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Generation
Compliant four-bar mechanisms treated in previous works consisted of at least one
moving link, and such mechanisms synthesized for motion generation tasks have
comprised a rigid coupler link, bearing with the conventional definition of motion g
eration for rigid-link mechanisms. This paper introduces a new task called compl
segment motion generation where the coupler is a flexible segment and requires
scribed shape change along with a rigid-body motion. The paper presents a syste
procedure for synthesis of single-loop compliant mechanisms with no moving rigid-
for compliant-segment motion generation task. Such compliant mechanisms have
tial applications in adaptive structures. The synthesis method presented involves an
cal inverse elastica problem that is not reported in the literature. This inverse proble
solved by extending the loop-closure equation used in the synthesis of rigid-links t
flexible segments, and then combining it with elastic equilibrium equation in an op
zation scheme. The method is illustrated by a numerical example.
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1 Introduction
By and large, kinematic chains of mechanisms have traditi

ally been designed to comprise of links that behave as ‘‘rig
members. Such mechanisms derive their mobility entirely fr
rigid-body translations and/or rotations of links due to degrees
freedom~DOF! permitted at the kinematic pairs or connectio
between various links. Elastic deformations of materials have
been utilized to generate useful motions in numerous mechan
for certain special advantages, but until mid-1960s such flex
generated mobility was largely confined to small angular rotati
between stiff members by means of flexure hinge—a short
thin metallic strip or a small ‘‘necked’’ down region of a thic
blank of material—that provides a rotational DOF similar to th
at a conventional pin joint@1#. As opposed to such flexure a
joints, generating mobility through elastic deformations of lin
by replacing one or more links in a conventional kinematic ch
with slender flexible members was first suggested by Burns
Crossley@2#, and this resulted in a special class of mechanis
called flexible link mechanisms. Early works on flexible link
mechanisms consisted of four-bar chains consisting one or
flexible members. Since the late 1980s the scope of mechan
utilizing flexure has broadened tremendously embracing me
nisms with a variety of complex topologies. Today, all mech
nisms that are designed to derive mobility from elastic deform
tions in some element~s!—a flexural hinge and/or a relatively lon
flexible segment—of a mechanism have come to be broadly
ferred to ascompliant mechanisms. For more information on the
background of compliant mechanisms interested readers may
Midha @3#, Ananthasuresh@4#, and Saggere@5#.

This paper concerns a class of compliant mechanisms featu
a closed-loop kinematic chain, i.e., a four-bar, and synthesized
one of the three conventional tasks viz. path, function, or mot
generation. This class of mechanisms was first investigated
Burns and Crossley@2#. They approximated the motion of the ti
of a flexible cantilever strip as equivalent to the rotation of
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rigid-link that is five-sixth of the length of the flexible segmen
and based on this approximation, they presented a graphical t
nique for synthesis of a function generating four-bar linkage w
a flexible coupler link. Sevak and McLarnan@6# presented an
optimization method based on iterative finite-element analy
technique for synthesis of flexible mechanisms with one or t
flexible links in a four-bar chain for function and path generati
tasks. Howell and Midha@7# developed a technique called pseud
rigid-body model wherein a compliant mechanism is modeled
an equivalent rigid-link mechanism, and used this technique
synthesize four-bar compliant mechanisms containing a rigid
put link, a rigid coupler and a flexible link for motion generatio
task. In all of these works, two characteristics are prominent: co
pliant four-bar mechanisms comprised at least one moving rig
link, and in compliant mechanisms for motion generation,
coupler link was always considered to be a rigid member. Thi
because, these works considered the motion generation obje
that is based on the definition of the task provided for conv
tional rigid-link mechanisms. In this paper, we consider a n
objective involving the guidance of a slender flexible segm
rather than a rigid link, and present a technique to synthesiz
single-link compliant mechanism to accomplish the objective ta
In what follows, we first outline the problem statement and follo
it by a detailed explanation of the synthesis technique. Lastly,
illustrate the synthesis approach by means of a numer
example.

2 Problem Statement
Motion generationis one of the three customarytasksfor kine-

matic synthesis of rigid-link mechanisms. Erdman and Sandor@8#
have defined it is as thetaskwhich requires that an entire~rigid!
body be guided through a prescribed motion sequence.
‘‘body’’ to be guided is usually a part of a rigid floating link, an
the prescribed ‘‘rigid-body motion sequence’’ comprises of d
sired positions and orientations of the floating link. However,
the body to be guided is flexible, then it would undergo elas
deformation in addition to rigid-body motion. Such a case has
been treated so far, and we consider the same in this paper.

.
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The objective of the synthesis presented in this paper is to g
a given slender flexible segment with known initial shape, ela
properties, and external loading, if any, to another prescribed c
figuration. That is, the given flexible segment is to be deform
into another specified definite smooth shape while moving it fr
its initial configuration to another specified configuration as illu
trated in Fig. 1. Such a motion of the segment involves a rig
body displacement of the segment along with a controlled ela
deformation or change in the shape of the segment. We call s
a task of accomplishing such a motion as ‘‘compliant-segm
motion generation,’’ and, in general, this task could include m
tiple prescribed configurations~i.e., positions and shapes! of the
segment, just as in the case of conventional ‘‘rigid-body mot
generation’’ task. Thus, compliant-segment motion generation
is a task that requires a flexible segment of a mechanism to
guided through a sequence of discrete prescribed ‘‘shapes,’
‘‘precision shapes.’’

Many potential applications of compliant-segment motion g
eration can be envisioned. For instance, a certain segment
large flexible space structure that functions as a reflective sur
may be required to be oriented in different directions and a
shaped into different curvatures for the purposes of modula
the characteristics of reflecting sound or light waves. A sim
application of compliant-segment motion generation is also p
ticable at micro level, for example, in micromirrors for controlle
reflection of light. Another example of potential application
compliant-segment motion generation is a stamping applica
where a flexible contour is required to conform to contoured ri
surfaces that have differently shaped curvatures. In all such a
cations, the required task can be efficiently accomplished by
vising a suitable compliant four-bar mechanism.

To accomplish compliant-segment motion generation, we c
sider a compliant four-bar topology wherein the two ends of
segment are connected to the ends of two other flexible segm
~to be synthesized! so that the three segments form one continuo
planar link. The two free ends the link are pinned to ground a
actuated by input torques or rotations as shown in Fig. 2. Su
topology may also be referred to as a structurally binary link w
three compound segments in the nomenclature suggeste
Midha et al.@9#. In this figure, B-C is the given flexible segme
to be guided to the specified final configuration b-c; A-B and C

Fig. 1 Illustration of the compliant-segment motion generation
task

Fig. 2 Complaint four-bar mechanism for motion generation
536 Õ Vol. 123, DECEMBER 2001
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are two segments to be synthesized; A-B-C-D represents the
tial configuration of the mechanism, and A-b-c-D represents
final configuration of the mechanism. Based on the considera
of this topology, the problem statement may be explicitly phras
as follows: given the initial configuration of a flexible segme
and its desired final configuration, synthesize a compliant fo
bar mechanism comprising all flexible segments and the co
sponding input torques that precisely effect the prescrib
compliant-segment motion generation.

We assume that the specified initial and final shapes of
given flexible segment are ‘‘smooth,’’ and can be adequately r
resented by second or third order polynomials. We also ass
that the involved shape change is ‘‘small,’’ which means the d
placements and strains are ‘‘small’’ enough for the application
linearized beam theory, and the beams are ‘‘slender’’ so that a
and shear strains are negligible.

3 Synthesis Procedure
The basic goal of the synthesis for compliant-segment mo

generation can be separated into two components: the elasti
formation and the rigid-body displacement of the segment. T
first component necessitates an appropriate moment distribu
over the given flexible segment the second component nec
tates appropriate kinematic displacements of the two ends of
segments. Since the geometry of the shape change involved
be represented by either a cubic or a quadratic equation,
apparent from the Euler’s elastic curve equation~which relates the
bending moment distribution on a segment to its curvature!, that
the order of the moment distribution function on the segment
to be at most one. That is, in order to effect quadratic or cu
shape changes, it is sufficient to generate a linearly varying
constant moment distribution along the length of the segment,
this in turn can be accomplished by means of only two unequa
equal end-moments at the two ends of the segment. Based on
fundamental concept, the synthesis strategy aims to accom
both the required moment distribution~end-moments! on the
given segment and the prescribed kinematic displacements o
two ends by appropriately synthesizing the two segments pin
to the ground and the corresponding input moments. Thus,
cifically, the synthesis tasks are: to determine optimal shapes
sizes of segments A-B and C-D, locations of the pivots A and
and the input torques MAin and MDin of the compliant mechanism
in Fig. 2.

The approach adopted for this synthesis is conceptually sim
to that of rigid-link four-bar mechanisms in that it involves di
joining the mechanism into various links and designing each l
separately, however, its implementation is very much modified
view of the fact that pure kinematic motion and elastic deform
tions cannot be treated separately in compliant mechanisms.
synthesis strategy is to disjoin all the segments and impose bo
ary conditions on each segment so that~a! at the fusing ends,
displacements and rotations are identical and the internal fo
and moments are equal in magnitude but opposite in sign, and~b!
each segment is independently in equilibrium. These two con
tions ensure that when the segments are joined,~a! all the internal
forces and moments cancel each other,~b! displacements and ro
tations arecompatibleat the fusing ends, and~c! the resulting
structure will be in equilibrium under the action of input actuati
moments. This approach is illustrated in Fig. 3.

This process of setting up of boundary conditions begins w
determination of forces and moments as well as correspon
rotations at the ends ‘‘B’’ and ‘‘C’’ of the coupler segment ‘‘B-C’
that is to be guided. These loads and the prescribed kinem
displacements of the ends ‘‘B’’ and ‘‘C’’ are translated into boun
ary conditions for the two input segments ‘‘A-B’’ and ‘‘C-D.’
Thus, the synthesis strategy can be divided into two main st
computation of end-loads on the coupler segment, and synth
of the input segments.
Transactions of the ASME
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3.1 Computation of End-Loads on the Coupler Segment.
The loads~forces and moments! at the ends of the floating seg
ment corresponding to the desired shape change in the seg
are determined by a standard method of mechanics. For this
pose, the rotations at the ends are first calculated from the e
tions of the known initial and final~deformed! configurations;
then, the moments corresponding to the end rotations are c
puted using the basic slope-deflection equation of the mom
distribution method in structural analysis@10#. Since the slope-
deflection equation of the moment distribution method is not co
monly used in modern structural analysis literature, its derivat
taken from@10#, is presented below for the benefit of the reade

For ease of illustration of the method, and without any loss
generality, let the initial shape of the member be straight. Figu
represents the deflected shape n-f of a straight member
Clockwise moment or rotation of either end of the member
considered positive. The relative translation of the ends perp
dicular to the original direction of the member, (yF2yN), pro-

Fig. 3 Boundary conditions set-up for dimensional synthesis
of the segments

Fig. 4 Sign convention for slope-deflection equation. „a… Posi-
tive directions of end-rotations aN and aF , and chord rotation
w. „b… End-moments caused by a unit rotation at N. „c… End-
moments caused by a unit rotation at F.
Journal of Mechanical Design
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duces bending and the relative translation along the axis of
member,x, is considered to be zero, that is, it is considered that
change in length occurs. The chord rotation,w5(yF2yN)/ l ,
is considered positive when clockwise. Further notation is
follows:
aN 5 rotation at the end N~near end!
aF 5 rotation at the end F~far end!
SN 5 rotational stiffness of end N—that is, the end-moment

N corresponding to a unit rotation at N while the displac
ment at F is restrained.~Fig. 4-b!

SF 5 rotational stiffness of end F—that is, the end-moment a
corresponding to a unit rotation at F while the displac
ment at N is restrained.~Fig. 4-c!

t 5 carry-over moment—that is, the moment at the fixed e
F caused by a unit rotation of end N~Fig. 4-b!; also equal
to the carry-over moment at the fixed end N caused b
unit rotation of end F~Fig. 4-c! ~by Betti’s theorem!.

Consider the curve n-f representing the deformed shape of a m
ber N-F subjected to external lateral loads~Fig. 4-a!. The transla-
tion part of the displacement of the member~that is, its translation
as a rigid-body to the straight dotted line n-f! produces no mo-
ments. The end-momentMN at end N can be expressed as the s
of the moment due to the external load on the member with
end-displacements prevented~the fixed-end momentMext! and of
the moments induced by rotations (aN2w) and (aF2w) at the
ends N and F respectively. Thus,MN5SN(aN2w)1t(aF2w)
1(Mext)N where (Mext)N is the fixed end-moment at N, that is
the value of the end-moment caused by the actual external la
loads on the beam with displacements at both ends preven
This equation can be rearranged asMN5SNaN1taF2w(SN1t)
1(Mext)N. This is the slope-deflection equation for a prismatic
non-prismatic beam. The equation can be used to express the
ment at the left- or right-hand end. When the member has a c
stant flexural rigidityEI, SB54EI/ l and t52EI/ l . The slope-
deflection equation then becomes:

MN5
EI

L
~4aN12aF26w!1~Mext!N (1)

Using this slope-moment equation, moments required at
ends B and C of the segment B-C in Fig. 3 are determined. O
the end-moments have been established, the forces require
the equilibrium of the segment at each of the two ends are de
mined from simple statics, and then, the computed force at e
end may be resolved into horizontal and vertical compone
through the known angle of orientation of the chord with resp
to the horizontal.

3.2 Synthesis of Input Segments. This synthesis proces
begins with setting up the right boundary conditions on the s
ments. With reference to Fig. 3, the boundary conditions on
segments A-B and C-D are set-up as follows: the forces and
ments determined at the ends B and C of segment B-C are tr
ferred to the ends B and C of the segments A-B and C-D
explained earlier; the rotations required at the ends B and C
computed from the known change in curvature of the segm
B-C; and the displacements of the ends B and C are known
rectly from the design specifications. The rotations and input m
ments at the ends A and D are also part of the boundary condit
for the synthesis, but their values are unknown. After establish
the boundary conditions, the objective of the synthesis is to de
mine the shapes and sizes of segments A-B and C-D, location
the pivots A and D, and the unknown values of the input torqu
MAin and MDin which satisfy the equilibrium of the segment
Since the synthesis process is identical for both the segments
and C-D, we consider only one segment in the following.

Consider the segment A-B, for instance. Figure 5 illustrates
known and unknown design parameters involved in the synth
of segment A-B. The forcesFBx

, FBy
, the momentMB , the

displacement d at an angled from the horizontal, and the rotation
DECEMBER 2001, Vol. 123 Õ 537
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aB at the tip B—are all known; the unknown quantities are t
length and the shape of the segment, the location of the gro
point A, and the input momentMAin

required at the tip A. All
these known and unknown quantities are related through the e
librium condition for the segment, and constitute and an inve
elastica problem as discussed in the following.

3.2.1 An Atypical Inverse Elastica Problem.The most com-
mon problem in the theory of bending is that in which the fr
shape of a beam with a particular load is given and the defle
shape is sought. This problem is rather straight-forward to so
If the expected deflections are small, the problem can be ea
solved by the Euler-Bernoulli linear beam theory; but in the c
of large, non-linear deflections a more sophisticated model suc
the elastica is necessary. However, in many engineering appli
tions there exist problems which are the inverse of the dir
bending problem. One class of such inverse problems involves
case where the length of the beam and locations of its tips an
tip loads are known, but the equilibrium geometry of the beam
unknown. A problem comprising this particular set of knowns a
unknowns in the theory of bending is called theinverse elastica
problem. Such a problem has been studied by many researc
including Shoup and McLarnan@11#, Watson and Wang@12#, and
Stack et al.@13#. Another class of inverse problems involves t
case where the deflected shape of a beam corresponding to a
ticular load may be given and the free~unloaded! shape of the
beam is sought@14#. Excepting the cases where the beam geo
etry and loads are very simple, such inverse problems have
general, no closed form solutions, and mostly, they require
merical methods for their solutions. However, as was observe
the works cited, numerical solutions to inverse elastica proble
are complicated by the highly non-linear behavior and n
uniqueness of the solutions.

Typically, in such inverse problems either the initial shape
the deformed shape of the beam, the locations of tips of the be
as well as the total length of the beam are known. However, in
inverse problem under inquiry~problem illustrated in Fig. 5!, both
the initial shape and the deformed shape are not known, nor
the tip locations and length of the beam known. Further, in t
problem, unlike typical inverse problems, both the tip loads a
the tip displacements~including rotations! are known. This set of
knowns and unknowns in elastic bending theory constitutes a

Fig. 5 Design parameters involved in synthesis of the seg-
ment A-B
538 Õ Vol. 123, DECEMBER 2001
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atypical inverse problem that has not been reported in the lit
ture, and the solvability of this problem is discussed below.

Consider the bending of the curved beam segment in Fig
The shapes of beam’s axis in the unloaded~undeformed! and the
loaded~deformed! states are planar curves represented by pa
metric equationsh5h(s) andc5c(s) respectively, wheres is a
parameter identified with length measured along the axis of
beam from point A. The beam is assumed to be inextensi
hences is the same in both equations, and the total arc length
both shapes isL. Thus,h(s) andc(s) represent the slopes mea
sured with respect to the horizontal, and$xh(s),yh(s)% and
$xc(s),yc(s)% represent the Cartesian coordinates at any poins
on the undeformed and the deformed shapes of the beam.
assumed that one of the principal axes of inertia of the bea
cross-section lies in the planexy, and the loads acting on it also li
in that plane. Therefore, the axis of the beam remains to b
planar curve after deformation. The required forces and the
ment at the tip B are known from the boundary conditions at
end B; this implies that the forces at the end A are also kno
since they must be equal and opposite to that at B to satisfy
equilibrium condition. However, the input momentMAin

is un-
known since the relative locations of the tips are not known. A
suming a constant flexural rigidityEI, the in-plane bending of the
beam is governed by Euler’s equation:

EI
d

ds S dc

ds
2

dh

dsD5MAin
2FBx

yc~s!1FBy
yc~s! (2)

and the coordinates$xh(s),yh(s)% and $xc(s),yc(s)% are related
to c(s) by the following geometric relations:

dxc~s!

ds
5cos~c~s!!;

dyc~s!

ds
5sin~c~s!!

dxh~s!

ds
5cos~h~s!!;

dyh~s!

ds
5sin~h~s!! (3)

The loaded beam is subject to the following displacement bou
ary conditions at the end B:

xc~L !2xh~L !5E
0

L

cos~c~s!!2cos~h~s!!)ds5d cos~d!

(4a)

yc~L !2yh~L !5E
0

L

sin~c~s!!2sin~h~s!!)ds5d sin~d!

(4b)

c~L !2h~L !5aB (4c)

The above set of non-linear equations forms an under c
strained system for the solution of the unknownsEI, c(s), h(s),
xh(L), yh(L), xc(L), yc(L), MAin , andL. One might think of
obtaining the loaded shape of the beam segment,c(s), by an
inverse elastica method, and then solve forh(s) in the governing
equilibrium Eq. ~1!. However, expression forh(s) obtained by
rearranging Eq.~1! has, in general, no closed-form solution. Th
insufficient information about the beam to be synthesized, o
other words, this set of large number of unknowns poses diffic
ties even for a solution by numerical methods. The set of
knowns in this system of equations exhibit the existence of i
nitely many beam configurations that can satisfy the lo
displacement requirements. However, it is possible to ob
uniquely ‘‘best’’ possible solutions for such problems by emplo
ing constrained optimization techniques. There is no repor
work in literature that has particularly treated the above set
knowns and unknowns. One closely related work is that of Ba
chuck @15#, who presented an optimization method for determ
ing the optimal shape of a curved beam loaded by a single c
centrated force at the tip of the beam. However, in that proble
the locations of the beam’s tips, the length and the total volume
Transactions of the ASME
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the beam were assumed to be known, and also in that problem
tip deflection was minimized rather than satisfying a spec
value of the tip deflection as is the case in the current probl
The difficulty associated with insufficient information for a dire
solution to the above set of non-linear equations has been o
come in the following by combining kinematics and mechanics
a novel way through an optimization scheme. Before elucida
the optimization scheme, the details of a model for the beam u
in the optimization set-up is in order below.

3.2.2 Modeling a Curved Beam Segment.Since differential
equations are cumbersome for optimization by ‘‘classical’’ a
proaches, a method of discretization of the flexible segment
discrete elements is necessary for optimization by a nume
approach. For this purpose, a curved flexible member may
modeled as a series of small, straight, rigid elements conne
end to end through linear torsional springs such that the length
the rigid elements add up to the length of the original curved be
segment~see Fig. 6!. The spring constant,K, of the torsional
spring is approximately taken asK5EI/L, whereEI is the bend-
ing stiffness of the beam, andl is the length of the rigid element
Such a model for a curved beam segment characterizes the
deformation behavior of the corresponding beam segment
sufficient accuracy when large number of springs and rigid e
ments are used in the model. For example, Fig. 7 depicts a c
parison of the model with springs and rigid-links with conve
tional beam elements through a linear analysis for st
deformations of a cantilever beam under a moment load at the
It can be observed that when fewer elements are used, the s
model predicts larger static displacements~mode -0-! than that
predicted by conventional beam elements~mode -1-!. However,
as the number of elements are increased, the displacement er
the spring model decreases, and the static deformation mode
dicted by this model compares better with that of conventio
beam elements. This can be explained by the fact that a sp
link element underestimates the bending stiffness of the beam
to the approximation involved in the value of the spring consta
However, as element lengths shorten with increase in numbe
elements, the approximation error is progressively corrected.

3.3 Optimization. Figure 8 shows the spring-link models o
the initial and the final configurations of the beam segment. T
anglesh i and c i in Fig. 8 are related to the tip loads, the inp
actuation ~rotation uA! and the boundary-conditions through
simple equilibrium equation in terms of spring constantK. To

Fig. 6 Model of curved beam using torsional springs and rigid
elements
Journal of Mechanical Design
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arrive at an optimal feasible solution to the problem, the to
weight ~or volume! of the segment is minimized as a cost fun
tional subject to the known tip displacement~kinematic con-
straint! and the known tip rotation~elastic constraint!. The design
variables and the associated bounds are: 0, l< l max, 0<h i<p,
hmin<h<hmax ~cross-sectional width of the member! and umin
<uA<umax ~input rotation at the pinned end A!. Thus, the optimi-
zation problem is posed as:

Minimize: Volume5~ l 3h2!

Subject to: Kinematic Constraint

Elastic Constraint

Equilibrium Equation (5)

Equilibrium equation: The equilibrium equation is given by:

Ki@~c i2h i !2~c i 212h i 21!#5Mi i 52 . . .n, (6)

whereMi is the net moment acting oni th element;

Elastic constraint: This is the required rotation at tipB, that is:

Fig. 7 Comparison of the static deformation of a flexible mem-
ber using conventional beam elements „-¿-… and the spring-
model „-0-…

Fig. 8 Notation for the computational scheme of the finite-link
model
DECEMBER 2001, Vol. 123 Õ 539
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Kinematic constraint: For the kinematic constraint an idea sim
lar to the standard loop-closure equation employed in the syn
sis of traditional rigid-link mechanisms@8# is used. By represent
ing the position of each of the rigid links in its initial and fina
positions as vectors~see Fig. 8!: Z i5 l (coshi1i sinhi), and W i
5 l (cosci1i sinci), respectively, and representing the specifi
tip displacement as vectord, a loop-closure equation for the tw
positions can be written as:

(
i 51

n

~W i2Z i !5d (8)

The two scalar components of this vector equation are:

l(
i 51

n

~cosc i2cosh i !5d cosd

l(
i 51

n

~sinc i2sinh i !5d sind (9)

whered is the orientation of the displacement vectord as shown
in Fig. 8. The optimization is started with initial ‘‘guess’’ value
for the design variables, and at convergence, it yields a se
optimal values forl, andh i , (i 51..n) that defines the shape, th
length, the ground pivot of the flexible segment, as well as,
magnitude of the input actuation~momentMAin , or rotationuA!.
The accuracy with which the converged values will satisfy
synthesis requirements depends on the convergence toleran
for the optimization and number of the elements employed in
model.

The above steps must be repeated to synthesize the rema
segment C-D. Then, the shapes of all three compliant segm
A-B, B-C, and C-D will be known. The structure that results
connecting the three segments end-to-end and pinning the en
and D to ground pivots is the required compliant mechanism
the specified task.

4 Example
Consider a 200 mm long flexible beam BC which is initial

straight and oriented at 14.47° with respect to a horizontal axi
a Cartesian coordinate system is required to be guided into a
position and bent into a shape where the axis of the beam, i
tified by a parameters, is represented by the cubic equatio
20.831025s310.00235s210.1s when the end B is at the origin
of the Cartesian frame~see Fig. 9!. Let the required displacement
at the two ends be:db510 mm at an angledB5200° anddc
510 mm at an angledC5200°. Let the specified properties of th
beam be: Young’s modulus,E5203104 N/mm2, and width of its
square cross-section,h55 mm (I 552.08 mm4).

First, the required rotations at the ends are computed from
known change in geometry:aB520.1 radians andaC520.08
radians. The chord rotation and the length of the beam are gi
viz. w514.47° andL5200 mm, and since no external load
specified on the beam, we haveMext50. By substituting the

Fig. 9 A schematic illustrating the design specifications
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known values viz.E,I ,l ,aB , aC ,w, and Mext , in Eq. ~1!, the
necessary end-moments to effect the desired deformation are
puted: MB5229166.5 N-mm, and MC5227083.16 N-mm.
Then, applying the basic moment equilibrium principle from st
ics, the end-forces at the two ends of the segment BC are
tained, and resolved into horizontal and vertical components in
Cartesian coordinate system:FBx570.31 N, FBy52272.32 N,
andFCx5270.31 N,FCy5272.32 N~see Fig. 10!.

Next, the compliant segments AB and CD are synthesi
by applying the optimization scheme described earlier. Cons
the synthesis of segment AB. The compatible loads at the ti
are known from the computation of equilibrium loads for the se
ment BC and the compatible displacement and rotation at the
B are known from the problem specifications. That is, the bou
ary conditions FBx5270.312 N, FBy5272.317 N, and MB
529166.5 N-mm, dBx529.3 mm, dBy53.4 mm, and aB
520.1 radians are enforced at the tip B. The curved beam w
end A pinned to the ground is modeled using spring-link eleme
as shown in Fig. 8. Choosing the following bounds for the des
variables: square cross-section width, 10 mm<h<50 mm; length
of each element, 0 mm< l<100 mm; and initial orientations o
the elements, 0<h i<p radians, the optimization problem wa
set-up and solved in the MATLAB® software package for vario
number of elementsn in the model. The optimized values of th
set $l and h i , i 51 . . .n% were used to construct the shape f
segment AB.

Figure 11 illustrates how the above optimization problem co
verges for various cases ofn52, 5, 10, 15, 20, and 25. In all o
these cases the optimum value ofh was 10 mm. It can be observe
that as the number of the beam elements,n, increases, the shape o
the resulting curve becomes progressively smoother. The di

Fig. 10 A schematic illustrating the computed end-moments
and end-forces

Fig. 11 Results of synthesis of segment AB
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ence in the lengths of the beam segment for the casesn520 and
n525 was less that 0.1% which was considered as an accep
tolerance for the convergence.

The synthesis procedure was repeated to synthesize the seg
CD. The compatible boundary conditions enforced at the tip C
the optimization are:FCx5270.312 N, FBy5272.317 N, and
MC527083.16 N-mm,dCx529.39 mm,dCy53.42 mm, andaC
520.08 radians. The convergence of the results for this segm
is illustrated in Fig. 12. In all of these cases also, the optim
value ofh was 10 mm.

After completing the synthesis of the segments AB and C
these segments are connected to the given segment BC, an
required flexible four-bar mechanism~shown in Fig. 13! is ob-
tained. Finally, having established the relative distance betw
the ends of each of the segments AB and CD, and as well as

Fig. 12 Results of synthesis of segment CD

Fig. 13 Finite element analysis of the resulting complete
mechanism after synthesizing the three segments: A-B, B-C,
and C-D. „A-B-C-D represents the initial undeformed position of
the mechanism, and A-b-c-D represents its final deformed po-
sition obtained by a finite-element analysis ….
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end-forces at B and C, the necessary input moments at ends A
D are computed from static equilibrium to be:MA528085.63
N-mm andMD528753.94 N-mm.

To confirm the synthesis procedure, a finite-element anal
was performed on the resulting compliant mechanism by apply
the computed input moments at the pinned ends A and D.
motion of the segment BC, depicted in Fig. 13, was found
conform to the specifications to an accuracy of first decimal.

Conclusions
The problem of effecting a prescribed shape change in a g

flexible segment along with its rigid-body motion, calle
compliant-segment motion generation task, is introduced for
first time, and a first-principles based procedure for synthesis
closed-loop compliant mechanism for such a task is presen
The procedure is illustrated through a numerical example, and
feasibility of the approach is verified through a reverse finite e
ment analysis. Although motion generation involving only tw
configurations is considered, the procedure can be extende
motion generation involving multiple configurations.
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