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A Robot Manipulator With 16 Real Inverse
Kinematic Solution Sets

Rachid Manseur

UF/UNF Electrical Engineering Dept.
University of North Florida
Jacksonville, Florida 32216

Keith L. Doty

Machine Intelligence Laboratory
Dept. of Electrical Engineering
University of Florida

Gainesville, Florida 32611

Abstract

A solution search algorithm based on a one-dimensional
numerical approach to the inverse kinematic problem (pre-
sented in an earlier paper) led to the discovery of a six-DOF
manipulator able to position and orient its end-effector in 16
distinct configurations for a given end-effector pose (position
and orientation). This paper discusses the consequences of
such a discovery and presents a description of the manipula-
tor, the end-effector pose, and the 16 kinematic solutions.

1. Introduction

The inverse kinematic problem is at the center of computer
control algorithms for robot manipulators. To be able to
position and orient the end-effector in a given fashion, a cor-
responding set of joint-variable values must be computed.
The complexity of this problem is highly dependent on the
geometry of the manipulator, and the inverse kinematic
solution is, in general, not unique. The exact number of so-
lutions depends on the manipulator architecture as well as
the desired end-effector pose.

The problem of finding all possible solutions has been
addressed by Tsai and Morgan (1984), who applied homo-
topy map techniques to the inverse kinematic problem of 6-
and 5-revolute-degree-of-freedom arms and developed a
numerical method guaranteed to find all isolated solutions.
An application example of this homotopy map method
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proved that the number of real inverse kinematic solutions
could be as high as 12.

Duffy and Crane (1980) have shown that the inverse kine-
matic problem of 6-DOF arms can be expressed in terms of
a 32nd-degree polynomial in one joint variable. Some more
recent work by Lee and Liang (1988) reduces the degree of
the polynomial to 16, This result puts a bound of 16 on the
number of distinct configurations by which a 6-DOF general
manipulator can realize a given end-effector pose. In this
paper, we present the first manipulator to actually achieve
this maximum number of solutions, thereby closing the
proof that 16 is indeed the maximum number of inverse
kinematic solutions for 6-DOF manipulators.

2. The Inverse Kinematics Problem

A robot arm can be modeled as a kinematic chain with a
fixed link, called the base, and a free link at the other end of
the chain, referred to as the end-effector. The links along the
chain are numbered from 0 to # for an n-link, ~-DOF ma-
nipulator, According to the Denavit and Hartenberg (1955)
notation, a frame of reference F, assigned to link i has a
position and orientation fully described by the four parame-
ters d;, 6;, a;, and a; with respect to the preceding frame
F,_,. Figure 1 shows a manipulator with the assigned frames.
A vector v/ = [vi, v}, v}, 1]7, given with respect to frame
F;, can be related to its expression v/~! in frame F_; by use
of the homogeneous matrix transform A, and its inverse A7

(Paul 1981),

viel=Ay and vi=(A7')v"!

with
¢ -8y So aG
S, Cr —Cap a5, [ R, lx]
== - 1
A 0 g, T; d, 0 0 01 M

0 0 0 1

where C; = cos (8), S; = sin (), 7, = cos (@), and g, =
sin ().

The rotation matrix R, necessary to align the unit vectors
of F, with those of F;.., is the upper left 3 X 3 matrix in A,
and vector 1, = [4,C;, a,S;, d;]” positions the origin of F;
with respect to F,_,.

Most existing industrial arms are designed so that all the
twist angles o, along the manipulator are either 0 or 7/2.
Such manipulators are said to be orthogonal (Doty 1986;
Manseur and Doty 1988).
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Fig. 1. OM?25 manipulator structure with link-frames.

If the position and orientation of the end-effector frame
are expressed by a pose matrix of the form

n
n, b, t nbtp R p]
p=|" % b = - )
n, b, 1, D, [0001][0001()

0 0 0 1

&

with respect to the base frame F;, then the inverse kine-
matics problem consists of finding the sets of joint-variable
values (solution sets) that will satisfy the matrix equation
Ay c Ay - Ay - Ay AL A, =P 3)
For 6-DOF manipulators, » is equal to 6, and equation (3)
can have several solutions. In general, the exact number of

real solutions is bounded by 16 (Lee and Liang 1988), and
the largest number actually reported in the literature was 12
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Table 1. OM25 Orthogonal Manipulator Kinematic
Parameters

i d, 6, a; o
1 0 6, a, /2
2 0 0, a, 0
3 d, 0, 0 n/2
4 0 0, a, 0
5 0 s 0 n/2
6 0 05 0 0

(Tsai and Morgan, 1984), but for some manipulator config-
urations, two or more joint axes align, and the manipulator
can then achieve the corresponding pose in infinitely many
ways. Such a condition, where the manipulator loses degrees
of freedom, is called a degeneracy and forces the manipula-
tor Jacobian to become singular (Craig 1986).

In the next section we present an orthogonal manipulator
able to achieve a given end-effector pose in 16 distinct con-
figurations. To verify that the manipulator is non-degenerate
at each of those 16 configurations, we compute the determi-
nant of the manipulator Jacobian.

3. A Manipulator with 16 Solution Sets

Figure 1 shows an orthogonal manipulator (referred to as the

OM25 manipulator) whose kinematic parameters are given

in Table | with d;=02,4,=0.3,a,=1,and a, = 1.5.
This manipulator can realize the end-effector pose

—0.760117 —0.641689 0.102262 —1.140175
0.133333 0 0.991071 0 -(4)
—0.635959  0.766965 0.085558 0
0 0 0 1

P=

in 16 different ways.

Equation (3), with the parameters given in Table 1 and
pose {4), was solved by use of a fast inverse kinematic proce-
dure fully described in Manseur and Doty (1988). The 16
solution sets found are listed in Table 2. This result is of
importance since it provides the first tangible proof that a
6-DOF manipulator can actually achieve a given pose with
16 distinct configurations. It is also interesting to note that
this large number of solutions can be realized by an orthogo-
nal manipulator with a fairly simple geometry.

The symbolic manipulator Jacobian has its simplest ex-
pression in frame 3 (midframe) for a 6-DOF manipulator
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Fig. 2. Computer graphics simulation of the OM25 robot in
the 16 configurations of Table 2.

(Renaud, 1980 a,b; Doty, 1987). For the robot described
pere, the midframe Jacobian J3, computed using tables given
in Doty (1987), is

02C; S, 00 158 0
-03-C, 0 00 —15C, 0
028, —-C, 00 0 —15C
J3= 23 3 ) b
S 0000 O Sis ®)
0 1 10 0 —Cys
~Cy 0 01 1 0

where C,; and Sy, stand for the cosine and the sine, respec-

15 16

tively, of (¢, + 6,). The determinant of the manipulator
Jacobian is independent of the frame of expression and can
be easily obtained from matrix (5):

det (JS) = 1‘5{C3S45[S4(0.3 + Cz) -0.2 C23C4] (6)
- S3S23C4(1.5 C5 + 0.2 S45)}.

The values of det (J%), listed in Table 2, prove that all 16
solutions found correspond to non-degenerate configurations
of the OM25 robot arm.

Figure 2 shows photographs of a computer graphics simu-
lation of the OM25 manipulator in the 16 configurations
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Table 2. Solution Sets for Pose (4)

" 8, 6, A 0, 6, 0 det (J%)
1 0.000 107.458 112.460 ~7.662 0.000 0.000 1310
2 0.000 107.458 —67.540 -172.338 180.000 180.000 1310
3 88.670 —176.682 —178.394 ~63.284 157.829 139.944 —0.800
4 88.670 ~176.682 1.606 —116.716 22.171 —40.056 —0.800
5 113.841 4.741 —179.093 —55.954 ~63.659 —42.463 —1.256
6 113.841 4.741 0.907 —124.046 ~116.341 137.537 —1.256
7 168.703 —104.205 146.556 —16.393 —170.903 98.216 0.803
8 168.703 ~104.205 —33.444 —163.607 —9.097 —81.784 0.803
9 180.000 107.458 —147.375 ~7.662 ~164.675 180.000 0.732

10 180.000 107.458 . 32.625 —172.338 —15.325 0.000 0.732

i1 ~120.748 173.066 ~178.472 31.328 ~146.087 142.605 ~0.717

12 -120.748 173.066 1.528 148.672 ~33.913 —37.395 ~0.717

13 ~96.292 —5.766 ~179.142 38.477 51.922 ~39.631 ~1.441

14 ~96.292 —5.766 0.858 141.523 128.078 140.369 —1.441

5 ~11.768 —105.495 —114.490 1.243 6.408 —79.398 1.318

16 -~11.768 —-105.495 65.510 178.757 173.592 100.602 1.318

listed in Table {. Figure 1 is a hand drawing of this manipu-
lator in configuration 1 (i.e., corresponding to solution 1),
with all link frames clearly indicated, and to help differen-
tiate between solutions with common values of 8, and 6,, we
have attempted to indicate the direction of axis vectors z,,
5, Z,, and z, on the photographs. The position and orienta-
tion of the end-effector and the base frame (as shown on
Figure 1) are the same for all 16 representations of Figure 2.

4. Conclusion

The difficulty of finding a manipulator with 16 solution sets
for a given pose stems from the fact that the number of
inverse kinematic solutions depends not only on the manip-
ulator kinematic structure parameters, but also on the end-
effector pose. The problem then was one of finding a candi-
date manipulator that would support 16 different
configurations for a pose that also had to be determined.

A fast inverse kinematic technique (Manseur and Doty
1988) and the geometric insight provided by numerous
inverse kinematic computations led to the discovery of the
manipulator in Figure 1 and an end-effector pose yielding 16
inverse kinematic solution sets. Once an end-effector pose
can be achieved by 16 configurations, it is interesting to note
that other such poses may be found easily by substituting an
arbitrary value of 6, in any of the solution sets of Table 2.
The resulting end-effector pose still yields 16 solution sets.
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The work of Lee and Liang (1988) puts an upper bound of
16 on the number of inverse kinematic solutions of a general
6-DOF manipulator. The manipulator of Figure 1, therefore,
establishes 16 as the least upper bound on the number of
inverse kinematic solution sets for 6-DOF arms.
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Abstract

It is well known that there exist surfaces whose motion cannot
be completely constrained by non-frictional contact forces.

We give a new proaf of the classification of these surfaces
based on group theory. Having derived a simple character-
ization of these “surfaces that cannot be gripped,” we show
that they are equivalent to the Reuleaux lower pairs. The
proof emphasizes the symmetry of the surfaces rather than
their analytic form. We also show that the screw system of
such a surface is isomorphic to the Lie algebra of the surface’s
symmetry group.

1. Introduction

The problem of constraining the motion of a rigid body by
applying surface contact forces has a long history. Reuleaux
himself (1875) studied this “gripper” problem. Recently
many workers have observed that there exist surfaces that
cannot be completely constrained by any number of fric-
tionless surface contacts. All the examples provided so far are
surfaces of the Reuleaux lower pairs. But is this always the
case? Do there exist surfaces that cannot be gripped in the
above sense but are not Reuleaux lower pairs? Intuitively the
answer is no, but there seems to be no proof of this in the
literature.

The proof we present here leads naturally to a classifica-
tion of the Reuleaux lower pairs. The traditional classifica-
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