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Abstract: This paper presents the dual quaternion synthesis
methodology for constrained parallel robots. This methodology
uses the dual quaternion form of the kinematics of supporting se-
rial chains as design equations. Given a set of goal positions that
define the desired workspace, we solve these design equations to
determine the dimensions of the constrained parallel robot. The
structure of these dual quaternion design equations allows a sys-
tematic elimination of the joint parameters. This methodology
results in multiple solutions that are combined to form parallel
robots. Here we formulate and solve the design equations for a
2-TPR parallel robot.

1 Introduction

This paper presents a new formulation for the kinematic synthe-
sis of constrained parallel robots. A constrained parallel robot
is one in which each supporting chain imposes a kinematic con-
straint on the workpiece. These systems provide structural sup-
port in certain directions while allowing freedom of movement
in others. Our synthesis methodology uses a set of goal positions
that describe the workspace of the constrained parallel robot. The
dual quaternion kinematic equations of the supporting chains are
evaluated each of these goal positions to obtain the design equa-
tions, which are solved to obtain their physical dimensions.

This synthesis methodology is an extension of the kinematic
synthesis of linkages (McCarthy (2000b)), which is based on
finding the geometric constraints of the serial chain. The advan-
tage of an approached based on the expression of the kinematic
equations is that it can be applied systematically to serial chains
with up to five degrees of freedom and joint axes. Multiple so-
lutions obtained with this method can be combined to create a
parallel robot.

The synthesis of parallel robotic systems has focussed on
optimization strategies that allow the workpiece full mobility.

∗Address all correspondence to this author.

Chedmail (1998) and Gosselin (1998) present optimization tech-
niques for design serial and parallel robotic system, respectively,
that provide desired properties of the workspace. Murray (2000)
presents a similar methodology applied to planar platforms, and
also Merlet (1997) presents an approach for six-degrees of free-
dom platforms that combines the geometric synthesis to enclose
a given workspace and conditions to take into account joint limits
and interferences. This paper focusses on a design methodology
that results in a robotic system that guides a workpiece with less
than full mobility.

2 Literature Review

Spatial linkage synthesis uses the geometric properties of a se-
rial chain to formulate algebraic equations that must be satis-
fied at each of a discrete set of positions in the workspace (Suh
and Radcliffe (1978)). This yields algebraic equations that are
solved to determine the dimensions of the chain. Also see Mc-
Carthy (2000). Examples of this are the synthesis of spatial RR
chains (Tsai and Roth (1973), Perez and McCarthy (2000)), spa-
tial CC chains (Chen and Roth (1969), Huang and Chang (2000))
and SS chains (Innocenti (1994), Liao and McCarthy (1998)).
Larochelle (2000) uses planar quaternion optimization for the ap-
proximate synthesis of planar one degree-of-freedom linkages.

Recently, Mavroidis and Lee (2001) used the kinematics
equations of the spatial RR and RRR robots to formulate their
design equations. This approach introduces the joint parameters
of the chain at each of the goal positions as additional variables
in the design equations, see also Lee and Mavroidis (2002). The
advantage is that it can be systematically applied to a broad range
of robotic systems.

In this paper, we follow Mavroidis’ basic ideas, however, we
use successive screw displacements (Gupta (1986), Tsai (1999))
formulated in terms of dual quaternions to represent the kinemat-
ics equations of the robot. Dual quaternions were introduced to
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linkage analysis by Yang and Freudenstein (1964). They form an
eight dimensional Clifford algebra that contains a subset, known
as unit dual quaternions, which is isomorphic to the group of spa-
tial displacements (McCarthy (1990)). Also see Angeles (1998).

There are two advantages in this formulation. The first is
that successive screw displacements provide a convenient for-
mulation for the kinematics equations in terms of the joint axes
directly. Secondly, it reduces the number of equations obtained
in each goal position from 12 to 8.

3 Supporting Chain Kinematics Equations

The kinematics equations of the robot equate the 4 × 4 homoge-
neous transformation [D] between the end-effector and the base
frame to the sequence of local coordinate transformations along
the chain (Craig (1986)),

[D] =[G][Z(θ1, d1)][X(α12, a12)][Z(θ2, d2)] . . . (1)

. . . [X(αn−1,n, an−1,n)][Z(θn, dn)][H].

The parameters (θ, d) define the movement at each joint and
(α, a) are the length and twist of each link, collectively known
as the Denavit-Hartenberg parameters. The transformation [G]
defines the position of the base of the chain relative to the fixed
frame, and [H] locates the tool relative to the last link frame.

3.1 Successive Screw Displacements

These kinematics equations can be transformed into successive
screw displacements by choosing a reference position [D0]. Let
[Di] be the homogeneous matrix describing the transformation
from the fixed frame to a moving frame Fi. We can compute
[D0i] = [Di][D0]−1, that is,

[D0i] = [Di][D0]
−1 =

([G][Z(θ1i, d1i)] . . . [Z(θni, dni)][H])

([G][Z(θ10, d10)] . . . [Z(θn0, dn0)][H])−1. (2)

This can be viewed as

[D0i] = [T (∆θ1,S1)] . . . [T (∆θn,Sn)], (3)

where

[T (∆θ1, S1)] = [G][Z(θ1i, d1i)][Z(θ10, d10)]
−1[G]−1,

[T (∆θ2, S2)] = ([G][Z(θ10, d10)][X(α12, a12)][Z(θ2i, d2i)])

([G][Z(θ10, d10)][X(α12, a12)][Z(θ20, d20)])
−1,

...

[T (∆θn, Sn)] = ([G][[Z(θ10, d10)] . . . )

[Z(θn, dn)][Z(θn0, dn0)]
−1([G][[Z(θ10, d10)] . . . )

−1. (4)

The displacements [T (∆θi,Si)] are the relative rotations
about and translations along the joint axes Si of the robot from

the chosen reference configuration. Notice that by expressing
them in this way, the initial transformation [G] is absorbed in the
first joint axis and the final transformation [H] disappears from
the expression.

3.2 Dual Quaternion Kinematics Equations

The workspace of the robot can also be expressed by using the
Clifford algebra of the dual quaternions. A spatial displacement
can be represented as a dual quaternion,

Q̂(θ̂) = sin(
θ̂

2
)S + cos(

θ̂

2
), (5)

where S = s + εs0, with ε2 = 0, is the screw axis of the trans-
formation. The dual numbers cos( θ̂

2 ) = cos θ
2 + ε(−d

2 sin θ
2 ) and

sin( θ̂
2 ) = sin θ

2 + ε(d
2 cos θ

2 ) contain the information about the
rotation about and the displacement along the screw axis. The
components of the dual quaternions can be easily computed from
the homogeneous matrix transformation.

The spatial displacements can be represented as the set of
points Z = (Z,Z0) in R8 which are subject to two constraints:
Z·Z = 1 and Z·Z0 = 0. Then the workspace can be represented
as lying on a six-dimensional submanifold of R8.

The dual quaternion form for the kinematics equations of the
robot are obtained by transforming eq.(3) into

D̂i = Ŝ1(∆θ̂i
1) . . . Ŝn(∆θ̂i

n), (6)

where D̂i is the dual quaternion for [D0i] and Ŝj is the dual
quaternion for [T (∆θj ,Sj)].

This approach yields the kinematics equations as successive
screw transformations from the reference position. It is a useful
formulation from the synthesis point of view because the compo-
nents of each axis appear explicitly in the base frame coordinates.

4 Constrained Parallel Robot Synthesis

The dual quaternion methodology for the synthesis of con-
strained serial chains yields multiple solutions. These solutions
can be combined to form a parallel robot. It is also possible to
design a different seral chain for the same set of goal positions
and add this to the parallel robot. The operation of assembling
the end-effectors of several serial chains ensures that the paral-
lel robot will reach each of the goal positions of the supporting
serial chains.

It is useful to note that the constraints on the workpiece of
the combined system may not allow smooth movement through
all of the goal positions. This is a performance issue that re-
quires additional analysis. Other performance concerns are to
accommodate joint limits as well as the potential for interference
between links. Other performance factors can be included in the
design process, such as dexterity, mechanical advantage, forces
at the joints, the effect of tolerances, and positioning errors.
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In this paper, we focus on the geometric problem of ensuring
that the constraints imposed by each supporting chain are satis-
fied at each of the desired goal positions of the workpiece.

4.1 Design Equations for Supporting Serial Chains

Let [T (θ1, . . . , θk)] be the kinematics equations of a serial robot,
and let a discrete approximation of the desired workspace be
given in the form of n goal transformations [Di], i = 0, . . . , n−
1. The synthesis problem consists of solving the n matrix equa-
tions

[T (θ1,i, . . . , θk,i)] = [Di], ı = 0, . . . , n − 1. (7)

We now transform these equations to successive screw dis-
placements in dual quaternion form. Equating the n − 1 goal
positions D̂i, i = 1, . . . , n − 1 to the kinematics equations
Q̂(θ̂1, . . . , θ̂k), we obtain the n − 1 equations

Q̂i(θ̂i
1, . . . , θ̂i

k) = D̂i, i = 1, . . . , n − 1 (8)

For each of the n− 1 positions we define eight component equa-
tions. However, due to the structure of the dual quaternions, only
six of them are independent. For a unit dual quaternion, the 2-
norm of the first vector is equal to one and the dot product of the
first times the second vectors is equal to zero.

Assume for the moment that the robot chain can be repre-
sented by an equivalent series of j revolute joints. Each of these
joints has an axis which is defined by six Plucker coordinates,
which yields 6j unknowns. The j joint variables take different
values at each of the n − 1 positions, which add j(n − 1) un-
knowns. This yields 6j + j(n − 1) unknowns.

Two constraint equations are associated with Plucker coordi-
nates arise for each joint axis. For each of the n−1 goal positions
we obtain eight equations, which can be reduced to six. Thus, we
have 2j + 6(n − 1) equations.

Equating the number of unknowns to the number equations,
we obtain

6j + j(n − 1) = 6(n − 1) + 2j. (9)

Solving for n

n =
3j + 6
6 − j

, (10)

we have that 2R, 3R, 4R and 5R spatial chains require 3, 5, 9,
21 positions, respectively. However, we need to consider some
limitations. In eq. (9) we equate dual quaternions component
by component. As the rotations operate independently in spatial
displacements, the number of spherical positions we can reach
will be limited by this fact, while the number of spatial transla-
tions is computed in general. Hence, to compute complete spa-
tial positions, first we need to check how these are limited by the
maximum number of spherical positions we can reach. To sep-
arate rotations from translations, assume our robot consists of l
rotational joints and k translational joints. We therefore need two

equations; the first one equating rotational joint directions with
rotation components of the dual quaternion,

3l + l(nR − 1) = 3(nR − 1) + l (11)

and the second equating both rotational and translational
joints to the whole quaternion,

6(l + k) + (l + k)(n − 1) = 6(n − 1) + 2l + k. (12)

From the rotation equation,

nR =
3 + l

3 − l
. (13)

Notice that this coincides with the results for spherical
robots: for one revolute joint we obtain finite number of solu-
tions for two positions, this means we can reach one relative ro-
tation. For two revolute joints we have finite number of solutions
for nR = 5, while for three we get infinity, which means that we
can reach any orientation. The formula stops making sense after
this. The maximum number of complete positions we can reach
will be restricted by nR, and if in the second formula we obtain
more than that, the rest will be just translational components of
dual quaternions in which rotations will have to be bounded to
the given workspace.

Notice also that here we assume that the axes of the rota-
tional and translational joints are not related, but it is easy to
adapt the formula to particular cases in which the joints are con-
strained.

4.2 Solving the Design Equations

The design equations for constrained robots contain joint vari-
ables and the kinematic parameters defining the joint axes. Our
goal is to eliminate the joint variables, if possible, and solve for
the parameters of the axes, which define the physical dimensions
of the robot.

In order to eliminate the joint parameters, we consider the
equations for each position independently. We call this process
“implicitization” of the parametric equations, see Cox (1998).
The first step in this implicitization process uses the semi-direct
product structure of the group of spatial displacements captured
by the algebra of dual quaternions, which separates the compo-
sition of rotations in the real part from a combination of transla-
tions and rotations in the dual part. In the dual quaternion prod-
uct the first four components are never mixed with the last four
in any computation.

The four rotational components of the dual quaternion equa-
tion are parameterized only by the revolute joint variables,

Q̂rot(θ1, . . . , θk) =




qx(θ1, . . . , θk)
qy(θ1, . . . , θk)
qz(θ1, . . . , θk)
qw(θ1, . . . , θk)




=




px

py

pz

pw




(14)
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This can always be transformed to a linear system that al-
lows to solve for two of the revolute joint variables as a function
of the joint axes and the rest of revolute variables,

[R(θ3, . . . , θk)]




cos θ1
2 sin θ2

2

sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2

cos θ1
2 cos θ2

2




=




px

py

pz

pw




(15)

where the matrix [R(θ3, . . . , θk)] is invertible for non-
degenerated cases. Degenerated cases are those in which the axes
of the variables we are solving for are parallel, for instance solu-
tions in which the serial chain is not spatial but planar. We can
assume the matrix is compatible when the axes are a solution for
the design problem. Also notice that the matrix in Eq. (15) is
orthogonal for the cases in which the axes of the variables that
we are solving for are perpendicular.

This allows us to eliminate linearly two of the rotational pa-
rameters in the form of a vector of sine and cosines. We can then
substitute these expressions in the second four components of the
dual quaternion,

Q̂trans(θ3, . . . , θk, d1, . . . , dl) =

=




q0
x(θ3, . . . , θk, d1, . . . , dl)

q0
y(θ3, . . . , θk, d1, . . . , dl)

q0
z(θ3, . . . , θk, d1, . . . , dl)

q0
w(θ3, . . . , θk, d1, . . . , dl)




=




p0
x

p0
y

p0
z

p0
w




. (16)

As a general rule, we can eliminate the last equation in
Eq.(16), as we can see that in equating a robot Q̂ to a goal dual
quaternion P̂ , the equation q0

w = p0
w does not add anything to

the set of solutions,

(q0
x − p0

x)px + (q0
y − p0

y)py + (q0
z − p0

z)pz + (q0
w − p0

w)pw −
(px − qx)q0

x − (py − qy)q0
y − (pz − qz)q0

z −
(pw − qw)q0

w + (q0
xqx + q0

yqy + q0
zqz + q0

wqw) = 0. (17)

To this set of equations we need to add any condition on the
additional joint variables that is implicit in the solution for the
rotations. The subsequent joint variables can be eliminated se-
quentially in a similar fashion, but the procedure is different from
case to case. The parameters corresponding to revolute joints ap-
pear as quadratic sine and cosine functions, while the parameters
corresponding to prismatic joints appear linearly.

To the final set of equations free of joint variables we need
to add the Plucker conditions for each joint axis Si = si +εs0

i ; in
fact, these equations are the ones that allow us to disregard two
equations for each dual quaternion equality.

si · si = 1, i = 1, . . . , k + l

si · s0
i = 0, i = 1, . . . , k (18)

In the example below the process is illustrated for a TPR
chain.

5 Design of the 2-TPR Constrained Parallel Robot

The 2-TPR robot consists of an end-effector supported by two
TPR serial chains. Each supporting TPR serial chain imposes
two constraints on the end-effector, which means that the result-
ing system has two degrees of freedom.

The TPR serial chain is a four-degree of freedom robot. The
base joint T consists of two revolute joints about perpendicular
axes. This joint is also called U-joint for universal joint. The
fixed axis G1 allows rotation of angle θ1 about it. Located at 90o

and intersecting G1 is the second revolute axis, G2, which allows
rotation of angle θ2. This is followed by a translation d along an
arbitrary direction H and finally a rotation of angle φ about an
arbitrary axis W, see Figure 1.

�

�

�

�

φ

θ1

θ2

Figure 1: The spatial TPR robot

We call c to the intersection point of the two rotation axes G1

and G2. Notice that the location of the prismatic joint is immate-
rial and has been assigned in the drawing to the same intersection
point.

The dual quaternion representation for the relative displace-
ments of the chain is given by

Q̂TPR = Ĝ1(θ1, 0)Ĝ2(θ2, 0)Ĥ(0, d)Ŵ (φ, 0), (19)

When applying the dual quaternion product we obtain the
expression Q̂TPR = Q0 + Q, where the point is

Q0 = c
θ1

2
c
θ2

2
c
φ

2
− s

θ1

2
c
θ2

2
s
φ

2
G1 · W

− c
θ1

2
s
θ2

2
s
φ

2
G2 · W − s

θ1

2
s
θ2

2
s
φ

2
(G1 × G2) · W

− ε
d

2

(
s
θ1

2
c
θ2

2
c
φ

2
G1 · H + c

θ1

2
s
θ2

2
c
φ

2
G2 · H

+ c
θ1

2
c
θ2

2
s
φ

2
H · W + s

θ1

2
s
θ2

2
c
φ

2
(G1 × G2) · H

+ s
θ1

2
c
θ2

2
s
φ

2
(G1 × H) · W + c

θ1

2
s
θ2

2
s
φ

2
(G2 × H) · W

+ s
θ1

2
s
θ2

2
s
φ

2
((G1 × G2) × H) · W

)
, (20)

153



and the dual vector,

Q = s
θ1

2
c
θ2

2
c
φ

2
G1 + c

θ1

2
s
θ2

2
c
φ

2
G2

+ c
θ1

2
c
θ2

2
s
φ

2
W + s

θ1

2
s
θ2

2
c
φ

2
G1 × G2

+ s
θ1

2
c
θ2

2
s
φ

2
G1 × W + c

θ1

2
s
θ2

2
s
φ

2
G2 × W

+ s
θ1

2
s
θ2

2
s
φ

2
(G1 × G2) × W

+ ε
d

2

(
c
θ1

2
c
θ2

2
c
φ

2
H

+ s
θ1

2
c
θ2

2
s
φ

2
((G1 × H) × W − (G1 · H)W)

+ c
θ1

2
s
θ2

2
s
φ

2
((G2 × H) × W − (G2 · H)W)

+ s
θ1

2
c
θ2

2
c
φ

2
G1 × H + c

θ1

2
s
θ2

2
c
φ

2
G2 × H

+ s
θ1

2
s
θ2

2
c
φ

2
(G1 × G2) × H + c

θ1

2
c
θ2

2
s
φ

2
H × W

+ s
θ1

2
s
θ2

2
s
φ

2
(((G1 × G2) × H) × W − ((G1 × G2) · H)W)

)
.

(21)

The expansion of this equations componentwise leads to a
set of equations in the components of the axes. The T-joint axis
is formulated so that the coordinates of the intersection point c
appear explicitly, as the point is also a design parameter,

G1 = (g1x, g1y, g1z) + ε((cx, cy, cz) × (g1x, g1y, g1z))
G2 = (g2x, g2y, g2z) + ε((cx, cy, cz) × (g2x, g2y, g2z)). (22)

The moving prismatic axis has direction h = (hx, hy, hz)
and arbitrary location that will not appear in the design equations.
The moving rotation axis is expressed in Plucker coordinates,
W = (wx, wy, wz) + ε(w0

x, w0
y, w0

z).
The number of positions needed to obtain finite number of

solutions is calculated as explained in the previous section. As
we have three rotational joints, the robot will be able to reach
any orientation and the orientation does not limit the number of
complete positions to reach. We have 18 + 4(n − 1) unknowns,
corresponding to the direction G1, the point c, the direction G2,
the direction h and the line W, plus the joint variables for the
n− 1 relative transformations. We have 6 + 6(n− 1) equations,
corresponding to the unit vector conditions for all directions, the
perpendicularity condition between G1 and G2 and the moment
condition for W, plus the six independent equations per goal dual
quaternion . Therefore we need to define n = 7 positions.

5.1 The Design Equations

To create the design equations we equate the expanded eqs.(20,
21) to the goal dual quaternion P̂ , that is,

Q̂TPR(θi
1, θ

i
2, d

i, φi) − P̂ i = �0, (23)

to obtain one of the sets of design equations. After equating for
all the relative dual quaternion transformations, we obtain six

sets of dual quaternion equations. However, to eliminate the joint
parameters we work with only a generic set and apply the results
to each relative position.

To eliminate the joint parameters we consider the separation
between rotations and translations. It is easy to solve for two of
the rotational joint parameters as shown in Eq.(15). Every di-
rection will be reached by moving the rotation axes accordingly
to the third rotation parameter as appears in the solution of the
linear system,

[R(φ)]




cos θ1
2 sin θ2

2

sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2

cos θ1
2 cos θ2

2




=




px

py

pz

pw




, (24)

with

[R(φ)] =
[
v1 v2 v3 v4

s1 s2 s3 s4

]
. (25)

The column vectors in [R(φ)] are

v1 = cos
φ

2
g2 + sin

φ

2
g2 × w

v2 = cos
φ

2
g1 + sin

φ

2
g1 × w

v3 = cos
φ

2
g1 × g2 + sin

φ

2
((g1 × g2) × w − (g1 · g2)w)

v4 = sin
φ

2
w (26)

and the last row is composed of the scalars

s1 = − sin
φ

2
g2 · w

s2 = − sin
φ

2
g1 · w

s3 = − cos
φ

2
g1 · g2 − sin

φ

2
(g1 × g2) · w

s4 = cos
φ

2
. (27)

The matrix [R(φ)] is an orthogonal matrix when solving for
the joint variables θ1, θ2 corresponding to the T-joint. The solu-
tion for the angles is




cos θ1
2 sin θ2

2

sin θ1
2 cos θ2

2

sin θ1
2 sin θ2

2

cos θ1
2 cos θ2

2




= [R(φ)]T




px

py

pz

pw




(28)

The solution always exists for directions g1, g2 and w and
angles φ such that the system is solvable, which we can assume
will be given by the solution of the design equations. In this case
there is not planar degeneracy if we consider the constraint for
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g1 and g2 to be at right angles. The angle φ is constrained by the
relation among the four variables we are solving for,

cos
θ1

2
sin

θ2

2
· sin θ1

2
cos

θ2

2
= cos

θ1

2
cos

θ2

2
· sin θ1

2
sin

θ2

2
, (29)

obtaining the condition for φ,

A0 cos2
φ

2
+ B0 sin2 φ

2
+ C0 cos

φ

2
sin

φ

2
= 0. (30)

The solutions for the θ1, θ2 angles are substituted in the three
first moment equations of the dual quaternion. We obtain three
equations which are linear in the prismatic joint variable d and
quadratic in the revolute joint variable φ, and that we denote by

(A1id + A0i) cos2
φ

2
+ (B1id + B0i) sin2 φ

2
+

(C1id + C0i) cos
φ

2
sin

φ

2
+ D0i = 0, i = 1, . . . , 3 (31)

To eliminate φ, we add the previously obtained angle condi-
tion, eq. (30), to create the homogeneous system




A11d + A01 B11d + B01 C11d + C01 D01

...
...

...
...

A13d + A03 B13d + B03 C13d + C03 D03

A0 B0 C0 0







cos2 φ
2

sin2 φ
2

cos φ
2 sin φ

2
1




= �0 (32)

For the system to have solutions, the determinant must be
equal to zero. The determinant is a quadratic equation in the
prismatic joint variable d.

We can obtain the subspace of solutions from the matrix cor-
responding to the first three rows. By solving linearly in this sys-
tem for the variables cos2 φ

2 , sin2 φ
2 and cos φ

2 sin φ
2 , we obtain

expressions as a function of the prismatic joint variable d. The
relations between these three solutions,

cos2
φ

2
+ sin2 φ

2
= 1

(cos2
φ

2
)(sin2 φ

2
) = (cos

φ

2
sin

φ

2
)2 (33)

lead to two more equations in d, the first one being a cubic and
the second one a quartic in d. We obtain the system of three
equations

K4id
4 + K3id

3 + K2id
2+K1id + K0i = 0,

i = 1, . . . , 3. (34)

Out of the system of three equations in d,


 0 0 K21 K11 K01

0 K32 K22 K12 K02

K43 K33 K23 K13 K03







d4

d3

d2

d
1




=




0
0
0
0
0




(35)

we can eliminate the parameter d, for instance by direct substitu-
tion of the solution of d from the quadratic equation in the other
two. We obtain two design equations per goal dual quaternion,
which are free of joint variables and depend only on the coor-
dinates of the joint axes. These 12 equations together with 6
constraints,

g2
1x + g2

1y + g2
1z = 1,

g2
2x + g2

2y + g2
2z = 1, g1xg2x + g1yg2y + g1zg2z = 0

w2
x + w2

y + w2
z = 1, wxw0

x + wyw0
y + wzw

0
z = 0

h2
x + h2

y + h2
z = 1 (36)

allows us to solve for the 18 unknowns corresponding to the four
joint axes.

5.2 Assemble the 2-TPR Constrained Robot

From the design equations for the TPR serial chain, we will ob-
tain a certain number of solutions. The exact number of complex
solutions can be known if we are able to reduce the polynomial
system of design equations to a triangular system with one poly-
nomial being univariate. In the case of the serial TPR chain, the
only possibility of creating a parallel robot is to form a 2-TPR
robot by joining the end-link of two of the solutions. The 2-TPR
robot has two degrees of freedom, and notice that the 3-TPR plat-
form is a structure. The 2-TPR robot will reach the set of seven
positions, but nothing ensures that the movement of the robot
will be smooth or even possible. The simplest strategy to choose
a good design is to create all possible combinations of two solu-
tions and to analyze their movement through the goal positions.

6 Numerical Example

We present an example for the design of the 2-TPR parallel robot.
To pick up to seven positions in space, we can either generate
them individually or perform dual quaternion interpolation be-
tween an initial position, an intermediate position and a final po-
sition McCarthy and Ahlers (1999). Each TPR serial robot will
exactly hit the seven positions in the trajectory. Another option is
to set some of the parameters of the TPR chain to desired values
and solve for a smaller number of positions.

In our example we solve for the seven positions for the first
TPR serial chain, and for the second chain we set both the direc-
tions of the rotations of the T-joint g1 and g2 to a specified value,
which is equivalent to fix the plane of the rotation, and we also
impose the condition that the moving revolute joint axis W must
be perpendicular to the prismatic joint direction h. Using the
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Figure 2: The seven initial positions

Table 1: THE GOAL POSITIONS

Pos. Axis Rot. Trans.
1 (1.0, 0.0, 0.0), (0.0, 0.0, 0.0) 0o 0
2 (0.5, 0.8,−0.4), (−1.8, 0.8,−0.7) 68.9o 0.32
3 (−0.2, 0.9,−0.3), (−1.7,−0.3, 0.2) 92.7o 0.71
4 (0.0, 0.8,−0.5), (−2.2, 0.0, 0.2) 156.5o 1.39
5 (0.3, 0.9,−0.3), (−1.6, 0.5,−0.1) 79.0o 0.31

counting formula, we see that we can solve for a finite number
of solutions for n = 5 positions.

On Table 1 and Figure 2 we define and show the specified
positions.

We solve numerically the design equations using a Newton-
Raphson type of solver. The design equations are very sensitive
to the initial conditions, and in this particular case we could not
find any good solution for the second chain, and the numerical
solver led to a local minimum that hits four of the five positions.
In Table(2, 3) we can see the obtained solutions. Figure 3 shows
the parallel 2-TPR robot while reaching positions 1, 2 and 5.

7 Conclusions

This paper introduces a new formulation for the kinematic syn-
thesis of constrained parallel robots. While arbitrary serial chains
can have up to six degrees of freedom, our focus is on chains with
five or less degrees of freedom. These serial chains impose con-
straints on the workpiece of the parallel robot. These constraints
can be used to provide structural support and enhance mechani-
cal advantage.

The dual quaternion form of the kinematics equations of the
supporting serial chain are evaluated at a set of goal positions
to form design equations. These equations include both axis pa-

Table 2: THE JOINT AXES FOR FIRST TPR CHAIN

Joint Axis Direction Moment
G1 (0.52, 0.34,−0.78) (−1.39, 1.06,−0.47)
G2 (−0.41, 0.90, 0.11) (−0.72,−0.48, 1.20)
H (0.81, 0.46, 0.35) (0.02, 0.54,−0.77)
W (0.48, 0.86,−0.19) (−1.83, 0.69,−1.49)

Table 3: THE JOINT AXES FOR SECOND TPR CHAIN

Joint Axis Direction Moment
G1 (1.0, 0.0, 0.0) (0.0, 0.98,−2.15)
G2 (0.0, 1.0, 0.0) (−0.98, 0.0, 1.0)
H (−0.68,−0.33, 0.66) (1.74,−1.33, 1.12)
W (0.49,−0.87, 0.08) (1.29, 0.58,−1.75)

rameters that define the robot and joint parameters that define its
configuration in a goal position. The structure of these equations
provide a convenient strategy for the elimination of the joint pa-
rameters, which we demonstrate for the TPR serial chain. The
parallel 2-TPR constrained robot is constructed by joining the
end-links of two TPR solutions.

Our goal is to expand this approach to a systematic design
procedure for a wide range of constrained parallel robotic sys-
tems. So far, we have results for the RR, RP, RPR, RRR, CC,
and TS serial chains. In addition, we look forward to formulat-
ing the design equations for the TPT serial chain. The main chal-
lenge is the increasing complexity of the joint parameters in the
design equations. We also look forward to incorporating perfor-
mance measures such as speed ratios and mechanical advantage
in order to rate resulting designs.
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Figure 3: The 2-TPR robot reaching positions 1, 2 and 5
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