on a solid body is likely to experience higher acceleration the further it lies from the centre of rotation.

2.2 Relative motion

Let \mathcal{A} and \mathcal{B} be two points on the rigid body. We start with the following vector relation:

$$
\begin{equation*}
r_{\mathcal{A}}=r_{\mathcal{B}}+r_{\mathcal{A} / \mathcal{B}} \tag{2.2.1}
\end{equation*}
$$

$\mathcal{H e r e} r_{\mathcal{A}}$ and $r_{\mathcal{B}}$ represent absolute position vectors of \mathcal{A} and \mathcal{B} with respect to some fixed axes, and $r_{\mathcal{A} / \mathcal{B}}$ stands for the relative position vector of \mathcal{A} with respect to \mathcal{B}.
$\mathcal{B} y$ differentiating the above equation with respect to time, we obtain the basis of the relative motion analysis, known as the relative velocity equation:

$$
\begin{equation*}
v_{\mathcal{A}}=v_{\mathcal{B}}+v_{\mathcal{A} / \mathcal{B}} \tag{2.2.2}
\end{equation*}
$$

To determine the velocity of \mathcal{A} with respect to the fixed axes (the absolute velocity $\left.v_{\mathfrak{A}}\right)$ we represent it as the sum of the absolute velocity of point $\mathcal{B}, v_{\mathcal{B}}$, and the relative velocity of point \mathcal{A} with respect to point $\mathcal{B}, v_{\mathcal{A} / \mathcal{B}}(\mathcal{F i g} .2-3)$.

Fig.2-3.

When the solid body is rotating around a fixed axis with angular velocity ω, all vectors on that solid body also rotate with the same angular velocity. In fact, we Know from equation (2.1.4) that $v_{\mathcal{A} / \mathcal{B}}$, which is the time derivative of vector $r_{\mathcal{A} / \mathcal{B}}$, can be represented by the cross-product of ω and $r_{\mathfrak{A} / \mathcal{B}}$,

$$
\begin{equation*}
v_{\mathfrak{A} / \mathcal{B}}=\omega \times r_{\mathcal{A} / \mathcal{B}} . \tag{2.2.3}
\end{equation*}
$$

This result merits some discussion. Some very usefulconclusions can be drawn.
\mathcal{N} ote that vector $v_{\mathcal{A} / \mathcal{B}}$ is directed normally to 6 oth ω and $r_{\mathcal{A} / \mathcal{B}}$. (see e.g.the definition of cross-product). This makes sense: if we observe the motion of \mathcal{A} from \mathcal{B}, it appears to simply rotate at the end of a fixed link $\mathcal{B A}$.

The component of the relative velocity of \mathcal{A} with respect to \mathcal{B} along the line $\mathcal{A B}$ must be zero. This makes sense again: because the link betwe en \mathcal{B} and \mathcal{A} is rigid, its length must not change. Coming back to the absolute velocities $v_{\mathcal{A}}$ and $v_{\mathcal{B}}$, this means that points \mathcal{A} and \mathcal{B} must frave the same velocity along the line connecting them. Although most of this is self-evident from the definition of a rigid body, the results are very usefulfor velocity analysis, as we will see later on in this course.

Example $2-\mathcal{B}$. The wheel of radius $r=300 \mathrm{~mm}$ rolls to the right without slipping and has a velocity $v_{O}=3 \mathrm{~m} / \mathrm{s}$ of its centre O. Calculate the velocity of point \mathcal{A} on the wheel shown in Fig.2-4.

Fig.2-4.

Fig.2-5.

Since the motion of point O is given, choose it as the reference point for the relative velocity equation:

$$
v_{\mathfrak{A}}=v_{O}+v_{\mathfrak{A} / O} .
$$

Consider also point C in contact with the ground at the instant considered, for which

$$
v_{C}=v_{O}+v_{C / O}=0
$$

From equation (2.2.3) we know that the relative velocity $v_{C / O}$ points in the direction of rotation of the wheel, i.e.opposite v_{0}, and has the magnitude ω. We thus establish that $v=\omega r$. The angular velocity ω of the wheel (as well as of any line fixed on that whe el, e.g. OA) is equal to $v_{0} / r=10 \mathrm{rad} / \mathrm{s}$.

Returning to the relative velocity equation for points O and \mathcal{A} we now determine that the relative velocity $v_{\mathcal{A} / O}$ has the magnitude $\omega r_{O}=(10 \cdot 0.2) \mathrm{m} / \mathrm{s}=2 \mathrm{~m} / \mathrm{s}$, and is pointing normally to $O \mathcal{A}$ in the direction of rotation, i.e. clockwise. It remains to determine $v_{\mathcal{A}}$ from the vector sum of v_{O} and $v_{\mathcal{A} / O}$, as shown on the diagram in Fig.2-5. The magnitude of $v_{\mathfrak{A}}$ is found from the cosine rule:

$$
v_{\mathfrak{A}}^{2}=3^{2}+2^{2}+2 \cdot 3 \cdot 2 \cos 60^{\circ}=19(\mathrm{~m} / \mathrm{s})^{2}, \quad v_{\mathfrak{A}}=4.36 \mathrm{~m} / \mathrm{s} .
$$

\mathcal{N} ote that alternatively the contact point \mathcal{C} could be used as the reference point in the relative velocity equation. Since point \mathcal{C} is stationary (at the particular moment considered!), the relative velocity of \mathcal{A} with respect to \mathcal{C} gives the final answer to the problem. The direction of $v_{\mathfrak{A}}$ is perpendicular to the line $\mathcal{C A}$.

2.3 Instantaneous centre of rotation

In solving the example proble m we discovered that judicious choice of the reference point in the relative velocity equation (2.2.2) may le ad to great simplification of the analys is. In particular, if we always choose the point C which is momentarily stationary at the instant considered, the relative velocity equation for any point \mathcal{A} on the body simplifies to

$$
\begin{equation*}
v_{\mathcal{A}}=v_{\mathcal{A} / \mathcal{C}}=\omega \times r_{\mathcal{A} / C} \tag{2.3.1}
\end{equation*}
$$

As far as the velocities are concerned, the body may be thought to be in pure rotation about an axis normal to the plane of motion and passing through point \mathcal{C}.

It is very important for you to understand that generally point \mathcal{C} is $\mathcal{N} O \mathcal{T}$ fixed permanently. It moves both with respect to the body and the absolute axes. Point \mathcal{C} can be taken as the centre of rotation only at the given instant, and is therefore Known as the instantaneous centre of rotation.

The location of the instantane ous centre can be easily determined by construction in Fig.2-6. Let us assume first that, for two chosen points \mathcal{A} and \mathcal{B} the directions of absolute velocities are not parallel, as in Fig.2-6(a). If there is a point with respect to which point \mathcal{A} is in a state of pure rotation at that instant, it must lie on the normal to $v_{\mathfrak{A}}$ through \mathcal{A}. Similar reasoning applies for point \mathcal{B}. The intersection of the se two normals (which always exists since $v_{\mathcal{A}}$ and $v_{\mathcal{B}}$ are not parallel) is the instantane ous centre C. Tha magnitude of w is found from

$$
\left|v_{\mathfrak{A}}\right|=|\omega||\mathcal{C A}| .
$$

The magnitudes and directions of all absolute velocities are now determined using equation (2.3.1).

Fig.2-6.

Fig.2-6.

Let's consider what fappens if the velocities of the two chosen points \mathcal{A} and \mathcal{B} are parallel, as in Fig.2-6(6). If $v_{\mathcal{A}}=v_{\mathcal{B}}$, then the body is not rotating, 6 ut only translating, and all points have the same velocity. If $v_{\mathcal{A}}$ is not equal to $v_{\mathcal{B}}$, then the line joining them must be normal to both $v_{\mathcal{A}}$ and $v_{\mathcal{B}}$ (can you prove that it is so?). The location of the instantane ous centre \mathcal{C} is found by direct proportion.
$\mathcal{N B}$: the instantane ous centre does not have to lie within the solid body. However, it is sometimes convenient to imagine extending the solid body to include the instantane ous centre. This thoughtexercise does not affect the answer in any way.

Example 2-C. Arm $O \mathcal{B}$ of the linkage fas a clockwise angular velocity of $10 \mathrm{rad} / \mathrm{s}$ in the position shown where $\theta=45^{\circ}$ (Fig.2-7). De termine the angular velocity of link $\mathcal{A B}$ for the instant shown, and the velocities of points \mathcal{A} and \mathcal{D} on this link.

Fig.2-7.

Fig. 2-8.

The velocities of \mathcal{A} and \mathcal{B} are normal to the links $\mathcal{A O}$ 'and $\mathcal{B O}$, connecting them to the fixed centres O 'and O, respectively. The instantaneous centre for the link $\mathcal{A B}$, to which both of these points belong, lies at the intersection of the normals to the velocities, and can be found by extending the links $\mathcal{A O}$ 'and $\mathcal{B O}$. The distances $\mathcal{A C}, \mathcal{B C}$ and $\mathcal{D C}$ are found from trigonometry or scaled diagram.

We now extend the solid body to include point $\mathcal{C}(\mathcal{F i g} .2-8)$. The link $\mathcal{B C}$ is a line on this body, and rotates with the same angular velocity as the whole. We seek the angular velocity as follows

$$
\omega_{\mathcal{B C}}=v_{\mathcal{B}} / \mathcal{B C}=\omega_{O \mathcal{B}} O \mathcal{B} / \mathcal{B C}=4.29 \mathrm{rad} / \mathrm{s} C C W=\left(\omega_{\mathcal{A} \mathcal{B}}\right)
$$

(Since $\mathcal{A B}$ and $\mathcal{B C}$ belong to the same solid body, they must fave the same angular ve (ocity).

The velocities of \mathcal{A} and \mathcal{D} are now

$$
\begin{aligned}
& v_{\mathcal{A}}=\omega_{\mathfrak{A B}} \mathcal{C B}=4.29 \cdot 0.35=1.5 \mathrm{~m} / \mathrm{s} \\
& v_{\mathcal{D}}=\omega_{\mathfrak{A B}} \mathcal{C D}=4.29 \cdot 0.381=1.63 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. Kinematics of Mecfanisms

Ideas discussed in the context of Kinematics of particles and rigid bodies will now be used in the analysis of mechanisms. It is often usefulto keepthis kinematic analysis of a system separate from a consideration of how the mechanism responds to the application of forces.

This section of the lecture course deals, primarily, with the analys is of mechanism Kinematics. The objective of Kinematic analysis of a mechanism is to determine the line ar and angular velocities of the various components of the mechanism when some part of it is subjected to a known linear or angular velocity.

Although this is a course on kine matics, examples are given of how a kine matic analysis of a mechanism can lead on naturally to an analys is of the dynamics of the system.

3.1 Methods of Kinematic Analysis of Mechanisms

Various tecfniques are available to carry out kinematic analysis of mechanisms as described below.

Analytical methods. In this approach a set of equations is writtendown to describe the geometry of the mechanism and also the various constraints that determine its motion. (Common forms of contraint are (i) the length of a rigid link cannot change, or (ii) the end of a link may be fixed, or (iii) a point on a link may be constrained to move in a particular direction, i.e. in a slider joint). These geometric equations are then differentiated to obtain further equations relating the line ar and angular velocities of the various components of the mecfanism.

The approach is based on conventionalgeome try and differentialcalculus. The approach is not very systematic, however, and carefulthought is needed to set up the geometric equations for any particular problem. The maindrawback of the method is that it often involves the manipulation and differentiation of rather lengthy expressions. This means that the solution process usually becomes verylong-winded and te dious.

Although I will be showing you fow to use an analytic al approach for a simple mechanism (see example \mathcal{D}), I would only recommend this method for generaluse (at Least as far as Paper $\mathcal{P 4}$ is concerned) if you feelconfident performing the fairlylong alge braic manipulations required.

Graphical methods. Grapficalmethods are based on a geometric representation of the kine matics of a mechanism. Two main types of graphicalmethods are described in the textbooks on this subject: the method of instantaneous centres and the velocity diagram method. These lectures will dwell on the velocity diagram method. This method may be developed to include an analysis of accelerations (using an acceleration diagram) 6ut this is well beyond the scope of this lecture course.

Computer methods. Inengine ering practice, of course, any kinematic analysis of a mechanism will use computer analys is in which the various constraints to motion are de alt with in a systematic way. Computer methods of analysis are, fowe ver, also beyond the scope of this course.

3.2 Kinematics of a Crank-S Sider Mechanism using an Analytical Approach

The crank-slider is used in a variety of mechanisms, most importantly in the piston connecting rod-crankshaft mecfanism in an internalcombustionengine.

Fig.3-1. Cross-section through a gaguar 3.8-litre six-cylinder engine (after Morrison and Crossland, 'Mecfanics of Macfines', Longman), and the schematic mecfinism.

Example 3-A (see below) consists of the analysis of a typicalcrank-slider mechanism of the sort that might be used in the engine of a typicalfamily car. This example is solved below using an analytical procedure to define the geometry of the mechanism; the resulting geometric equations are thendifferentiated to provide expressions for the line ar and angular velocities of the component parts of the mechanism. We will return to this problem to obtain a more rapid solution using the velocity diagram.

Example 3-A. Find the velocity of C and the angular velocity of link $\mathcal{B C}$ in the crank. slider mechanism at the instant shown below. The crank $\mathcal{A B}$ is rotating anti-clockwise with angular velocity $\omega=d \theta / d t=500 \mathrm{rad} / \mathrm{s}$ (approx. 4800 rpm).

Fig.3-2.

Ulsing the analytical approach, we first write down equations de fining the ge ometry of the mechanism:

$$
\begin{aligned}
& z=r \cos \theta+l \cos \phi \\
& 0=r \sin \theta-l \sin \phi \\
& \Rightarrow \sin \phi=\frac{r}{l} \sin \theta \\
& \Rightarrow \cos \phi=\sqrt{1-\left(\frac{r}{l} \sin \theta\right)^{2}} \\
& \Rightarrow z=r \cos \theta+l \sqrt{1-\left(\frac{r}{l} \sin \theta\right)^{2}}
\end{aligned}
$$

$\mathcal{N e x t}$, we need to differentiate the expressions for z and $\cos \phi$. The derivative of the expression for z gives:

$$
\frac{d z}{d t}=-r \sin \theta \frac{d \theta}{d t}-\frac{r^{2} \sin \theta \cos \theta}{l \sqrt{1-\left(\frac{r}{l} \sin \theta\right)^{2}}} \frac{d \theta}{d t} .
$$

We are now able to calculate the velocity of point \mathcal{C} by inserting the appropriate values of $r, \theta, d \theta / d$ t and linto the above expression (noting that $d \theta / d t$ is simply the angular velocity of link $\mathcal{A B}$ and therefore equal to $500 \mathrm{rad} / \mathrm{s}$). In this partciular case this le ads to the solution

$$
\frac{d z}{d t}=-48.7 \mathrm{~m} / \mathrm{s} .
$$

The angular velocity of link $\mathcal{B C}$ is given $6 y d \phi / d t$. To evaluate this expression we differentiate the expression for $\sin \phi(a b o v e)$ to give:

$$
\begin{aligned}
\cos \phi \frac{d \phi}{d t} & =\frac{r}{l} \cos \theta \frac{d \theta}{d t} \\
\Rightarrow \frac{d \phi}{d t} & =\frac{r \cos \theta}{l \cos \phi} \frac{d \theta}{d t} \\
& =\frac{r \cos \theta}{l \sqrt{1-\left(\frac{r}{l} \sin \theta\right)^{2}}} \frac{d \theta}{d t}
\end{aligned}
$$

If specific values of $r, \theta, d \theta / d t$ and lare substituted into the above expression then this gives a value for the angular velocity of link $\mathcal{B C}$ of $189 \mathrm{rad} / \mathrm{s}$.

Fig.3-3.

In addition to computing the values of line ar and angular velocity for the particular position of the mechanism shown in the example, the results of the analysis can also be used to determine the kinematics of the mechanism for all values of θ.

Position (z) as a function of θ

Angular velocity $\left(\frac{d \phi}{d t} / \omega\right)$ as a function of θ

Fig.3-4.

3.3 Introduction to the use of velocity diagrams

Kinematic constraints. The velocity diagram is a graphical representation of the velocity vectors for different points within the mechanism. Whenseveral points are considered, the velocity diagram has a form of a polygon, with vertices representing velocities of different points. The velocity diagram is constructed by considering various Kinematic constraints that are imposed on the mechanism.

Links remain connected at B

Fig. 3 - 5.
One generalconstraint is that the bars must remain connected in the same configuration. Severalfurther types of constraint may be identified (Fig.3-5):
(i) Points that are fixed in space (e.g.point \mathcal{A} in the crank-slider mecfanism)
(ii) Points on different parts of the mechanism whichare connected together (e.g.as at point \mathcal{B} in the crank-slider mechanism)
(iii) Points which are constrained to move only incertain directions (e.g. point \mathcal{C} in the crank-slider mechanism)
(iv) The lengths of all rigid links that must remain constant.

Constraints of type (i) to (iii) are included fairly simply in the velocity diagram.

To deal with constraints of type (iv) we recall our discussion of the relative velocity.

We established that two points \mathcal{A} and \mathcal{B} lying on the same rigid body must have the same velocity along the line connecting them (Fig.3-6).

Denote the distance between \mathcal{A} and \mathcal{B} by s, and express the rate of change of this distance with time as

$$
d s / d t=\left|v_{\mathcal{B}}\right| \cos \theta_{\mathcal{B}}-\left|v_{\mathcal{A}}\right| \cos \theta_{\mathcal{A}}
$$

When $\mathcal{A B}$ is a rigid link the distance s must remain constant. This constraint may be by the equation

$$
\begin{equation*}
\left|v_{\mathcal{B}}\right| \cos \theta_{\mathcal{B}}=\left|v_{\mathcal{A}}\right| \cos \theta_{\mathcal{A}} \tag{3.3.1}
\end{equation*}
$$

Otherwise we can express the same condition by requiring that the relative velocity $v_{\mathcal{A} / \mathcal{B}}$ is normal to the orientation of link $\mathcal{B A}$.

Fig.3-6.

Vector diagram for velocities of a rigid link

Fig.3-7.
\mathcal{A} possible velocity diagram for the link $\mathcal{A B}$ is sfown in Fig.3-7. We use lower case Letters o, a, b to denote the ends of velocity vectors for points $O, \mathcal{A}, \mathcal{B}$, etc. Point o denotes the (zero) velocity of a stationary point. Let point abe already given or found. Then point 6 must lie on the line drawn through a perpendicular to link $\mathcal{A B}$. If the direction of velocity of point \mathcal{B} is Know, this condition is usually suffic ie nt to find point 6 grapfically from intersection.

Example 3-A (revisited). We start by noting the variouskinematic constraints on the system, and thenexpress them on the velocity diagram, until velocities of all joints are found.

Fig.3-8.

Velocity diagram
Fig.3-9.

The velocity diagram is constructed by the sequence of operations below:
(i) Find the orientations of all the links (in this case, from simple ge ometry determine $\phi=20.7^{\circ}$)
(ii) Identify points with zero velocity and plot them on the velocity diagram (in this case, point \mathcal{A} is the only one fixed, so a coincides with o, origin)
(iii) Identify points with known velocity and plot them on the velocity diagram (in this case, point \mathcal{B} has the velocity of magnitude $50 \mathrm{~m} / \mathrm{s}$ in the direction shown in Fig.3-8). The line ab on the velocity diagram sfould have a lengtf corresponding to $50 \mathrm{~m} / \mathrm{s}$ and be drawn in the direction θ to the vertical. At this stage it is necessary to establish a suitable scale for the diagram.
(iv) $\operatorname{Drawlines}$ on the velocity diagram corresponding to the remaining Kinematic constraints. Since point C is on a slider joint, it is constraine d to move forizontally, so point c lies on frorizontalline througho. This can be shown on the diagram by a line indic ated c? Since link $\mathcal{B C}$ is rigid, the velocity of C with respect to \mathcal{B} must be normal to this link, so point c also lies on a line through point 6 inclined at ϕ to the vertical. This establishes another c?? line. The intersection of the c? and c?? lines gives the position of point c.

Velocity diagram
Fig.3-9.

Now that the velocity diagram is complete, values of the line ar and angular velocities of link $\mathcal{B C}$ can be found. The velocity of C is represented by the vector oc on the diagram. The magnitude of v_{C} can be found from simple application of the sine rule:

$$
v_{C}=o b \frac{\sin (\theta+\phi)}{\sin \left(90^{\circ}-\phi\right)}=48.7 \mathrm{~m} / \mathrm{s}
$$

(given that obs $=\left|v_{\mathcal{B}}\right|=50 \mathrm{~m} / \mathrm{s}$). This result is identic al to that obtained from a rather lengthy analytical derivation earlier. The direction of the velocity is given by the relative position of points o and c on the diagram: since c lies to the left of o, v_{C} is directed horizontally to the left.

In order to determine the angular velocity of link $\mathcal{B C}$, we note that the relative velocity of \mathcal{C} with respect to $\mathcal{B}, v_{\mathcal{C} / \mathcal{B}}$, is given on the diagram by the vector $6 c$. The sine rule gives

$$
b c=o b \frac{\sin \left(90^{\circ}-\theta\right)}{\sin \left(90^{\circ}-\phi\right)}=37.8 \mathrm{~m} / \mathrm{s}
$$

It remains to find the angular velocity by

$$
\omega=\left|v_{\mathcal{C} / \mathcal{B}}\right| / \mathcal{B C}=189 \mathrm{rad} / \mathrm{s} .
$$

The direction of rotation is determined simply from the relative positions of points 6 and c on the velocity diagram. In this case it is clear that $\mathcal{B C}$ is rotating in the clockwise direction.

The angular velocity of a link can be determined simply by dividing the magnitude of the relative velocity of two ends by the length of the link.

3.4 Further Ulse of Velocity Diagrams

If you have followed the previous example then you will have understood the main features of the velocity diagram method of analysis. Further complexities may arise, and we will illustrate them by means of the following three examples. Firstly, we will look at a four-bar chain mechanism which requires more complex procedures to obtain the angular orientations of the links than for the crank-slider. \mathcal{N} e $x t$, we will consider the usefultopic of velocity images in which the velocity diagram is used to determine the velocity of an arbitrary point within alink. Finally, we will study a me chanism containing a more complicated form of a slider joint.

Example 3-B: four-6ar chain.

The four-bar chain consists of four rigid links connected together. Ulsually, one of the links is fixed, as in this example. The four-bar chain is capable of a large varie ty of motions depending on the relative length of the bars.

$$
\mathrm{AB}=0.1 \mathrm{~m}, \mathrm{BC}=0.16 \mathrm{~m}, \mathrm{CD}=0.2 \mathrm{~m}, \mathrm{AD}=0.3 \mathrm{~m}, \theta=60^{\circ}
$$

Fig. 3-10.
The link $\mathcal{A B}$ in the four- bar chain shown in Fig.3-10 is rotating clockwise with angular ve locity ω. Find the velocity of C and the angular velocity of $\mathcal{C D}$.

We use a similar approach to that for the crank-slider mechanism in Example 3-A. In the example considered here there are not one, but two bars with unknown angular ve locities. Also, the determination of the angular orientation of the bars in the fourbar chain needs rather more complex geometricalanalysis. In order to establisf the angular orientation of all bars we use a scale drawing, finding the values $\phi=18^{\circ}$ and $\phi=22^{\circ}$ approximately.

Alternatively, more accurate values may be obtained by the use of the cosine and sine rules (Fig.3-11).

Fig. 3-11.

For triangle $\mathcal{A B D}: \mathcal{B D}^{2}=\mathcal{A} \mathcal{B}^{2}+\mathcal{A D} \mathcal{D}^{2}-2 \mathcal{A B} \mathcal{A D} \cos 60^{\circ} \quad=>\mathcal{B D}=0.2646 \mathrm{~m}$ For triangle $\mathcal{B C D}: \mathcal{C D} \mathcal{D}^{2}=\mathcal{B D}{ }^{2}+\mathcal{B} C^{2}-2 \mathcal{B D} \mathcal{B C} \cos \alpha \quad=>\alpha=48.943^{\circ}$ For triangle $\mathcal{A B D}: \mathcal{A B} \mathcal{B}^{2}=\mathcal{A D} \mathcal{D}^{2}+\mathcal{B D} \mathcal{D}^{2}-2 \mathcal{A D} \mathcal{B D} \cos \beta \quad \Rightarrow \beta=19.08^{\circ}$ $\psi+\alpha+\beta=90^{\circ} \quad \quad \quad>\psi=21.97^{\circ}$

For triangle $\mathcal{B C D}: \mathcal{C D} / \sin \alpha=\mathcal{B C} / \sin (\beta+\phi) \quad=>\phi=18.0^{\circ}$

$\mathrm{AB}=0.1 \mathrm{~m}, \mathrm{BC}=0.16 \mathrm{~m}, \mathrm{CD}=0.2 \mathrm{~m}, \mathrm{AD}=0.3 \mathrm{~m}, \theta=60^{\circ}$

The velocity diagram is now drawn in the following stages:
(i) Choose position of origin o, and draw points a and d to coincide with o.
(ii) $\quad \mathcal{D r a w}$ position of point 6 (this is straightforward since velocity of \mathcal{B} is equal to $\mathcal{A B} \omega$ and inclined at an angle θ to the vertical)
(iii) $\mathcal{D r a w}$ a line through 6 in a direction orthogonal to $\mathcal{B C}$ (ac? line)
(iv) $\quad \mathcal{D r a w}$ a line through din a direction orthogonal to $\mathcal{D C}$ (a c?? (ine), and find c as intersection.

The velocity diagram is complete.

Four-bar chains are used in a varie ty of applications. Some examples are illustrated Gelow:

Fig.3-12.

Fig.3-13.

Example 3-C: velocity images.

It is often useful to use velocity diagrams to indicate the velocity of points at arbitrary positions within a rigid link, rather than only consider velocities at joints. The ide a of velocity images is usefulfor this, as illustrated below.

Fig.3-14.

To find the velocities of points \mathcal{B}, \mathcal{C} and \mathcal{D} on the rigid link shown in Fig.3-14, we use the following construction:

We now use this approach to analyse the front wheelsuspension system of a car, shown in Fig.3-15.

$\mathrm{AB}=500 \mathrm{~mm}, \mathrm{BC}=400 \mathrm{~mm}, \mathrm{CD}=350 \mathrm{~mm}, \mathrm{EG}=350 \mathrm{~mm}, \mathrm{EF}=350 \mathrm{~mm}$
Fig.3-15.
Find the horizontal velocity of the point where the wheel is in contact with the road for the case when the car has a downwards velocity of $1 \mathrm{~m} / \mathrm{s}$.

This is a four-Gar chain mechanism for which the use of velocity images proves rather useful.

Velocity Diagram

Example 3-D: mecfanisms with sliders.

Mechanisms can have slider joints rather than pins. This situation is treated by carefulconsideration of the kinematic constraint set up by the sliding joint, as illustrated below.

Fig.3-16.

The mechanism shown above is Known as the Whitworth quick-return mechanism. Plot the approximate variation of h with θ. For the case when $\theta=30^{\circ}$, find the value of $d \mathfrak{l} / \mathrm{t}$ and the angular velocity of $\mathcal{D C}$.
\square

Before proceeding with the velocity diagram it is necessary to distinguish carefully between the following points: point \mathcal{B} on the crank $\mathcal{A B}$, and point \mathcal{B} 'on the rocker $\mathcal{C D}$. The two points, at the moment considered, occupy the same position in space, but they have different velocities.

Fig. 3-16.

3.5 Application of the Results of Kinematic Analysis

Results of Kinematic analysis can be used to investigate the dynamic behaviour of a mechanism.

Example 3-E.
In the crank-slider mechanism shown in Fig.3-17 the link $\mathfrak{A B}$ is connected to a flywhelwith the moment of inertia $100 \mathrm{~kg} \mathrm{~m}^{2}$. \mathcal{A} force of 10 KN is applied to the piston. Find the angular acceleration of the flywheelassuming that the masses of the piston and the connecting rod can be neglected.

Fig.3-17.

In the absence of frictional losses the power produced by the piston, $\mathcal{F} v_{\mathcal{C}}$, is equal to the rate of increase of the flywheel's kinetic energy, $I \omega^{2}$:

$$
F v_{C}=\frac{d}{d t}\left(\frac{I \omega^{2}}{2}\right)=I \omega \dot{\omega} .
$$

The angular acceleration can be found as

$$
\dot{\omega}=\frac{F v_{C}}{I \omega}=\frac{F|A B|}{I} \frac{v_{C}}{v_{B}},
$$

where $v_{B}=|A B| \omega$ was used. The velocity ratio does not depend on the ir magnitudes, but only on the dimensions and angles of the mechanism.

The solution from Example $3 \cdot \mathcal{A}$ can be used, for which $v_{\mathcal{C}}=48.7 \mathrm{~m} / \mathrm{s}$ and $v_{\mathcal{B}}=50 \mathrm{~m} / \mathrm{s}$, giving angular acceleration $\dot{\omega}=9.74 \mathrm{rad} / \mathrm{s}^{2}$.

