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Abstract This paper presents a synthesis methodology for robots that have less
than six degrees of freedom, termed constrained robots. The goal is to
determine the physical parameters of the chain that fit its workspace to
a given set of spatial positions. Our formulation uses the dual quater-
nion form of the kinematics equations of the constrained robot. Here
we develop the theory and formulate the synthesis equations for the
spatial RPR robot. Their solution ensures that the three dimensional
workspace of this robot contains a given set of four spatial positions.

1. Introduction
The focus of this paper is on the design of robots that have less than six

degrees of freedom that we call constrained robots. These robots have
workspaces of dimension two through five in the Lie group of spatial
displacements. Fitting a constrained robot’s workspace to a given set of
task positions can be viewed as similar to fitting a surface to a set of
points in space. This theory is an extension of the kinematic synthesis
of linkages (McCarthy, 2000b).

The geometric design of a robots generally focuses on systems with
six or more degrees of freedom. In this case, the workspace is sized to
enclose the task space, and the challenge is to ensure that the system
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has desired differential properties at specified task positions, Kumar and
Waldron, 1981. Chedmail, 1998 and Gosselin, 1998 present optimization
techniques for the design serial and parallel robotic systems, respectively,
that provide desired properties of the workspace.

In constrast, constrained robots have lower dimensional workspaces
and the challenge is to locate and shape it such that it passes through
the specified task positions.

1.1 Linkage Synthesis
Spatial linkage synthesis uses the geometric properties of a serial chain

to formulate algebraic equations that must be satisfied at each of a dis-
crete set of positions in the workspace (Suh and Radcliffe, 1978). This
yields algebraic equations that are solved to determine the dimensions of
the chain, also see McCarthy, 2000a. See, for example, the synthesis of
spatial RR chains (Tsai and Roth, 1973, Perez, 2000), spatial CC chains
(Chen, 1969, Huang, 2000) and SS chains (Innocenti, 1994, Liao, 1998).

Recently, new methods have been developed that use the kinemat-
ics equations of the robot to form the design equations. In particular,
Mavroidis and Lee used the kinematics equations of the spatial RR and
RRR robots to formulate its design equations. Larochelle, 2000 uses a
similar approach with planar quaternions to define an approximate syn-
thesis for planar robots. This method introduces the joint parameters
of the chain at each of the goal positions as additional variables in the
design equations (Mavroidis, 2001, Lee, 2002). The advantage is that it
can be systematically applied to a broad range of robotic systems.

1.2 Overview
In this paper, we follow Mavrodis’ basic ideas, however, we use suc-

cessive screw displacements (Gupta, 1986, Tsai, 1999) formulated in
terms of dual quaternions to represent the kinematics equations of the
robot. Dual quaternions were introduced to linkage analysis by Yang
and Freudenstein, 1964. They form an eight dimensional Clifford al-
gebra that contains a subset, known as unit dual quaternions, which
is isomorphic to the group of spatial displacements (McCarthy, 1990).
Also see Angeles, 1998.

There are two advantages in this formulation. The first is that suc-
cessive screw displacements provide a convenient formulation for the
kinematics equations in terms of the joint axes directly. Secondly, it
reduces the number of equations needed for each goal position.
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2. The Kinematics Equations
The kinematics equations of the robot equate the 4× 4 homogeneous

transformation [D] between the end-effector and base frame. to the se-
quence of local coordinate transformations along the chain (Craig 1989),

[D] = [G][Z(θ1, d1)][X(α12, a12)][Z(θ2, d2)] . . . (1)
[X(αn−1,n, an−1,n)][Z(θn, dn)][H].

The parameters (θ, d) define the movement at each joint and (α, a)
are the length and twist of each link, collectively know as the Denavit-
Hartenberg parameters. The transformation [G] defines the position of
the base of the chain relative to the fixed frame, and [H] locates the tool
relative to the last link frame.

2.1 Successive Screw Displacements
These kinematics equations can be transformed into successive screw

displacements choosing a reference position [D0]. We then compute
[D0i] = [Di][D0]−1, that is

[D0i] = [Di][D0]
−1

= ([G][Z(θ1i, d1i)] . . . [Z(θni, dni)][H])([G][Z(θ10, d10)] . . . [Z(θn0, dn0)][H])−1.
(2)

This can be viewed as

[D0i] = [T (∆θ1,S1)] . . . [T (∆θn,Sn)], (3)

where

[T (∆θ1, S1)] = [G][Z(θ1i, d1i)][Z(θ10, d10)]
−1[G]−1,

[T (∆θ2, S2)] = ([G][Z(θ10, d10)][X(α12, a12)][Z(θ2i, d2i)])

([G][Z(θ10, d10)][X(α12, a12)][Z(θ20, d20)])
−1,

...

[T (∆θn, Sn)] = ([G][[Z(θ10, d10)] . . . )[Z(θn, dn)][Z(θn0, dn0)]
−1([G][[Z(θ10, d10)] . . . )

−1.
(4)

The displacements [T (∆θi,Si)] are the relative transformations along
the joint axes of the robot from the reference configuration. Notice that
by expressing them in this way, the initial transformation [G] is absorbed
in the first joint axis and the final transformation [H] does not appear
in the expression.
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2.2 Dual Quaternions
The workspace of the robot can also be expressed by using the Clif-

ford algebra of the dual quaternions. A spatial displacement can be
represented as a dual quaternion,

Q̂(θ̂) = sin(
θ̂

2
)S + cos(

θ̂

2
), (5)

where S = s + εs0, with ε2 = 0, is the screw axis of the transforma-
tion. The dual numbers cos( θ̂

2) = cos θ
2 + ε(−d

2 sin θ
2) and sin( θ̂

2) =
sin θ

2 +ε(d
2 cos θ

2) contain the information about the rotation and the dis-
placement along the screw axis. The components of the dual quaternions
are easily computed from the homogeneous matrix transformation.

The spatial displacements can be represented as the set of points
Z = (Z,Z0) in R8 which are subject to two constraints: Z · Z = 1 and
Z ·Z0 = 0. The workspace lies on a six-dimensional submanifold of R8.

The dual quaternion form for the kinematics equations of the robot
are obtained by transforming eq.(3) into

D̂i = Ŝ1(∆θ̂i
1) . . . Ŝn(∆θ̂i

n), (6)

where D̂i is the dual quaternion for [D0i] and Ŝi is the dual quaternion
for [T (∆θi,Si)].

This approach yields the kinematics equations as successive screw
transformations from the reference position. It is a useful formulation
from the synthesis point of view because the components of each axis
appears explicitly in the base frame coordinates.

3. Synthesis of Constrained Robots
Let [T (θ1, . . . , θk)] be the kinematics equations of a serial robot, and

let a discrete approximation of the desired workspace be given in the
form of n goal transformations [Di], i = 0, . . . , n − 1. The synthesis
problem consists of solving the n matrix equations

[T (θ1,i, . . . , θk,i)] = [Di], ı = 0, . . . , n − 1. (7)

We now transform these equations to successive screw displacements
in dual quaternion form. The result is n − 1 goal positions D̂i, i =
1, . . . , n − 1 and the kinematics equations Q̂(θ̂1, . . . , θ̂k) to obtain the
n − 1 equations

Q̂i(θ̂i
1, . . . , θ̂i

k) = D̂i, i = 1, . . . , n − 1 (8)
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For each of the n − 1 positions we have eight component equations.
However, due to the structure of the dual quaternions, only six of them
are independent.

For a robot chain represented by a series of j revolute joints, each of
the joints has an axis defined by six Plucker coordinates, which yields
6j unknowns. The j joint variables take different values at each of the
n− 1 positions, which add j(n− 1) unknowns. This yields 6j + j(n− 1)
unknowns. For each joint axis, there are two constraints associated with
its Plucker coordinates. For each of the n − 1 goal positions we obtain
eight equations, which can be reduced to six. Thus, we have 2j+6(n−1)
equations. Equating the number of unknowns to the number equations,
we obtain

6j + j(n − 1) = 6(n − 1) + 2j. (9)

Solving for n we obtain n = 3j+6
6−j . We have that 2R, 3R, 4R and 5R

spatial chains require 3, 5, 9, 21 positions, respectively.This analysis has
been extended to include other types of joints and topologies. In general,
the number of orientations we can reach is limited by the fact that
rotations operate independently in spatial displacements. To compute
complete spatial positions, we need to check whether the orientations
are limited. Assume that our robot consists of l revolute joints and k
prismatic joints. The number of spherical positions we can reach is

3l + l(nR − 1) = 3(nR − 1) + l, (10)

while the accounting for both orientation and translation is

6(l + k) + (l + k)(n − 1) = 6(n − 1) + 2l + k. (11)

From the rotation equation, nR = 3+l
3−l , and notice that this coincides

with the results for spherical robots. If the number of complete positions
is restricted by nR we will reach only that many arbitrary orientations,
and the rest will be just translational components of dual quaternions
in which rotations will have to be bounded to the given workspace.

Notice also that here we assume that the axes of the rotational and
translational joints are not related, but it is easy to adapt the formula
to particular cases in which the joints are constrained.This result is used
to determine the number of positions we need to define in the synthesis
process in order to obtain a finite number of solutions.

4. Solving the Design Equations
The design equations for constrained robots contain joints variables

and axis variables. The goal is to eliminate the joint variables and solve
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for the axis variables, which define the physical dimensions of the robot.
The elimination of the joint parameters is called “implicitization” of the
parametric equations, which we apply to the kinematics equations for
each position.

The methodology consists of solving linearly for two of the revolute
parameters in the rotational part of the dual quaternion. The result is
substituted in the moment part of the dual quaternion and combined
with geometric constraints. This yields equations that can be solved for
the remaining translational and rotational parameters. The following
derivation for the spatial RPR robot has been applied to spatial RR,
CC and RRR robots as well.

5. Synthesis of a Spatial RPR Robot
The RPR robot is a three-degree of freedom robot. The fixed axis G

allows rotation of angle θ about it and it is followed by a translation d
along an arbitrary direction P and finally a rotation of angle φ about an
arbitrary axis W, see Figure 1.

G

W

P

θ

φ

d

Figure 1. The spatial RPR robot

The dual quaternion representation for the relative displacements of
the chain is given by

Q̂RPR = Ĝ(θ, 0)P̂ (0, d)Ŵ (φ, 0), (12)

When applying the dual quaternion product we obtain the expression
Q̂RPR = Q0 + Q, where the point is

Q0 = cos
θ

2
cos

φ

2
− ε

d

2
sin

θ

2
cos

φ

2
G · P − ε

d

2
cos

θ

2
sin

φ

2
P · W −

sin
θ

2
sin

φ

2
G · W − ε

d

2
sin

θ

2
sin

φ

2
(G × P) · W, (13)
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and the vector

Q = sin
θ

2
cos

φ

2
G + cos

θ

2
sin

φ

2
W + ε

d

2
cos

θ

2
cos

φ

2
P −

ε
d

2
sin

θ

2
sin

φ

2
(G · P)W + ε

d

2
sin

θ

2
cos

φ

2
(G × P) + ε

d

2
cos

θ

2
sin

φ

2
(P × W) +

sin
θ

2
sin

φ

2
(G × W) + ε

d

2
sin

θ

2
sin

φ

2
(G × P) × W. (14)

The expansion of this equations componentwise leads to a set of equa-
tions in the components of the fixed rotation axis, G = (gx, gy, gz) +
ε(g0

x, g0
y , g

0
z), the moving prismatic axis P = (px, py, pz), and the moving

rotation axis W = (wx, wy, wz) + ε(w0
x, w0

y, w
0
z).

The number of positions needed to obtain finite number of solutions
is as follows: we have 15 + 3(n− 1) unknowns (for the prismatic joint P
only the direction matters) and 5+6(n−1) equations. Therefore we can
define up to n = 4 + 1

3 positions. The fractional value of n means that
we can define 4 full positions plus two out of the six parameters that
define a fifth position. Another option is to specify some extra relation
for the joint axes. For instance, if we specify that the slider P must be
perpendicular to the fixed rotation axis G we are adding one constraint
and the counting gives finite number of solutions for n = 4 positions.
This is the case that we use in the example.

To create the design equations we equate the expanded eq.(14) to the
goal dual quaternion D̂, that is,

Q̂RPR(θ, d, φ) − D̂ = �0, (15)

to obtain one of the sets of design equations. To eliminate the joint
parameters we consider first the direction equations, which can be solved
linearly for θ and φ,




wx gx gywz − gzwy 0
wy gy gzwx − gxwz 0
wz gz gxwy − gywx 0
0 0 −(gxwx + gywy + gzwz) 1








cos θ
2 sin φ

2

sin θ
2 cos φ

2

sin θ
2 sin φ

2

cos θ
2 cos φ

2





=





px

py

pz

pw





(16)

The solution exists when the matrix is invertible (the determinant
is zero only for the degenerate case when both directions are parallel,
hence creating a planar rotation) and when the directions g, w make
the system solvable, which we can assume will be given by the solution
of the design equations. The obtained values are substituted in the
four moment equations, to obtain four equations which are linear in the
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parameter d. We eliminate linearly the joint variable d . We obtain
three implicit equations per goal position. These 9 equations together
with 6 constraints,

g2
x + g2

y + g2
z = 1, gxg0

x + gyg
0
y + gzg

0
z = 0

w2
x + w2

y + w2
z = 1, wxw0

x + wyw
0
y + wzw

0
z = 0

p2
x + p2

y + p2
z = 1, gxpx + gypy + gzpz = 0 (17)

allows us to solve for the 15 unknowns corresponding to the three joint
axes.

We present an example in which we want to design the RPR robot to
reach the following four positions:

Table 1. The goal positions

Position Axis Rotation Translation

position 1 (1.0, 0.0, 0.0) + ε(0.0, 0.0, 0.0) 0o 0
position 2 (0.52, 0.59, 0.61) + ε(−0.97, 1.35,−0.47) 120o −0.32
position 3 (0.54, 0.56, 0.63) + ε(−0.10, 0.84,−0.66) 44o −0.05
position 4 (−0.33,−0.63,−0.70) + ε(0.00, 1.30,−1.18) 39o 0.01

One of the obtained solutions is presented, as the joint axes in the
first position,in Table(2). Figure 2 shows the robot while reaching each
of the positions.

Table 2. The joint axes

Joint Axis Direction Moment

G (0.394, 0.593, 0.701) (−1.379,−0.074, 0.839)
W (0.594, 0.518, 0.615) (0.388, 0.976,−1.199)
P (−0.897, 0.085, 0.432) (−0.629,−0.946,−1.119)

6. Conclusions
This paper introduces a new formulation for the kinematic synthesis

of constrained serial robots. These robots have less than six degrees
of freedom. The standard kinematics equations of the chain are trans-
formed into successive screw displacements and then expressed using
dual quaternions. The result is an explicit set of axis parameters that
define the robot and a set of joint parameters that can be eliminated
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Figure 2. The spatial RPR robot reaching the four goal positions

algebraically. The structure of these equations provides a convenient
strategy for this elimination, which we demonstrate with the design of
a spatial RPR robot.
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