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1 Introduction rigid-link that is five-sixth of the length of the flexible segment,
and based on this approximation, they presented a graphical tech-

By and large, kinematic chains of mechanisms have traditiop- . . ' ) . .
ally been designed to comprise of links that behave as “rigidB'que for synthesis of a function generating four-bar linkage with

b Such hani derive thei bilit tirely f a flexible coupler link. Sevak and McLarndb] presented an
MEemBbErs. Such mechanisms derive their mobility entirély WOoRyy;,i7ati0n method based on iterative finite-element analysis
rigid-body translatlon.s and/or rotations Of. Ilnks. due to degregs-q 2chnique for synthesis of flexible mechanisms with one or two
freedom(DOF) permitted at the kinematic pairs or connectiong

; . . : h exible links in a four-bar chain for function and path generation
between various links. Elastic deformations of materials have alsQ.. < Howell and Midhf7] developed a technique called pseudo-
been utilized to generate useful motions in numerous mechani i

. > A d-body model wherein a compliant mechanism is modeled as
for certain special advantages, but until mid-1960s such flexug‘ equivalent rigid-link mechanism, and used this technique to

generated mobility was largely confined to small angular rotatioRgnhesize four-bar compliant mechanisms containing a rigid in-
between stiff members by means of flexure hinge—a short ag jink, a rigid coupler and a flexible link for motion generation
thin metallic strip or a small “necked” down region of a thickask. In all of these works, two characteristics are prominent: com-
blank of material—that provides a rotational DOF similar to thgfjiant four-bar mechanisms comprised at least one moving rigid-
at a conventional pin joinf1]. As opposed to such flexure atjink and in compliant mechanisms for motion generation, the
joints, generating mobility through elastic deformations of linkgoupler link was always considered to be a rigid member. This is
by replacing one or more links in a conventional kinematic chaiecause, these works considered the motion generation objective
with slender flexible members was first suggested by Burns afitht is based on the definition of the task provided for conven-
Crossley[2], and this resulted in a special class of mechanisnnal rigid-link mechanisms. In this paper, we consider a new
called flexible link mechanismsEarly works on flexible link objective involving the guidance of a slender flexible segment
mechanisms consisted of four-bar chains consisting one or twgher than a rigid link, and present a technique to synthesize a
flexible members. Since the late 1980s the scope of mechanissitggle-link compliant mechanism to accomplish the objective task.
utilizing flexure has broadened tremendously embracing mecha-what follows, we first outline the problem statement and follow
nisms with a variety of complex topologies. Today, all mechdt by a detailed explanation of the synthesis technique. Lastly, we
nisms that are designed to derive mobility from elastic deformdllustrate the synthesis approach by means of a numerical
tions in some elemefg—a flexural hinge and/or a relatively long example.
flexible segment—of a mechanism have come to be broadly re-
ferred to ascompliant mechanism$or more information on the
background of compliant mechanisms interested readers may reJer proplem Statement
Midha [3], Ananthasuresf¥], and Saggeré5]. ) o )

This paper concerns a class of compliant mechanisms featurind/iotion generatioris one of the three customatgsksfor kine-
a closed-loop kinematic chain, i.e., a four-bar, and synthesized f8RtC synthesis of rigid-link mechanisms. Erdman and Saftlor
one of the three conventional tasks viz. path, function, or motidive defined it is as thiaskwhich requires that an entireigid)
generation. This class of mechanisms was first investigated B?dy "be guided through a prescribed motion sequence. The
Burns and Crosslej2]. They approximated the motion of the tip body” to be guided is usually a part of a rigid floating link, and

of a flexible cantilever strip as equivalent to the rotation of &€ Prescribed “rigid-body motion sequence” comprises of de-
sired positions and orientations of the floating link. However, if

Contributed by the Mechanisms Committee for publication in theRNAL OF the bOdy. to .be gu'.d.ed IS f.le.XIble’ then I.t would undergo elastic
MECHANICAL DESIGN. Manuscript received April 1999. Associate Editor: C. M. deformation in addition to rigid-body motion. Such a case has not
Gosselin. been treated so far, and we consider the same in this paper.
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Initial configuration Cc are two segments to be synthesized; A-B-C-D represents the ini-
tial configuration of the mechanism, and A-b-c-D represents the
final configuration of the mechanism. Based on the consideration
of this topology, the problem statement may be explicitly phrased
as follows: given the initial configuration of a flexible segment
and its desired final configuration, synthesize a compliant four-
bar mechanism comprising all flexible segments and the corre-
sponding input torques that precisely effect the prescribed
compliant-segment motion generation

We assume that the specified initial and final shapes of the
given flexible segment are “smooth,” and can be adequately rep-
resented by second or third order polynomials. We also assume

The objective of the synthesis presented in this paper is to guiﬂ?t the involved shape change is “small,” which means the dis-

a given slender flexible segment with known initial shape, elasf acements and sr:ralns are imall enough folr the é}’pphCﬁtlon Qfl
properties, and external loading, if any, to another prescribed c W_earlzed beam theory, and the beams are “slender” so that axia
figuration. That is, the given flexible segment is to be deformeacpGI shear strains are negligible.

into another specified definite smooth shape while moving it from

its initial configuration to another specified configuration as illus-

trated in Fig. 1. Such a motion of the segment involves a rigi® Synthesis Procedure

body displacement of the segment along with a controlled elasti(:-l-he basic goal of the synthesis for compliant-segment motion
deformation or change in the shape of the segment. We call S‘{P?heration can be separated into two components: the elastic de-

Final configuration

Fig. 1 lllustration of the compliant-segment motion generation
task

a t"t".Sk of acci_mplishmdg such a "I‘Ottr'?n task“comlgll_anf-saegme rmation and the rigid-body displacement of the segment. The
motion generation,” and, In generay, this task could INCIUAe MUy component necessitates an appropriate moment distribution
tiple presqubed cqnﬂguraﬂor{&e., positions and.s.hap)esf the . over the given flexible segment the second component necessi-
segment, J,L,JSt as in the case_of conventional .”g'd'bOdy MOtiofl g appropriate kinematic displacements of the two ends of the
generation task. Thus, comp!lant-segment mgtion generation ¢ gments. Since the geometry of the shape change involved can
IS %tréslt(hthat rr]eqmres a ermbLedsegmtent of a_gqedck:aﬂsm 10 BE represented by either a cubic or a quadratic equation, it is
9”' ed roEg Zsequence ot discrete prescribed “shapes, %rpparent from the Euler’s elastic curve equatiohich relates the
pl"\e/ICISIOH St aEel licat ‘ liant ¢ moi bending moment distribution on a segment to its curvajutet

any potential applications of compliant-segment motion g€ ey of the moment distribution function on the segment has
eration can be envisioned. For Instance, a certain segment ah,d,5 4t most one. That is, in order to effect quadratic or cubic
large flexible space structure that functions as a reflective surfascﬁaape changes, it is suffic,ient to generate a linearly varying or
may be .reqwr_ed to be oriented in different directions and al.%%nstant moment distribution along the length of the segment, and
shaped into different curvatures for the purposes of modulatigg i, t,m can be accomplished by means of only two unequal or
the characteristics of reflecting sound or light waves. A S|mllaéqual end-moments at the two ends of the segment. Based on this
application of compliant-segment motion generation is also pragi, jamental concept, the synthesis strategy aims to accomplish
ticable at micro level, for example, in micromirrors for controlle oth the required m,oment distributiofend-moments on _the
reflect]on of light. Another examp'? of.potentlal f%PP"Ca“‘?” Objiven segment and the prescribed kinematic displacements of its
compllant-se_gment motion generation Is a stamping appllce_ltl_ 0 ends by appropriately synthesizing the two segments pinned
where a flexible contour is required to conform to contoured rig the ground and the corresponding input moments. Thus, spe-
surfaces that have differently shaped curvatures. In all such appligeo 1 “the synthesis tasks are: to determine optimal shapes and
cat_lons, th? required t§5k can be efﬂuently_accompllshed by zes of segments A-B and C-D, locations of the pivots A and D,
vising a suitable compliant four-bar mechanism. and the input torques MAand MD,, of the compliant mechanism

To accomplish compliant-segment motion generation, we cop: Fig. 2

sider a (t:ompliant fOLt"'c??r iﬁpolo%y th;\r/eintthhe :c\llvo.te)lnds of thetThe approach adopted for this synthesis is conceptually similar
segment are connected to the ends of two otner flexIble SegMEgy, oy of rigid-link four-bar mechanisms in that it involves dis-
(to be synthesizedso that the three segments form one contmuo;@

| ink. The two f ds the link inned t d ining the mechanism into various links and designing each link
planar link. 1he two iree ends the link are pinned 1o ground a parately, however, its implementation is very much modified in

actuzlated by 'anUt tgrquefs ordrotatlons as showlrll IB_FIg. ? Euc_hi w of the fact that pure kinematic motion and elastic deforma-
tﬁpo 0gy may aiso be referred to "qus a structurla y binary ik With, s cannot be treated separately in compliant mechanisms. The
three compound segments in the nomenclature suggesteds Mthesis strategy is to disjoin all the segments and impose bound-
Midha et al.[9]. In this f'g!"ev .B'C IS the given erX|'bIe segment ry conditions on each segment so tifat at the fusing ends,
to be guided to the specified final configuration b-c; A-B and C- isplacements and rotations are identical and the internal forces
and moments are equal in magnitude but opposite in sign(land
each segment is independently in equilibrium. These two condi-
c tions ensure that when the segments are joit@dall the internal
forces and moments cancel each otlier,displacements and ro-
tations arecompatibleat the fusing ends, antt) the resulting
structure will be in equilibrium under the action of input actuation
moments. This approach is illustrated in Fig. 3.
This process of setting up of boundary conditions begins with
determination of forces and moments as well as corresponding
Moy, rotations at the ends “B” and “C” of the coupler segment “B-C”
that is to be guided. These loads and the prescribed kinematic
n displacements of the ends “B” and “C” are translated into bound-
D ary conditions for the two input segments “A-B” and “C-D.”
A Thus, the synthesis strategy can be divided into two main steps:
computation of end-loads on the coupler segment, and synthesis
Fig. 2 Complaint four-bar mechanism for motion generation of the input segments.

Ma,
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duces bending and the relative translation along the axis of the

membery, is considered to be zero, that is, it is considered that no

change in length occurs. The chord rotatiops= (ye—yn)/I1,

is considered positive when clockwise. Further notation is as

follows:

ay = rotation at the end Nnear end

ap = rotation at the end Ffar end

Sy = rotational stiffness of end N—that is, the end-moment at
N corresponding to a unit rotation at N while the displace-
ment at F is restrainedFig. 4-)

Sg = rotational stiffness of end F—that is, the end-moment at F
corresponding to a unit rotation at F while the displace-
ment at N is restrainedFig. 4-)

t = carry-over moment—that is, the moment at the fixed end

F caused by a unit rotation of end(Rig. 4-b); also equal
to the carry-over moment at the fixed end N caused by a
unit rotation of end HFig. 4-) (by Betti's theorem

Fig. 3 Boundary conditions set-up for dimensional synthesis Consider the curve n-f representing the deformed shape of a mem-
of the segments ber N-F subjected to external lateral lod&#g. 4-a). The transla-

tion part of the displacement of the memlif#rat is, its translation

as a rigid-body to the straight dotted line ngroduces no mo-

3.1 Computation of End-Loads on the Coupler Segment. ments. The end-momeM, at end N can be expressed as the sum
The loads(forces and momenksat the ends of the floating seg-of the moment due to the external load on the member with the
ment corresponding to the desired shape change in the segn®fiil-displacements preventéte fixed-end momeri¥,,) and of
are determined by a standard method of mechanics. For this pilxe moments induced by rotationa—¢) and (az—¢) at the
pose, the rotations at the ends are first calculated from the eqgds N and F respectively. Thusly=Sy(an—¢)+t(ag—¢)
tions of the known initial and finaldeformed configurations; +(Mex)n Where M)y is the fixed end-moment at N, that is,
then, the moments corresponding to the end rotations are cdite value of the end-moment caused by the actual external lateral
puted using the basic slope-deflection equation of the momdagds on the beam with displacements at both ends prevented.
distribution method in structural analysi0]. Since the slope- This equation can be rearrangedMg= Syay+tar— ¢(Sy+t)
deflection equation of the moment distribution method is not com(Mex)n. This is the slope-deflection equation for a prismatic or
monly used in modern structural analysis literature, its derivationpn-prismatic beam. The equation can be used to express the mo-
taken from[10], is presented below for the benefit of the readergnient at the left- or right-hand end. When the member has a con-

For ease of illustration of the method, and without any loss étant flexural rigidityEl, Sg=4EI/l and t=2EI/l. The slope-
generality, let the initial shape of the member be straight. Figuredgflection equation then becomes:
represents the deflected shape n-f of a straight member N-F.

CIocI_<Wise moment or rotatior_1 of either _end of the member is MN:E(4C¥N+26¥F—6<P)+(Mex[)N 1)
considered positive. The relative translation of the ends perpen- L
dicular to the original direction of the membewy(yy), pro-

Using this slope-moment equation, moments required at the
ends B and C of the segment B-C in Fig. 3 are determined. Once
the end-moments have been established, the forces required for
the equilibrium of the segment at each of the two ends are deter-
mined from simple statics, and then, the computed force at each
end may be resolved into horizontal and vertical components
through the known angle of orientation of the chord with respect
to the horizontal.

3.2 Synthesis of Input Segments. This synthesis process
begins with setting up the right boundary conditions on the seg-
ments. With reference to Fig. 3, the boundary conditions on the
segments A-B and C-D are set-up as follows: the forces and mo-
ments determined at the ends B and C of segment B-C are trans-

1 (a) ferred to the ends B and C of the segments A-B and C-D as
explained earlier; the rotations required at the ends B and C are

s 3 R computed from the known change in curvature of the segment
N W TR t B-C; and the displacements of the ends B and C are known di-

rectly from the design specifications. The rotations and input mo-
ments at the ends A and D are also part of the boundary conditions
for the synthesis, but their values are unknown. After establishing
the boundary conditions, the objective of the synthesis is to deter-
AI\ mine the shapes and sizes of segments A-B and C-D, locations of
t(gN = \> S, the pivots A and D, and the unknown values of the input torques
MA,, and MD,, which satisfy the equilibrium of the segments.
© A Since the synthesis process is identical for both the segments A-B
1 and C-D, we consider only one segment in the following.
Fig.4 Sign convention for slope-deflection equation, (@) Posi- Consider the segment AB for instance. Figure 5 illustrates thg
tive directions of end-rotations _ ary and a;.. and chord rotation known and unknown design parameters involved in the synthesis
¢. (b) End-moments caused by a unit rotation at N.  (c) End- Of segment A-B. The force§g , Fg , the momentMg, the
moments caused by a unit rotation at F. displacement d at an angé&from the horizontal, and the rotation
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atypical inverse problem that has not been reported in the litera-
ture, and the solvability of this problem is discussed below.
Consider the bending of the curved beam segment in Fig. 5.
The shapes of beam’s axis in the unloadeddeformeg and the
loaded(deformed states are planar curves represented by para-
metric equationsy= 7(s) and = ¢(s) respectively, whersis a
parameter identified with length measured along the axis of the
beam from point A. The beam is assumed to be inextensible,
hences is the same in both equations, and the total arc length of
both shapes i&. Thus, 7(s) and ¢(s) represent the slopes mea-
sured with respect to the horizontal, afd,(s),y,(s)} and
{Xy(8),y4(s)} represent the Cartesian coordinates at any pmint
on the undeformed and the deformed shapes of the beam. It is
assumed that one of the principal axes of inertia of the beam’s
cross-section lies in the plang, and the loads acting on it also lie
in that plane. Therefore, the axis of the beam remains to be a
planar curve after deformation. The required forces and the mo-
ment at the tip B are known from the boundary conditions at the
end B; this implies that the forces at the end A are also known
since they must be equal and opposite to that at B to satisfy the
equilibrium condition. However, the input momeNt, is un-
known since the relative locations of the tips are not known. As-
suming a constant flexural rigiditgl, the in-plane bending of the
beam is governed by Euler’s equation:

Fig. 5 Design parameters involved in synthesis of the seg- d(dy dy
ment A-B L )= _
El ds( is ds) Ma,~Fe Yu(S)TFa yu(s) (2

) " and the coordinatef,(s),y,(s)} and{x,(s),y,(s)} are related
ag at the tip B—are all known; the unknown quantities are thg, ,(s) by the following geometric relations:
length and the shape of the segment, the location of the ground

point A, and the input momeril, required at the tip A. All dx,(s) dy,(s)
these known and unknown quantities are related through the equi- ds =cogy(s)); ds =sin(i(s))
librium condition for the segment, and constitute and an inverse
elastica problem as discussed in the following. dx,(s) dy,(s)
: : =cog7(s)); =sin(n(s)) ®3)
3.2.1 An Atypical Inverse Elastica ProblemThe most com- ds ds

mon problem in the theory of bending is that in which the fre§
shape of a beam with a particular load is given and the deflectg
shape is sought. This problem is rather straight-forward to solve:
If the expected deflections are small, the problem can be easily L
solved by the Euler-Bernoulli linear beam theory; but in the case Xw(L)—X”(L)=f cog ¢(s)) —cog 77(s)))ds=d cog 5)
of large, non-linear deflections a more sophisticated model such as 0
the elasticais necessary. However, in many engineering applica-
tions there exist problems which are the inverse of the direct
bending problem. One class of such inverse problems involves the y,(L)—y,(L)= f
case where the length of the beam and locations of its tips and/or
tip loads are known, but the equilibrium geometry of the beam is (4b)
unknown. A problem comprising this particular set of knowns and _ _
unknowns in the theory of bending is called tinwerse elastica PL)=m(l)=ag (40)
problem Such a problem has been studied by many researcher§he above set of non-linear equations forms an under con-
including Shoup and McLarndii1], Watson and Wanfl2], and strained system for the solution of the unknoviis (s), #7(s),
Stack et al[13]. Another class of inverse problems involves the, (L), y,(L), x,(L), y,(L), MA;,, andL. One might think of
case where the deflected shape of a beam corresponding to a phtaining the loaded shape of the beam segmeg(s), by an
ticular load may be given and the fréenloaded shape of the inverse elastica method, and then solve §¢s) in the governing
beam is soughft14]. Excepting the cases where the beam geonequilibrium Eq. (1). However, expression fof(s) obtained by
etry and loads are very simple, such inverse problems have,rearranging Eq(1) has, in general, no closed-form solution. The
general, no closed form solutions, and mostly, they require numsufficient information about the beam to be synthesized, or in
merical methods for their solutions. However, as was observedather words, this set of large number of unknowns poses difficul-
the works cited, numerical solutions to inverse elastica problertiss even for a solution by numerical methods. The set of un-
are complicated by the highly non-linear behavior and nomanowns in this system of equations exhibit the existence of infi-
uniqueness of the solutions. nitely many beam configurations that can satisfy the load-
Typically, in such inverse problems either the initial shape atisplacement requirements. However, it is possible to obtain
the deformed shape of the beam, the locations of tips of the beamijquely “best” possible solutions for such problems by employ-
as well as the total length of the beam are known. However, in tivgg constrained optimization techniques. There is no reported
inverse problem under inquirproblem illustrated in Fig. 6 both  work in literature that has particularly treated the above set of
the initial shape and the deformed shape are not known, nor &r@wns and unknowns. One closely related work is that of Bani-
the tip locations and length of the beam known. Further, in thihuck[15], who presented an optimization method for determin-
problem, unlike typical inverse problems, both the tip loads andg the optimal shape of a curved beam loaded by a single con-
the tip displacementéncluding rotationg are known. This set of centrated force at the tip of the beam. However, in that problem,
knowns and unknowns in elastic bending theory constitutes a vehe locations of the beam’s tips, the length and the total volume of

e loaded beam is subject to the following displacement bound-
conditions at the end B:

(49)

L
sin(¢(s)) —sin(7(s)))ds=d sin(9)

0

538 / Vol. 123, DECEMBER 2001 Transactions of the ASME



=]
>4
b

]

Number of elements = 3 Number of elements = 5
0 10 20 [} 10 20

TSR TR

Number of slements = 10 Number of elements = 15
0 10 20 [} 10 20

ooee [V
W}

5 Number of elements = 20 5 Number of elements = 25

0 10 20 o 10 20

Fig. 7 Comparison of the static deformation of a flexible mem-
ber using conventional beam elements (-+-) and the spring-
Fig. 6 Model of curved beam using torsional springs and rigid model (-0-)

elements

arrive at an optimal feasible solution to the problem, the total
weight (or volume of the segment is minimized as a cost func-

the beam were assumed to be known, and also in that problem tio@al subject to the known tip displacemefiinematic con-
tip deflection was minimized rather than satisfying a specifistrain and the known tip rotatiofelastic constraint The design
value of the tip deflection as is the case in the current problerariables and the associated bounds arei €l ,,, 0< 7=,

The difficulty associated with insufficient information for a direch,;,,<h=<h,,,, (cross-sectional width of the membeand 6,,,

solution to the above set of non-linear equations has been overd, < 6, (input rotation at the pinned end AThus, the optimi-
come in the following by combining kinematics and mechanics ipation problem is posed as:

a novel way through an optimization scheme. Before elucidating
the optimization scheme, the details of a model for the beam used
in the optimization set-up is in order below. Subject to: Kinematic Constraint

Minimize:  Volume=(l X h?)

3.2.2 Modeling a Curved Beam Segmerfsince differential Elastic Constraint
equations are cumberso_me fc_)r qptimization by “classical” ap- Equilibrium Equation (5)
proaches, a method of discretization of the flexible segment into
discrete elements is necessary for optimization by a numerigguilibrium equation: The equilibrium equation is given by:
approach. For this purpose, a curved flexible member may be _ .
mpopdeled as a seriesp ofpsmall, straight, rigid elements conngcted Kil(i=m) = (= m-)]=M; 1=2...n, (6)
end to end through linear torsional springs such that the lengthsvdfiereM; is the net moment acting dith element;
the rigid elements add up to the length of the original curved beggi,gtic constraint: This is the required rotation at ti, that is:
segment(see Fig. 6 The spring constant{, of the torsional
spring is approximately taken &=EI/L, whereEl is the bend-
ing stiffness of the beam, arlds the length of the rigid element. Required Specified 5
Such a model for a curved beam segment characterizes the static ~ fprotatiop  displagement
deformation behavior of the corresponding beam segment with
sufficient accuracy when large number of springs and rigid ele- Og
ments are used in the model. For example, Fig. 7 depicts a com- b (@
parison of the model with springs and rigid-links with conven-
tional beam elements through a linear analysis for static
deformations of a cantilever beam under a moment load at the tip.
It can be observed that when fewer elements are used, the spring
model predicts larger static displacemeftsode -0j than that
predicted by conventional beam elemefitsode ---). However, Final =3
as the number of elements are increased, the displacement error jn ~ %formedsiate
the spring model decreases, and the static deformation mode pre-
dicted by this model compares better with that of conventional
beam elements. This can be explained by the fact that a spring-
link element underestimates the bending stiffness of the beam due
to the approximation involved in the value of the spring constant.
However, as element lengths shorten with increase in number of
elements, the approximation error is progressively corrected.

P Initial
undeformed state

3.3 Optimization. Figure 8 shows the spring-link models of
the initial and the final configurations of the beam segment. The
anglesz; and ¢; in Fig. 8 are related to the tip loads, the input
actuation (rotation 6,) and the boundary-conditions through &rig. 8 Notation for the computational scheme of the finite-link
simple equilibrium equation in terms of spring const&tTo model
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(n—mn)=ag; (7) Fc,=272.317

Kinematic constraint: For the kinematic constraint an idea simi- Mel= 2708316
lar to the standard loop-closure equation employed in the synthe
sis of traditional rigid-link mechanisn{8] is used. By represent-
ing the position of each of the rigid links in its initial and final

positions as vectorgsee Fig. & Z;=I(cosy+isiny), and W; B
=I(cosy;+isiny), respectively, and representing the specified -
tip displacement as vectat, a loop-closure equation for the two Fe =-70.312

positions can be written as: Ms =-291p6.5

n Fcy= —272.317
> (Wi-2)=d ® _ o
i=1 Fig. 10 A schematic illustrating the computed end-moments

. . and end-forces
The two scalar components of this vector equation are:

n

Izl (cosy;—cosz;)=d cosé known values VizE,l,|,ag, ac,¢, and Mgy, in Eq. (1), the

necessary end-moments to effect the desired deformation are com-
n puted: Mg=-—29166.5N-mm, and Mc=-—27083.16 N-mm.
IE (sing;—siny;)=dsind (9) Then, applying the basic moment equilibrium principle from stat-
i=1 ics, the end-forces at the two ends of the segment BC are ob-
where 8 is the orientation of the displacement vectbas shown tained, and resolved into horizontal and vertical components in the
in Fig. 8. The optimization is started with initial “guess” valuesCartesian coordinate systenfg,=70.31N, Fg,=—272.32N,
for the design variables, and at convergence, it yields a set &fdFcx=—70.31N,F¢,=272.32 N(see Fig. 10
optimal values fot, and 7;, (i=1.n) that defines the shape, the Next, the compliant segments AB and CD are synthesized
length, the ground pivot of the flexible segment, as well as, thy applying the optimization scheme described earlier. Consider
magnitude of the input actuatigmomentM »;,, or rotationd,). the synthesis of segment AB. The compatible loads at the tip B
The accuracy with which the converged values will satisfy thare known from the computation of equilibrium loads for the seg-
synthesis requirements depends on the convergence tolerancén§sit BC and the compatible displacement and rotation at the tip
for the optimization and number of the elements employed in tfeare known from the problem specifications. That is, the bound-
model. ary conditions Fg,=—70.312N, Fg,=272.317N, andMg
The above steps must be repeated to synthesize the remairirg?166.5 N-mm, dg,=—-9.3mm, dg,=3.4mm, and ag
segment C-D. Then, the shapes of all three compliant segmerits; 0.1 radians are enforced at the tip B. The curved beam with
A-B, B-C, and C-D will be known. The structure that resuits bnd A pinned to the ground is modeled using spring-link elements
connecting the three segments end-to-end and pinning the end@sashown in Fig. 8. Choosing the following bounds for the design
and D to ground pivots is the required compliant mechanism fyariables: square cross-section width, 10#aim<50 mm; length

the specified task. of each element, 0 mml<100 mm; and initial orientations of
the elements, & ;<= radians, the optimization problem was
4 Example set-up and solved in the MATLAB® software package for various
. . _ . . .. number of elementa in the model. The optimized values of the
Consider a 200 mm long flexible beam BC which is initiallyset {| and »;, i=1 ...n} were used to construct the shape for

straight and oriented at 14.47° with respect to a horizontal axis dgment AB.

a Cartesian coordinate system is required to be guided into & newigyre 11 illustrates how the above optimization problem con-
position and bent into a shape where the axis of the beam, idgRrges for various cases of=2, 5, 10, 15, 20, and 25. In all of
tified by a parametes, is represented by the cubic equationipese cases the optimum valuehafrias 10 mm. It can be observed
—0.8x10 °s*+0.00235°+0.1s when the end B is at the origin that as the number of the beam elementincreases, the shape of

of the Cartesian framgsee Fig. 9. Let the required displacementsthe resulting curve becomes progressively smoother. The differ-
at the two ends bed,=10mm at an angleSg=200° andd,.

=10mm at an anglé-=200°. Let the specified properties of the
beam be: Young’s modulug§=20x 10* N/mn?, and width of its
square cross-sectioh=5 mm (1=52.08 mni). w=2
First, the required rotations at the ends are computed from th gq}’
known change in geometryrg=—0.1 radians andvc= —0.08
radians. The chord rotation and the length of the beam are giver 8of
viz. ¢=14.47° andL=200mm, and since no external load is
specified on the beam, we haw.,=0. By substituting the 7o

25 CONVERGENCE DETAILS

No. of |Element | Total
Elem., n|Length, I |Length, S Change

48.083 | 96.166 A
18.798 | 93.990 |2.263%
9.3295 | 93.295 |0.739%
6.2045 | 92.954 |0.244 % |

60-
46477 | 92.888 [0.122%

501 3.7155 | 92.755 |0.072%| 1
40+ ]
301 ]
20-

10- .

b -0.8x10°° 53+ 0.0023552 +0.15 A
Final required shape 0 2 . .
Fig. 9 A schematic illustrating the design specifications Fig. 11 Results of synthesis of segment AB
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CONVERGENCE DETAILS

No. of
Elem,, n|Length,

Element

Total
length, S

Change

58.779
22,796
11.283
7.5064
5.6216
4.4934

117.558
113.980
112.929
112596
112432
112338

3.043%

0.295%
0.145 %
0.086 %

inlength|

1215%|

Fig. 12 Results of synthesis of segment CD

ence in the lengths of the beam segment for the case20 and

end-forces at B and C, the necessary input moments at ends A and
D are computed from static equilibrium to b# ,=28085.63
N-mm andMp=28753.94 N-mm.

To confirm the synthesis procedure, a finite-element analysis
was performed on the resulting compliant mechanism by applying
the computed input moments at the pinned ends A and D. The
motion of the segment BC, depicted in Fig. 13, was found to
conform to the specifications to an accuracy of first decimal.

Conclusions

The problem of effecting a prescribed shape change in a given
flexible segment along with its rigid-body motion, called
compliant-segment motion generation task, is introduced for the
first time, and a first-principles based procedure for synthesis of a
closed-loop compliant mechanism for such a task is presented.
The procedure is illustrated through a numerical example, and the
feasibility of the approach is verified through a reverse finite ele-
ment analysis. Although motion generation involving only two
configurations is considered, the procedure can be extended to
motion generation involving multiple configurations.
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