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Current ring perception algorithms for use on chemical graphs concentrate on processing specific 
structures. In this review, the various published ring perception algorithms are classified according 
to the initial ring set obtained, and each algorithm or method of perception is described in detail. 
The final ring sets obtained are discussed in terms of their suitability for use in representing 
the ring systems in structurally explicit parts of generic chemical structures. 

INTRODUCTION 
A necessary component of the generic chemical structure 

storage and retrieval system currently under development at 
Sheffield is a method of analysis and representation of ring 
systems for both specific and generic structures, such as those 
found in patents. The problems to be addressed are substantial. 
The representation should ensure consistent description of 
specific structures and specific ring systems within generic 
structures for both full and substructure searching. Fur- 
thermore, it must permit the description of those parts of 
generic ring systems for which full structural characterizations 
are given (structurally explicit generics), as well as being ca- 
pable of extension to the characterization of those parts for 
which only intensional descriptions are given (structurally 
implicit generics). 

Generic ring systems introduce several additional areas of 
complexity. A variable group may occur within a ring or may 
substitute onto a ring system to form additional rings, while 
identical generic structures may be declared different by virtue 
of the orientation of their partial structures and the partitioning 
of them into partial structures. 

These circumstances call for the production of a searchable 
representation by means of a ring perception algorithm with 
the following characteristics: 

It is independent of the projection, orientation, and 
partitioning of the ring system. 

* I t  is consistent in the selection of rings to ensure 
maximum recall with minimum false drops. 

It should permit the identification of inter-ring rela- 
tionships. 

It should enable the overall logic of relationships among 
ring systems and acyclic parts to be represented 
faithfully. 

A necessary preliminary stage to the production and eval- 
uation of such an algorithm for use on structurally explicit 
generics is an appraisal of existing algorithms and ring sets 

used for specific ring systems, together with their potential for 
extension into a generic environment. This review is a result 
of such an appraisal, originally given in reference 1. Subse- 
quent papers outline the resultant ring set and algorithm de- 
veloped from this appraisal.*+ 

An attempt has been made to standardize the different 
terminologies used to those of the graph theoretic concepts 
considered in the paper subsequent to this review. As a result, 
vertex ( u )  is used instead of atom or node, edge ( e )  instead 
of bond or arc, connectivity instead of degree or valency, and 
nullity (p) instead of Frerejacque number or cyclomatic 
number. The sets of all vertices and edges are denoted by V 
and E, respectively. In addition to the definitions given below, 
an elementary knowledge of graph theory is assumed. 

A walk is an alternating sequence of vertices and edges, 
starting and ending at  vertices, where each edge is incident 
with the vertices on either side of it in the sequence. If the 
start and end vertices are the same, then the walk is closed 
and is called a circuit; otherwise, it is open. If all edges of a 
walk occur only once, then it is a trail, and if all vertices are 
also distinct, then it is a path. A closed path is a cycle (u 1 
3). If one or more vertices of a graph occur more than once 
in a circuit, then it contains D~ppelpunkte.~ A circuit without 
Doppelpunkte is a cycle. If a pair of vertices in a cycle is 
connected by an edge that does not occur in the cycle, then 
these vertices are Nachbarpunkte. A cycle without Nach- 
barpunkte is a simple cycle. 

A graph is connected if every pair of vertices in it is joined 
by a path. The set of all such vertices forms a component. If 
the graph consists of several disconnected sets of vertices, then 
each set forms a separate component; hence, a disconnected 
graph has at  least two components. 

An edge is a cut edge if its removal disconnects the graph 
and increases the number of components; hence, it cannot be 
part of any cycle. Similarly, a vertex is a cut vertex (sometimes 
called an articulation point) if its removal increases the number 
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of components. Obviously each vertex incident to a cut edge 
is a cut vertex, but a cut vertex can also be part of a cycle (as 
a spiro-fusion). A component or subcomponent that has no 
cut vertices is called a block. 

Note that in the chemical sense a bridge is a series of two 
or more edges crossing a cycle, whereas in the mathematical 
sense it is a series of one or more cut edges linking two blocks 
of a component. 

Most algorithms rely on a connection table representation 
of the structure. This is simply a compact form of adjacency 
matrix that can be converted easily into the full adjacency or 
incidence matrix. Ring perception can then proceed by one 
of two fundamental methods. The first is to “walk” through 
the connection table, or matrix, and the second is to use graph 
theoretical operations on a matrix. 

The walking method is the earliest and is the more obvious. 
The algorithm starts from some atom of the graph repre- 
sentation and simply walks about the structure while noting 
the paths traced and any branch points. If the path closes (to 
give a cycle, which can be stored) or cannot continue, the path 
is shortened to the last branch point. Walking continues along 
a new path from this branch point. After all paths have been 
traced from every branch point, walking is complete. 

When used on the undirected graphs representing molecular 
topology, path tracing goes both ways around a ring, and so 
each ring is found at least twice. In addition, as the size and 
complexity of a ring system increase, so does the processing 
time. These effects can be minimized to some extent by ig- 
noring acyclic vertices, by carefully choosing the start atoms 
(vertices from which path tracing begins), and by applying 
rules to ensure that paths that would be definitely unproductive 
are not traced. 

In spite of potential problems in controlling the walks, some 
of the benefits of this approach are that it can work directly 
from a connection table and will produce an ordered list of 
the constituent atoms and bonds around the perceived rings. 

The more mathematical graph theoretic approach uses 
matrices, trees, and sets to perceive the required set of rings. 
Most algorithms applying graph theory use a matrix to derive 
an acyclic spanning tree. The chords (Le., minimum number 
of edges whose removal is required to turn the structure from 
cyclic to acyclic) of the resultant spanning tree are used to find 
a fundamental basis of cycles. A fundamental basis contains 
the minimum number of linearly independent cycles that cover 
every ring vertex and edge in the structure. The set cardinality 
is given by the nullity, w ,  and corresponds to the number of 
chords, i.e. 

p = no. of edges - no. of vertices + no. of components 

Fundamental Bases Are Generally Nonunique. Further cycles 
can be found by using a vectorspace algorithm to take all ring 
sum combinations of the basis cycle vectors, by growing further 
trees from the ends of the chords, or by deriving further 
spanning trees from different start atoms to obtain further 
fundamental bases. 

The rings found by the vector-space method are given in 
vector form and are thus unordered sequences. Further pro- 
cessing is required to give the ordered atom-bond sequence 
for each cycle. However, vector processing is inherently fast, 
and there are several techniques for increasing the efficiency 
of the additional processing. 

The various ring perception algorithms developed are largely 
a result of differing requirements. In this review, ring per- 
ception techniques are presented according to the initial ap- 
proach used to find the required set of rings for each structure. 
These initial approaches are as follows: 

to find all possible cycles and then select those required 
to find all possible simple cycles and then select those 
required 
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to generate a fundamental basis of cycles from which 
all other cycles can be derived as necessary 

to determine directly the smallest fundamental basis, 
known as the smallest set of smallest rings 

Within these four categories, the techniques are ordered by 
year and presented by author since most have not been given 
any specific name. Table I gives the necessary structured 
overview of the major aspects of the 24 techniques reviewed. 

Previous reviews of ring perception algorithms used on 
chemical graphs include those given by Carruthers6 (the most 
thorough to date), Sorkau,’ and Gray.* Most of the original 
papers give introductory reviews, the best of which can be 
found prior to the algorithms presented by Corey and Pe- 
tersson? Gasteiger and Jochum,Io Roos-Kozel and Jorgensen,” 
Wipke and Dyott,I2 and Zamora.I3 

A complete comparison of the algorithms, to assess the 
computational efficiency of each, is not possible on the basis 
of the published papers. Many do not give any indications 
of performance, and those that do are not directly comparable 
due to such factors as the programming language used, the 
computer used, and the amount of additional processing in- 
cluded (such as aromaticity detection). The purpose of this 
appraisal is thus to ascertain their appropriateness for extension 
into a generic environment, rather than to code and implement 
as many as possible to compare their efficiency for processing 
specific structures. 

The review by Mateti and DeoI4 does give a comparison of 
performance in terms of the upper bounds on time and space, 
with a useful tabulated summary. However, only 1 of the 21 
algorithms they mention has been used for chemical structures 
(by Welch); most are designed for use on directed graphs, and 
many have been superseded by later publications. Most of 
these algorithms will only be referenced here. In addition, 
Read and Tarjanls consider the theoretical upper bounds and 
present suitably efficient algorithms for listing cycles, paths, 
and spanning trees. 

ALGORITHMS THAT INITIALLY PERCEIVE ALL 
CYCLES 

Perception of all cycles in a structure may be very time- 
consuming, but it does at least ensure thorough analysis. It 
is one of the earliest techniques used and in many ways is the 
simplest to implement. Those cycles required to categorize 
the structure can then be selected from the complete set of 
cycles as desired. 

Tiernan16 presents an algorithm designed to process directed 
graphs rather than the undirected graphs used to represent 
chemical structures. It is mentioned here for completeness, 
as a representative directed graph algorithm, and because it 
was claimed to be the “theoretically most efficient search 
algorithm”. Due to the directed nature of the graph, the path 
trace is easier to implement and finds each cycle only once. 
The algorithm can also cope with self-loops. Conversion to 
an undirected graph would make this less efficient than other 
methods such as Paton’s (see later). 

The connection table has some arbitrary numbering of the 
vertices and is converted to a V X V adjacency matrix. In 
addition, there is a list of length V to store the current sequence 
and a V X V array to store the list of vertices closed to each 
vertex. 

Path tracing starts from the first vertex in the adjacency 
matrix. Choice of the next extension vertex is governed by 
the following rules: 

It must not already be in the path (to ensure that a 
cycle is traced). 

Its label must be larger than the first vertex in the path 
(to ensure that each cycle is traced once only- 
starting from its lowest vertex label). 
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It cannot be closed to the last vertex in the path (to 
ensure that no path is considered more than once). 

At some point no further suitable vertex will be available. A 
check is made to see whether the first and last vertices have 
a common incident arc; if so, then a cycle has been found and 
can be listed. Either way, “vertex closure” (i.e., completion 
of that particular path) is performed as follows: (1) Assign 
the last vertex to the closed vertex list of the penultimate vertex 
(to prevent the path being traced again). (2) Clear the closed 
vertex list of the last vertex (to allow the last vertex to be 
considered again if it occurs in another cycle). (3) Delete the 
last vertex from the path-trace. 

These stages operate in a similar manner to the backtracking 
to previous choice points outlined in the next algorithm (Corey 
et al.) except that, when vertex 1 is reached again, the process 
is repeated for the next vertex in the connection table rather 
than only for a vertex in another component. 

A similar adjacency matrix backtracking algorithm for 
finding all cycles in a directed graph is that by Beiss, Janicke, 
and Meissler. l 7  This paper includes comparative timings to 
show that it is faster than Tiernan’s algorithm. Several 
mathematically based algorithms are available for application 
to the directed graphs of, for instance, electrical networks, and 
operate by manipulation of an adjacency matrix. It is easy 
to find all circuits by using such an approach, but additional 
computational overheads are involved in selecting the cycles 
from the circuits. The difference between these algorithms 
is in the methods employed to obtain just the cycles rather than 
all circuits. Danie1son,l8 for instance, uses a variable adjacency 
matrix, i.e., an adjacency matrix that includes the edge labels. 
Similar algorithms have been proposed by Ponstein,lg Yau,zo 
Kamae,21 and Ardon and Malik.22 Mateti and Deo14 cite 
related backtrack algorithms by Floyd,23 Tarjanz4 (later im- 
proved by Johnson,25 Read and Tarjan,l5 and Schwarcfiter and 
LauerZ6), Roberts and F l ~ r e s , ~ ~  Bertziss,28 Weinblatt,29 and 
E h r e n f e ~ c h t . ~ ~  The algorithm by S y s l 0 ~ ~ 3 ~ ~  is modified by 
L o i ~ o u , ~ ~  who also presents a formal proof of the time com- 
plexity of the algorithm. There is also the edge-digraph ap- 
proach of Cartwright and G l e a ~ o n . ~ ~  So far as is known, none 
of these have been applied to chemical graphs and so will not 
be mentioned further. 

Corey, Wipke, Cramer, and H o ~ e ~ ~  developed the original 
ring perception algorithm used in the LHASA organic syn- 
thesis system. A detailed description is given in their paper 
and in the previous publication by Corey and W i ~ k e . ~ ~  

From the connection table the analysis determines which 
cycles are present, their size, and their relationship to each 
other, Le., isolated, spiro, fused, or bridged. Each cycle is 
represented as a cycle vector and is found by a simple spanning 
tree depth-first path trace. 

Processing starts at the first atom in the connection table 
and randomly traces paths through the connection table with 
arbitrary choices at  atoms with a ring connectivity of more 
than two. Such atoms are labeled choice points to which the 
processing returns on backtracking. If the next atom is already 
in the path, then a cycle has been found. This cycle is stored 
in an ordered list, and the path is shortened to the last choice 
point. When all paths from the start atom have been covered, 
a check is made to see whether all vertices are included in the 
ring set obtained. If not, the structure has more than one 
component and path tracing is repeated by using an unvisited 
vertex as start atom. An illustrative example of this path 
tracing is given in the Corey et al. paper. 

The set of all cycles in the structure is then divided into those 
regarded as real rings and pseudorings. The set of real rings, 
S, must include all cycles that can be included in a maximum 
proper covering set, defined as follows: (1) S contains all ring 
bonds present in the connection table (a covering set); removal 

( i )  

Figure 1. 

n 

(ii) 

Figure 2. 

of any ring from S leaves a noncovering set. (2) S is chosen 
so that the sizes of individual rings are as small as possible. 
This is achieved through the requirement that the intersection 
of any two rings on S should not involve more than half the 
edges of either (proper set). (3) S contains the maximum 
number of rings present in any set fulfilling the first two 
criteria (maximal set); i.e., S contains exactly the nullity 
number of rings, except where there is a set of equal-sized rings 
all of which fulfill the first two criteria, and hence all should 
be included. All other rings are regarded as pseudorings. 

From the examples given by Corey et al. it can be seen that 
the concept of real rings does have its limitations. For instance, 
in Figure l i  the six-edged cycle is one of the “key synthetic 
units” of the norbornane system due to its importance in 
Diels-Alder reactions; however, it is classified as a pseudoring. 

In Figure lii, the highlighted six-edged cycle is arbitrarily 
classed as a pseudoring, while the other six-edged cycle is 
classed as real (criterion 1 precludes them from both being 
included as real). 

The authors make the observation that few synthetic re- 
actions are known in which key synthetic units are larger than 
six-edged cycles. Those that are are generally classified as 
real anyway. As a result, it was suggested that the set of real 
rings be supplemented by all rings of size six or smaller. Corey 
and Peterssong subsequently developed an alternative strategy, 
based on sets of fundamental cycles, that can generate such 
an extended set directly, without first finding all cycles. This 
algorithm is reviewed later and has also been used in LHASA. 

Shelley37 has developed a procedure for ring identification 
as a step in the production of the coordinates necessary to 
display chemical structures graphically. The overall program 
was developed in response to the need to maintain the same 
orientation for similar structures and to ensure that this ori- 
entation corresponds to what a chemist regards as the proper 
one. 

The ring perception module is used to assign the relative 
coordinates of the atoms in each ring system. Unlike many 
other applications, one of the requirements is to determine the 
connectivity of each atom. 

The procedure is simple and straightforward, comprising 
two basic steps: (1) Assign a spanning tree by breadth-first 
growth from the connection table, making a separate note of 
the chords. (2) For each chord perform a depth-first search 
of the tree for all paths between the two vertices of the chord 
and then add that chord to the tree. This will produce an initial 
set of all cycles. The set is scanned, and all cycles that contain 
all the vertices of a smaller cycle are removed; Le., all cycles 
containing Nachbarpunkte are deleted to give the set of all 
simple cycles. 

The complexity, C, of the system is calculated from 

C = S - E + V - 1  
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All the simple cycles of simple ring systems (C = 0) and 
bicyclic ring systems (C = l), such as norbornane, are used 
to generate coordinates. More complex systems (C 1 1) are 
simplified by including only those simple cycles present in the 
simplest subring systems. These are determined by a process 
of successively “peeling” cycles from the ring system. For 
instance, in Figure 2 the highlighted 12-edged simple cycle 
is removed. 

There are cases in which a ring system cannot be simplified 
in these terms, and the program is thus unable to display the 
structure. From the account given it appears that an attempt 
is being made to choose those rings that are included in the 
set of .%-rings defined by Plotkin (see later). Unfortunately, 
this attempt is not always successful. 

Balaban, Filip, and Balaban3* simplify the structure repre- 
sentation to its basic graph form (which they call a 
“homeomorphically reduced graph”) before any ring perception 
is performed. The basic graph is constructed by ignoring 
vertices with ring connectivity less than 3 (reducible vertices). 
The reducible vertices are stored as paths between the relevant 
remaining irreducible vertices of the basic graph. The problem 
thus becomes one of finding all the cycles present in the po- 
tentially much simpler basic graph (although there is the 
problem of monocycles that have no irreducible vertices). The 
reducible vertex paths are then slotted back to produce the 
complete cycles. 

Before the basic graph is processed, the number of iterations 
can be reduced by visually determining the minimum number, 
kmin, of irreducible vertices in its smallest cycle (the default 
is 1). The program generates all basic-graph cycles with k 

All possible combinations of k edges of the basic-graph 
adjacency matrix are generated, and each is tested to see 
whether it is a cycle or union of disjoint cycles (each vertex 
appears twice). To eliminate unions of disjoint cycles, the path 
is backtracked to see whether the starting point is reached 
before k steps. If so, then the cycle is rejected. 

The idea of using irreducible vertices and of linking all 
combinations of intervening paths is directly comparable with 
the much earlier fundamental ring concept of Fugmann, 
Dolling, and Nickelsen (see later). Consequently, this method 
suffers from many of the same disadvantages, such as the 
factorial increase in processing time as the number of paths 
to be combined increases, i.e., as the graph complexity in- 
creases. Unlike Fugmann’s method, no attempt is made to 
select a particular set of simple cycles, thus making the process 
somewhat simpler. 

Overall, although the concept of using basic topology to 
simplify molecular topology processing is a useful one, several 
implementation improvements are necessary, such as the au- 
tomatic separate processing of components and the removal 
of visually derived heuristics. 

F~j i ta~~v~O details an algorithm to find the essential set of 
essential rings (ESER) as a representation for organic reactions 
and synthesis design. The resultant ring set bears some sim- 
ilarity to the extended set of smallest rings (ESSR) developed 
as a result of this appraisal,2 but the two are based on entirely 
different concepts. 

Fujita’s algorithm starts by finding all cycles. It is suggested 
that this can be achieved by using Wipke and Dyott’s method 
(see later) or Kudo’s method.41 The cycles are sorted by size, 
and the list is analyzed according to criteria based on ideas 
of synthetic importance. 

Cycles are classified as essential and nonessential. Non- 
essential cycles are tied, multi-tied, or dependent. A tied cycle 
is one that contains a pair of Nachbarpunkte, while a multi-tied 
cycle contains more than one pair of Nachbarpunkte. Hence, 
from the set of all cycles, only the simple cycles are considered 

I kmin. 
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further. A dependent cycle is defined partly in terms of 
synthetic importance. Cycles are regarded as containing three 
classes of non-hydrogen atom: carbon, heteroatom (N, 0, S ,  
P), and abnormal (all other atoms). A cycle is dependent if 
all its bonds occur in a subset of the tied cycles, and 

All of this subset are the same size or smaller than the 
dependent cycle. 

The dependent cycle contains less than half the bonds 
in the subset. 

All cycles in the subset are of the same class as the 
dependent cycle. 

*All cycles in the subset have the same or smaller 
numbers of heteroatoms and/or abnormal atoms as 
the dependent cycle. 

The ESER contains all cycles that are not classified as non- 
essential; i.e., it is a subset of simple cycles that does not 
contain any dependent cycles. One consequence of this is that 
the presence of a heteroatom or abnormal atom alters the 
status of a cycle. For instance, the 12-edged simple cycle in 
Figure 2 (outlined in bold) is a dependent cycle, and thus not 
in the ESER, whereas the same cycle in Figure 3 is not a 
dependent cycle, due to the central heteroatom, and thus is 
included in the ESER. 

The ESER is used by Fujita to represent the ring systems 
present in the imaginary transition structures39 used to depict 
reaction-site changes during organic reactions. The ESER 
concept evidently draws upon the much earlier work by 
Fugmann et al.46 and Nickelsen (see below) and has similar 
problems with respect to processing overheads and visual in- 
terpretation. 

ALGORITHMS THAT INITIALLY PERCEIVE A SET 
OF SIMPLE CYCLES 

Only one of the reviewed algorithms falls into this category. 
Nickelsen4* developed the so-called @-ring concept in re- 

sponse to the requirement for a mathematically based ring 
perception technique for manual and automated use in the 
GREMAS system. It draws upon the earlier fundamental ring 
concept46 (see later) by classifying a @-ring first as a simple 
cycle, but the processing overheads are less. The literature 
available all assume manual application, and so no algorithm 
description for computerized implementation is publicly 
available. As a result it is not known how the set of simple 
cycles is generated. All that is available is the @-ring definition. 

Nickelsen gives four definitive propositions: (1) The smallest 
simple cycles in a graph are @-rings. (2) If a graph has at most 
two smallest simple cycles of size S,  then all simple cycles in 
the graph of size S + 1 are also O-rings. (3) If none of the 
edges of a simple cycle, C, is common to any of the other cycles 
in the graph, then Cis  a O-ring (i.e., an isolated or spiro ring). 
(4) If just one edge of a simple cycle, C, is common to any 
of the other cycles in the graph, then C is a @-ring (Le., a fused 
ring). These have been refined into the definition that a @-ring 
is a simple cycle that has just three or four vertices or that 
cannot be constructed from three or more smaller simple cy- 
cles, i.e., by the linear combination of their vectors. 

All examples given by Nickelsen illustrate the choice of 
P-rings using vertex-labeled diagrams. This leads to great 
confusion since it is the edge vectors that need to be combined 
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tioned earlier that directly generate the required set without 
first finding a fundamental basis. 

The smallest set of smallest rings (SSSR) is a special case 
involving the smallest fundamental cycles. Some of the al- 
gorithms given in this section do seek to find an SSSR but do 
not necessarily generate just an SSSR fundamental set. Al- 
gorithms that initially generate an SSSR directly, and no other 
fundamental cycles, are given in the next section. 

Welch4 starts with a V X E incidence matrix, in which the 
columns are reordered and partitioned into a form to which 
matrix operations can be applied more easily to obtain a 
fundamental basis. This matrix manipulation uses a method 
equivalent to that of Seshu and Reed.45 The resultant cycle 
vectors are used as rows in the basis cycle matrix so that 
subsequent stages can perform standard ring sum operations 
to derive all cycles. 

The rules for manipulation of the matrix and for isolating 
the cycle vectors are as follows: (1) For each column, j ,  choose 
a preferably unused row, i, with a 1 in the j th  column. For 
such an ith row, first label the top of the j th  column with the 
integer i and then replace any other row having a 1 in the j th  
column by its sum, modulo 2, with the ith row. (2) Combine 
each unlabeled edge, corresponding to the jth column, say, with 
edges labeled by integers k such that akJ. = 1. 

The structure in Figure 5 would be manipulated as follows: 
incidence matrix label matrix 

Rule 2: the fundamental cycles are (d,b,c), (f,a,b,c,e), and 
(j,h,i), giving the cycle matrix 

Figure 4. 

rather than the vertex vectors. In the following example the 
original vertex numbering has been replaced by edge labeling, 
and the associated simple-cycle matrix constructed. The ring 
sum of triplets of cycle vectors is then sufficient to differentiate 
the O-rings. 

For the structure in Figure 4 the simple-cycle matrix is 
Simple-cycles 

From proposition 1, C2 is a O-ring, and from proposition 
2, C1 and C3 are O-rings. For C4, there are three smaller 
simple cycles (Cl ,  C2 and C3); the ring sum of these is 

c 1  e c2 e c3 = (1111101110111) # c4 

hence C4 is a O-ring. 
For C5, the four other simple cycles are all smaller. Of these 

c 1  e c2 e c4 = (01 11 100001 11 1) = c5 
hence C5 is not a O-ring. 

The main problems with the O-ring concept are that it is 
difficult to apply manually, it initially requires the generation 
of all simple cycles (by an undisclosed method), and it requires 
a considerable number of ring sum operations for complex ring 
systems. However, it operates on a firm mathematical basis 
(the only heuristic being the inclusion of all three- and four- 
edged simple cycles), and it does not lead to the arbitrary 
exclusion of rings (as for an SSSR). Unfortunately, it does 
not always produce a set of rings that conforms to the chemist’s 
fuzzy concept of real rings, and it does occasionally miss faces2 
of structures due to the exclusion of “perimeter” rings. 

ALGORITHMS THAT INITIALLY PERCEIVE A 
FUNDAMENTAL BASIS SET OF RINGS 

The usual technique for finding a fundamental basis involves 
growing a spanning tree and noting the chords. The basis is 
then constructed by finding one ring associated with each 
chord. A spanning tree is derived by manipulation of an 
adjacency or incidence matrix or by path tracing through a 
connection table. 

The derivation of a fundamental basis has received much 
attention from mathematicians due to its importance in many 
areas of graph and network theory. Once a fundamental basis 
has been established, all other cycles associated with a par- 
ticular structure can be generated by taking the ring sum of 
combinations of the basis cycle vectors. 

All possible cycles can be derived by a vector-space al- 
gorithm such as that proposed by Maxwell and Reed.43 
However, for a system with nullity, p, there may be up to 2’ 
- 1 rings, requiring an expensive 2’ - p - 1 possible combi- 
nations of vectors. Most vectorspace algorithms thus try to 
limit the number of combinations to the minimum necessary 
to generate all cycles. 

As an alternative to vector combination, a backtracking 
algorithm can be used to grow trees from one or both ends 
of each chord until all rings involving each chord have been 
found. These contrast with the backtrack algorithms men- 

l a b c d e  f g h  i j 
CllO 1 1  1 0  0 0  0 0 0 
(7211 1 1 0 1 1 0 0 0 0 

C1@ C3 0 1 1 1 0 0 0 1 1 1 
c2 B c 3 / 1  1 1 0 1 1 0 1 1 1 

The ring sum operation, C1 C2 gives another fundamental 
cycle (a,d,e,f), while the other two ring sum operations give 
edge disjoint unions of cycles. 

As can be seen, the label matrix has one null vector (row 
5 )  produced by the manipulation. Welch shows that this is 
always true and is a necessary result of the processing. 

A fundamental basis is obtained for each component of the 
structure. All combinations of fundamental cycle vectors 
within each component could be produced; however, to reduce 
the number of ring sum operations required to find all cycles, 
Welch prefers to use two further stages of processing. 

Stage 2 orders the cycles such that cycles contained within 
the same component of the graph will appear consecutively. 

Stage 3 progressively combines pairs of cycles. Welch at- 
tempts to show that any unions of disjoint cycles produced 
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during stage 3 can be ignored. However, this is an incorrect 
assumption and can lead to certain cycles being missed. This 
was originally pointed out by Gibbs, whose corrected algorithm 
was based on Welch’s ideas and is considered later. 

Fugmann, Dolling, and Nickelsen& return to basic consid- 
erations of which rings are regarded as really present in a 
structure by bench chemists, and define a “fundamental ring” 
set. The terms fundamental ring and fundamental basis should 
not be confused. A fundamental basis is used as a subset from 
which the set of fundamental rings is derived. 

Use is made of the “condensation points” within a structure, 
i.e., vertices of the basic graph. Unlike spanning tree and 
walking techniques, this topological approach combines 
half-rings or fundamental paths by using certain exclusion rules 
to avoid processing all possible combinations to give all possible 
cycles rather than the required subset. Thus, all cycles giving 
path combinations with Doppelpunkte (a-paths) and Nach- 
barpunkte (/3-paths) are excluded by coupling only those paths 
that will not lead to such occurrences. 

The algorithm begins by using the “from attachment list” 
of M~rgan ,~ ’  which is equivalent to a minimum spanning tree, 
and the associated “ring closure list”, which contains the 
chords. From these a fundamental basis is generated. Any 
of these containing no more than one condensation point are 
fundamental rings and are stored. All pairs of condensation 
points are determined, and the paths between them are traced 
and stored in a matrix. A matrix of all condensation points 
is also constructed. Matrix transformation and manipulation 
find coupled paths, from which a matrix of coupling is pro- 
duced. To form the remaining fundamental rings, the row 
vector representing the linkage of a pair of condensation points 
is added, modulo 2, to each of the other vectors. These fun- 
damental rings are added to the previously stored list of fun- 
damental rings. 

This process is somewhat complicated and time-consuming, 
with the possibility of a great many elementary paths being 
generated (for instance, 384 paths have to be considered in 
cubane’O). The concept was an early one; it was one of the 
first to be successfully implemented, and it provided the basis 
for the more powerful &ring concept. 

Another interesting aspect of this paper is the construction 
of ring complexes. These are similar to the labeled dual of 
a graph except that the infinite region2 is not included. Each 
fundamental ring is represented as a vertex, while the edges 
denote incidence between these rings and carry a value equal 
to the number of condensation points in common. 

Gotlieb and Cornei14* present an alternative to Welch’s stage 
1 incidence matrix manipulation with an algorithm that uses 
an adjacency matrix to derive a spanning tree and chords. The 
process of matrix manipulation is slower than Welch’s method, 
but it requires less storage, using three V X V adjacency 
matrices rather than the two V X E incidence matrices plus 
two E-tuple vectors required by Welch. 

The spanning tree is constructed by the following matrix 
operations: 

(1) The set of Vvertices in adjacency matrix A is partitioned 
to form a set of disjoint trees in adjacency matrix B. For each 
row i of A, locate the first superdiagonal element of the ith 
row of A that contains a 1, and set this element and the 
corresponding supradiagonal element to 1 in matrix B; Le., 
set b,,l = b,, = 1 (where b is an element of matrix B).  If there 
are further superdiagonal elements of the ith row of A that 
contain l’s, then set them and their corresponding supra- 
diagonal elements to 0 in matrix B; Le., set b,,l = biJ = 0. 
Unless overwritten by this procedure, all other elements are 
set to 0. For example, matrices A and B for the graph in 
Figure 5 are 

2 1 0 1 1 0 0 0 0  
3 0 1 0 1 0 1 0 0  
4 0 1 1 0 1 0 0 0  
5 1 0 0 1 0 0 0 0  
6 0 0 1 0 0 0 1  1 
7 0 0 0 0 0 1 0 1  
8 0 0 0 0 0 1 1 0  
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2 1 0 1 0 0 0 0 0  
3 0 1 0 1 0 0 0 0  
4 0 0  1 0 1  0 0 0  
5 0 0 0 1 0 0 0 0  
6 0 0 0 0 0 0 1 0  
7 0 0 0 0 0 1 0 1  
8 0 0 0 0 0 0 1 0  

Matrix A Matrix B 

2 1 0 1 0 0 0 0 0  
3 0 1 0 1 0 1 0 0  
4 0 0 1 0 1 0 0 0  
5 0 0 0 1 0 0 0 0  
6 0 0 1 0 0 0 1 0  
7 0 0 0 0 0 1 0 1  
6 0 0 0 0 0 0 1 0  

(2) The n vertices can now be divided into components with 
respect to matrix B. Take a vector X of length n and initialize 
each element to 0. Take a row i and set X(i) = 1 .  If in row 
i any element b, = 1, then set each XG)  = 1 also. Set i = 
j for each j ,  and repeat until paths can no longer be traced. 
Mark each row i as having been processed. For each com- 
ponent of matrix B, these vectors form the rows of a matrix 
C. For the example above this will give 

x1 = (11111000),X2 = (00000111) 

and 

Matrix C 

As can be seen, matrix C is in block-diagonal form. 
(3) The components are amalgamated by adding appro- 

priate edges to B. The component with the smallest number 
of vertices is repeatedly examined. An edge between this 
component and another is added to matrix B. This process 
will terminate with matrix B representing a spanning tree. For 
example, in matrix C, the second row has the smallest number 
of vertices. There is only one vertex, and so only one iteration 
is performed. Vertex 6 can be joined to one of the vertices 
in row 1 by adding edges (3,6) and (6,3) to matrix B: 

(4) Each edge of A not in B is a chord. In this example the 
resultant chords are (1,5), (2,4), and ( 6 3 ) .  These are found 
and passed on to generate a set of fundamental cycles. 

The partitioning of step 2 isolates cyclic components (i.e., 
separates the cyclic blocks), while the connection of these 
components in step 3 can be seen to eliminate acyclic portions 
from chord production. 

G i b b ~ ~ ~  prefers to use the adjacency matrix partitioning 
technique of Gotlieb and Corneil to generate a fundamental 
basis in place of Welch’s stage 1 incidence matrix manipula- 
tion. A modified form of Welch’s stage 3 is then used on this 
set to find all cycles. This modified algorithm specifically 
separates out unions of disjoint cycles and reprocesses them 
at the next iteration. 

The main algorithm is given in six lines of compact graph 
theoretical notation, to which the reader is referred if inter- 
ested! In outline, the algorithm seeks progressively to accu- 
mulate all cycles into one set, S,  by using three intermediate 
sets at  each iteration. Set R+ holds the unions of disjoint 
cycles, set R holds the smallest cycles associated with the 
chords used in the fundamental set not already in S (after the 
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through the list, which is first sorted into the most efficient 
order for processing by collecting adjacent vertices together. 
It is shown that growing a spanning tree using the list is more 
efficient by breadth-first than by depth-first tracing, in contrast 
to Paton’s method. Ito and Kizawa then use a simple back- 
track procedure to trace a fundamental cycle from each chord. 

Corey and Peterson? as mentioned earlier, have developed 
another algorithm for use in the LHASA system. This uses 
a fundamental basis to derive an extended set containing all 
“synthetically important” rings. 

Paton’s algorithm is used to grow a spanning tree. Instead 
of simply producing an adjacency matrix, each vertex in the 
tree is stored along with the set of edges and vertices above 
it in the tree. When a vertex already in the tree is found, a 
fundamental basis ring is obtained by taking the ring sum of 
the appropriate pair of bond sets. This eliminates the back- 
tracking of Paton’s algorithm but requires additional storage. 

From the set of fundamental basis rings found, the corre- 
sponding reduced basis is derived in an attempt to find an 
SSSR (referred to as a “minimum spanning set”). 

The reduced basis is found by taking the ring sums of each 
pair of fundamental basis cycles vectors ( R )  and retaining the 
smallest two from the resultant triplet; Le., for each R,Rj the 
ring sum Ri 0 Rj is taken, where i > j and j varies from 1 to 
p - 1. The smallest pairs of rings from R - i,Rj, and Ri 0 
Rj are retained as reduced basis rings. The problem of ar- 
bitrary choice between equally sized cycles or the exclusion 
of synthetically important rings is tackled by supplementing 
the reduced basis with further cycles, if necessary, so that it 
contains at least an SSSR. To do this, trees are grown from 
both ends of each chord until either a new cycle or the original 
fundamental cycle is found or the size of the largest reduced 
basis cycle has been exceeded. The smallest of any new cycles 
found can then be added to the reduced basis. 

The SSSR is formed by selection of the smallest rings from 
the reduced basis. The resultant set is then checked to ensure 
that all edges of the graph are included; if not, then further 
smallest rings containing those edges are added. Their de- 
scription does not make it clear what circumstance might lead 
to such an omission of edges. 

As a final check, a set C of all chords whose fundamental 
basis rings are not in the SSSR is created. .If an SSSR ring 
contains just one of these chords, then that chord is removed 
from C. All linear combinations are formed from the rings 
containing the remaining chords in C. Once again, if any 
contain just one of the chords in C, then that chord is removed 
from C. If C is not now empty, then all smallest rings are 
found from each of the remaining chords (by a process not 
mentioned), and if they are not already in the set of combi- 
nations, they are added to the SSSR. 

Since the original fundamental basis contains all edges, 
subsequent processing should not eliminate these edges without 
raising doubts about the efficiency and reliability of the me- 
thod. 

Wipke and Dyott’* describe a “Welch-assembly-Gibbs” 
algorithm, an assembly being a block of a graph. An efficiently 
implemented form of Welch’s stage 1 is applied to derive a 
fundamental set of cycles. The cyclic blocks are found by 
grouping those fundamental cycles with edges in common. 
This is achieved by employing rapid and simple bit-vector 
matching to test for intersection. Each cyclic block is processed 
by a form of Gibbs’ algorithm that finds all cycles within that 
assembly by means of the ring sum of all combinations of the 
associated cycle vectors. 

The Gibbs algorithm has been modified for efficiency to 
require only one array and one “superset”. This eliminates 
the overheads incurred through the constant changing between 
the four sets used in Gibbs’ original algorithm. 

necessary elimination step is complete), and set Q holds the 
cycles still to be considered. After each iteration, any cycles 
in R, R+, Q, and the original fundamental set are placed in 
set Q. R and R+ are reset to 0, and the process is continued 
until the number of iterations has reached nullity. The result 
is the complete set of cycles. 

These modifications increase the processing time compared 
with Welch’s original algorithm, but at least all cycles are 
correctly perceived! Gibbs suggests that efficiency could be 
improved by applying the algorithm separately to the com- 
ponents highlighted by Welch’s stage 2. This idea is taken 
up by Wipke and Dyott, who go a stage further by limiting 
processing to the cyclic blocks (see later). 

According to Mateti and Deo14 a similar attempt to obtain 
all cycles without trying all vector combinations is given by 
Hsu and H ~ n k a n e n . ~ ~  This paper is not reviewed here, but 
Mateti and Deo show examples where all vector combinations 
are used and propose an alternative algorithm. However, 
according to Syslo31 

“The algorithm proposed by Mateti and Deo 
for enumerating all cycles of a graph utilising a 
cycle graph [matrix] depends on generating con- 
nected induced subgraphs of a cycle graph and 
then testing whether the corresponding elements 
of the cycle space are cycles. In general, this 
approach is inefficient.” 

Syslo then presents an efficient cycle vector-space algorithm 
for use on planar graphs that is claimed to be as efficient as 
the backtrack algorithms. 

Patons’ uses a depth-first path trace through an adjacency 
matrix to construct a spanning tree. This is achieved by using 
two such matrices plus a pushdown list of vertices in the 
spanning tree that have not yet been examined. The original 
adjacency matrix, A,  is gradually destroyed during processing 
while the new matrix, B, is gradually filled with the spanning 
tree. The main claim of this method is that its storage re- 
quirements are as low as Gotlieb and Corneil’s algorithm, while 
the speed of execution rivals that of Welch’s algorithm. 

The adjacency matrix A has a set of E edges and Vvertices. 
Initially the set, T, of vertices already in the spanning tree is 
empty while the set, X ,  of vertices still to be examined equals 
V. Generation of the spanning tree is started by arbitrary 
selection of a vertex in X to become the root of the tree; this 
vertex is added to the matrix B and to the top of the pushdown 
list. The algorithm then iteratively processes all vertices in 
the pushdown list in the following manner: (1) Take the last 
vertex added to the list and successively locate each edge 
associated with it in matrix A .  If the list is empty, then stop; 
the spanning tree is complete, and a set of fundamental cycles 
have been found. (2) If such an edge is already in T, then 
it is a chord; backtrace the fundamental cycle in matrix B. 
Otherwise, add the edge to matrix B and associated vertex to 
set T. In either case remove the edge from X .  (3) When all 
edges associated with this particular vertex have been exam- 
ined, remove the vertex from X and the matrix A. Return to 
step 1. It is shown that taking the last element added to the 
list as the next vertex to be examined is simpler and faster than 
taking the first element; i.e., the depth-first approach to 
growing the spanning tree is more efficient than the 
breadth-first approach. 

A modification to Paton’s algorithm is given by Jovano- 
vich,S2 which makes it even more efficient by reducing the 
length of the working vector to less than the number of vertices 
in the graph. A similar matrix manipulation procedure that 
is more efficient than Paton’s original algorithm is given by 
Ito and K i z a ~ a . ~ ~  In this approach the Y X Y adjacency 
matrix A is complemented by a linear list of length V that 
contains each row index of A. Thus. all accesses to A are made 
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Gibbs was certainly correct is assuming that efficiency would 
improve by limiting the application of the algorithm to separate 
components or blocks. The use of blocks gives increasingly 
dramatic improvements as the complexity of the structures 
increases. The processing time decreases by several orders of 
magnitude for the most complex structures tested. 

After all cycles have been found for a block, an attempt is 
made to isolate the reduced basis set of cycles, as in Corey and 
Petersson’s algorithm. This is achieved by taking the ring sum 
of pairs of fundamental cycles already found and retaining the 
two smallest of each triplet in a set. This is repeated with all 
possible pairings until no further changes can be made to the 
set. It is stated that 

“A reduced basis is an attempt, not always a 
successful one, to find a basis set of rings which 
consists of the smallest rings that can form a basis 
set, sometimes called a ‘minimum covering set’.’’ 

Hence, as with Corey and Petersson, an SSSR is being sought. 
In addition to the reduced basis, any other “chemically 

interesting” cycles (Le., those with up to eight edges) are added 
from the set of all cycles found for each block. The definition 
of chemically interesting is application dependent and can be 
altered to choose any required set from the sets of all cycles. 

One of the closing comments is that 
“It would seem to be very inefficient to generate 

all rings and then select the desired rings from 
them, as opposed to only generating the desired 
rings, but owing to the speed of the set operations 
used this is not the case. The algorithm presented 
here is faster than any previously published al- 
gorithm for finding rings in chemical structures.” 

This comment evidently impresses Gray,* who devotes much 
of his review to discussing Wipke and Dyott’s method without 
mentioning other notable algorithms and in spite of the dif- 
ficulties in comparing efficiencies from data given with the 
various publications. 

More recently, Matyskas4 has applied Wipke and Dyott’s 
algorithm to a derivative of Balaban et al.3 homeomorphically 
reduced graph (see above). The resultant processing times 
are an improvement on both this and the HRG algorithm. 

Casteiger and JochumIo aim to find an SSSR from a 
spanning tree and associated fundamental set of cycles. They 
also give a concise and convincing argument for the use of an 
SSSR instead of finding all cycles or using heuristics and an 
interesting account of the nature of a ring set appropriate for 
synthesis planning. 

The algorithm is implemented in two stages. For stage 1, 
from an arbitrary starting atom, a spanning tree is grown in 
a breadth-first manner. The chords are stored and ordered 
according to their distance away from the root. From either 
end of each chord backtracking toward the root looking for 
the first common atom between the two paths ensures that the 
closest linking path is found. The fundamental set found is 
thus usually an SSSR. To cater for circumstances in which 
it is not, stage 2 is performed. The complexity, C, of the ring 
system is determined from 
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sum of the no. of ring vertices in the system 
sum of the no. of vertices in rings found so far 

C =  

If C I 1 .5, then the processing is terminated; otherwise, an- 
other root is chosen by using the following criteria: (1) It must 
be a member of a smallest cycle that does not contain any 
previous roots. If this is not possible, then arbitrarily choose 
one. (2) It must be the vertex with the greatest ring con- 
nectivity for the cycle from which it was chosen. The basic 
algorithm is then repeated for the new root, up to a maximum 
of three iterations. When all iterations are completed, an 
SSSR is selected from the accumulated ring set. 

The method is an attempt to derive an SSSR by direct 
production of a fundamental set containing as many smallest 
cycles as possible, in contrast to the reduced basis technique 
of Corey and Petersson and Wipke and Dyott. If this is not 
successful, then other fundamental sets are generated in the 
hope that any missing smallest cycles will be included in these 
other sets. The criteria used ensure that the new fundamental 
sets have the greatest chance of differing from previously 
derived sets, but the process does not unequivocally guarantee 
success. Furthermore, it is not explained why a complexity 
of 1.5 or more should indicate that a structure will have been 
adequately processed by stage 1. 

Sorkau7 presents a brief review paper plus a suggestion for 
extension of Gasteiger and Jochum’s ideas that gets around 
the problem of failures. The review is useful in that algorithms 
are categorized by whether they use backtracking (path 
tracing) or graph theory (spanning trees) rather than by the 
set of rings initially produced. However, no mention is made 
of the SSSR algorithms by Roos-Kozel and Jorgensen and 
Hendrickson et al. or the GREMAS approach of Fugmann 
et al. and Nickelsen. 

Sorkau concentrates on the perception of an SSSR and 
dismisses the algorithms of Plotkin and Zamora since they fail 
for certain complicated ring systems. Gasteiger and Jochum’s 
algorithm has similar failings, but certain improvements are 
suggested. First, the graph is reduced to its basic topological 
form by contracting vertices with a ring connectivity of less 
than 3. This basic graph provides the start atoms for growing 
trees from the original graph. Simultaneous with the tree 
building, the individual vertices of the tree are relabeled so 
that the shortest path between the start atom and neighboring 
vertices is always found (a method presumably obtained from 
WeiseS5). Once the spanning tree is complete, all branches 
from a chord are traced back, breadth-first, until the first 
common atom is encountered. The cycle, or cycles, closed at  
this point are “guaranteed” to be the smallest from that chord. 
This process is repeated with the remaining start atoms. 
Finally, the resultant list of cycles is sorted by size, and the 
first p linearly independent smallest cycles form the SSSR. 

This improved algorithm gets around the problems of se- 
lectively producing fundamental sets, but no mention is made 
of the possibility of there being several SSSRs. Sorkau states 
that the algorithm works on the two structures for which 
Zamora’s algorithm is known to fail and therefore is able to 
process relatively complex structures successfully. 

ALGORITHMS THAT FIND A SMALLEST SET OF 
SMALLEST RINGS DIRECTLY 

In most algorithms the amount of work is a function of the 
set of rings found. An SSSR is a particularly useful set of 
rings because it is a basis of known cardinality and comprises 
the smallest fundamental cycles. As a fundamental basis it 
is therefore the most useful for consistent characterization of 
a structure, and as a smallest basis it should make processing 
more rapid, especially if the set is then extended to include 
other cycles. However, in certain complex structures, with 
many heteroatoms or with many symmetrically equivalent 
rings, the consistency can break down since there may not be 
a unique SSSR. Nevertheless, the SSSR is regarded as ad- 
equate for most applications or can at least be used as an initial 
set on which to build a deeper ring analysis. 

P10tkins6 gives one of the first accounts of the theory behind 
the SSSR principle, to which the interested reader is referred. 
The algorithm outlined has been incorporated into the 
Chemical Information and Data System (CIDS) used by the 
U S .  Army. Its aim is to find all cycles with fewer than nine 
atoms or which are classed as X-rings.. X is the set of all 
possible SSSR rings and so gets around the problem of ar- 
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bitrary exclusions when an individual SSSR is considered. The 
algorithm starts by finding an SSSR and then extending the 
search. 

The initial SSSR is found by pruning the graph of all acyclic 
side chains. Ring perception is then based on Plotkin’s 
theorem: 

If P is an unforked path in a structure G and 
there is a shortest ring R through P such that IRI 
I 2)pJ, there is an SSSR of G that contains R and 
no other ring in which P occurs. 

Each edge of the structure is tested for a suitable unforked 
path P and ring R. The longest unforked path is determined, 
and paths are grown from one end. If the other end is not 
reached before the length equals P, then IR) > 2)PI. Once one 
or more suitable cycles are found, one is stored and the path 
P deleted from G. After the number of iterations has reached 
the nullity, no rings are left in G and an SSSR has been found. 
If the structure has no suitable P, then an edge is chosen to 
be temporarily deleted. This edge is chosen to lie within the 
largest smallest cycle already found. If no cycles have been 
found, an edge is chosen at random. Finding the SSSR is 
repeated with this edge removed. 
. To find all X-rings the following theorem is applied: 

Given an SSSR, if R, is the longest ring of the 
SSSR and P is an unforked path that is part of 
R,  but of no other ring of the SSSR, then the 
rings of class X that pass through P are the rings 
of length IR,) that pass through P.  These are the 
shortest rings through P. 

Hence a longest unforked path P (it may be a single edge) is 
found for the largest cycle in the SSSR. By the previous 
procedure all cycles of length lRml through P are added to X. 
P is deleted from G, and R, is deleted from the SSSR. After 
the nullity number of iterations, no cycles are left. 

Application of the two theorems is known to fail in certain 
examples where an edge is chosen for deletion but which still 
does not enable an SSSR to be found. 

BemohnS7 generates those cycles conforming to Corey and 
Petersson’s set of synthetically important rings, i.e., those cycles 
that have fewer than seven atoms or are not an envelope to 
other cycles. 

If the nullity is greater than 0 (indicating the presence of 
rings), the acyclic side chains are pruned from the connection 
table and ring perception proceeds as follows: 

(1) If p = 1, then the pruned structure is an isolated ring 
and processing can stop; otherwise, a start atom is arbitrarily 
chosen. 

( 2 )  All paths of length k are traced from the start atom 
(initially k = 3). If the path returns to the start atom, the 
cycle is checked and, if not already found, stored. If the cycle 
has been found previously and has a path length of more than 
six, then all paths starting with the new path sequence are 
deleted. If the path is of length less than 6,  then these paths 
are deleted only when they exceed a length of 6 .  Application 
of this limit ensures that once a smallest ring has been found 
only symmetrically equivalent rings or rings up to six atoms 
are traced from that start atom, thus eliminating larger en- 
velope rings. Path tracing continues until all possible paths 
have been eliminated by success (a new cycle) or failure (a 
previously discovered cycle is found, ring closure occurs at a 
vertex other than the start atom, or the path is eliminated to 
prevent envelope tracing). If a cycle is not found, k is in- 
cremented by one and step 2 is repeated; Le., this is a depth- 
first trace from each start atom. Step 2 terminates once a cycle 
is found. 

(3) A new start atom is selected and step 2 repeated. 
Iteration continues until no more start atoms are left or the 

nullity number of rings has been found. 
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Figure 6. 

This algorithm is incorporated within an unnamed organic 
synthesis program. No mention is made of the performance, 
and no indication is given as to whether it processes complex 
ring systems consistently. 

Esack5* presents an improvement to Bersohn’s algorithm 
for certain classes of structures. It imposes restrictions on the 
choice of start atom and the choice of which atom the path 
tracing continues along next. 

Taking Bersohn’s pruned structure, if the nullity is greater 
than 1, then all vertices with ring connectivities of more than 
2 (“multiconnected”) are listed as choices for start atoms; 
otherwise, the pruned structure is an isolated ring. If there 
is a vertex such that three or more of its neighbors have a 
connectivity of 3 or more, then Bersohn’s original algorithm 
is used. Such an Occurrence is characteristic of structures that 
this algorithm cannot successfully process due to their com- 
plexity. 

For instance, b a c k  cites the norbornane derivative in Figure 
6 as too complex due to the high connectivity of the vertices. 
Notice that the pruning will remove side chains but not the 
inter-ring system edges connecting the phenyl groups to the 
norbornane; Le., it does not isolate the cyclic blocks and will 
include the interblock edges in the ring-connectivity calculation. 

If the structure can be processed, then a start atom is taken 
from the list of multiconnected vertices. Tracing paths of 
length k starts along edges attached to doubly connected 
vertices not in a previously discovered ring. This ensures each 
ring is only found once. If all edges lead to vertices in known 
rings, then the next start atom is chosen. 

Once all start atoms have been tried, then the resultant rings 
are examined for the presence of overlapping rings. If all edges 
occurring in more than one ring have multiconnected vertices 
at  both ends, then the algorithm terminates, otherwise Ber- 
sohn’s original algorithm has to be implemented. For instance, 
in norbornane these steps will have found only the two five- 
edged rings and not the synthetically important six-edged ring. 
The original algorithm has to be used to find the missing ring. 

The level of complexity at  which this algorithm fails and 
has to call Bersohn’s original algorithm is very low. It is 
recognized that spiro-fused and bridged systems must still go 
through Bersohn’s original algorithm. b a c k  gives the example 
in Figure 2 as one that could be processed correctly, but instead 
the ring-connectivity criteria used lead to Bersohn’s algorithm 
being called. These are severe limitations and as such give 
little improvement on the original. The situation might be 
better if the blocks were isolated and processed separately. The 
algorithm does attempt to order the processing rather like the 
selection of highest connectivity atoms in Zamora’s algorithm 
(see below), but is not nearly so generally applicable or ef- 
fective. 

Zamora13 starts from basic principles and returns to the 
simplest of ideas, namely, that of choosing a start atom and 
path tracing from that atom until the desired ring is found. 
Although a depth-first trace is used in the original algorithm, 
Zamora makes it clear that a breadth-first trace would be 
equally amenable to programming and would ensure finding 
the smallest cycle, or cycles, first. 

Zamora’s algorithm uses several criteria to control the path 
tracing to make it more efficient and for performing elemental 
ring analysis during processing to enable selection between 
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Figure 7. 

(iil I iii) 

Figure 8. 

symmetrically equivalent rings. 
The basic principle on which the algorithm works is that 

there occur three classes of ring system with respect to their 
SSSR: 

Type I. No subset of the smallest cycles contains all vertices 
of the ring system, as shown by Figure 7i. 

Type 11. All vertices but not all edges are contained by a 
subset of the smallest cycles, as in Figure 7ii. 

Type III. All vertices and all edges are contained by a subset 
of the smallest cycles, as in Figure 7iii. 

This categorization is reflected in the three phases of Za- 
mora’s algorithm: 

Phase 1, To Include All Vertices in the Ring Set. Initialize 
all atom-used and bond-used values associated with the vertices 
and edges to 0, to denote them as unused. Starting from an 
unused vertex of highest ring connectivity, the start atom, trace 
the smallest ring associated with that vertex. This is made 
more efficient by setting an upper limit to the length of the 
path trace equal to the size of the smallest ring found so far 
for that vertex (initially set to the number of vertices in the 
whole structure). For all vertices and edges in the smallest 
ring increment their atom-used and bond-used values, re- 
spectively, and store the ring. If there is a choice between 
smallest rings, then apply heuristics based on the numbers of 
used vertices, used edges, heteroatoms, and the connectivity 
sum to select just one of them. Continue until all vertices have 
nonzero atom-used values. Check the number of cycles found; 
if it equals the nullity, then terminate; otherwise, continue. 

Phase 2, To Include All Edges in the Ring Set. If there are 
any unused edges left (Le., with bond-used values of 0), then 
similarly trace the smallest ring associated with each of these 
edges and terminate if the nullity is reached. 

Phase 3, To Include AU Faces in the Ring Set. If there are 
any unfound faces, then trace these faces by following paths 
with all bond-used values equal to 1 (the bond-used limit), or 
at  most one bond-used value of more than 1, and with all 
vertices with a ring connectivity greater than 2 .  

The faces traced in phase 3 are restrictively defined in terms 
of their ring connectivity and bond-used values. These refer 
only to limited cases; the narrow definition of “face” does not 
provide a general solution and leads to several failures, of which 
Zamora gives two examples. 

In a discussion of cycle bases, Cribb, Ringeisen, and Shiers9 
present a theorem that the innermost cycle basis (Le., the finite 
regions) of the structure in Figure 8 cannot be derived from 
any spanning tree. This derives from work by people such as 
Syslo and Deo et al. (see later) and neatly explains those 
situations in which it is necessary for Zamora’s algorithm to 
go to phase 3. Unfortunately, although the authors have 
considered many theoretical aspects to help develop an al- 
gorithm to find the minimum cycle basis (Le., an SSSR), they 

seem unaware of the wealth of research that already exists in 
this direction, in particular with respect to many of the al- 
gorithms in this review. 

Schmidt and Fleischhauer60 find rings from an adjacency 
matrix by an unusual first stage that uses algorithms designed 
for oriented graphs to detect cyclic vertices. The algorithm 
is designed to give better performance compared with Ber- 
sohn’s algorithm by subjecting only small parts of the graph 
to costly path tracing. 

The first stage is to construct an oriented adjacency matrix 
from the original graph, as detailed in their paper. From this 
oriented matrix, Warshall’s algorithm6’ can be used to produce 
the corresponding path matrix. The diagonals of this matrix 
give those vertices that are part of a cycle and their connec- 
tivities. 

For the second stage, vertices with a ring connectivity of 
more than two are stored in a 5 X Vmatrix along with their 
neighbors. A start node is selected from this matrix, and one 
of its edges is cut. The shortest paths are then traced by 
growing a tree from this start node to find the smallest ring. 
If there is more than one shortest path, then one is arbitrarily 
chosen. Nodes present in the smallest ring are set to zero in 
the matrix. This is continued until all entries of the matrix 
are zero, except for the first row. 

The algorithm is known to fail for embedded rings sur- 
rounded by smaller rings. For instance, the nullity for the ring 
system in Figure 7iii is five, but only the four three-edged rings 
will be traced. 

Roos-Kozel and Jorgensen’ utilize the fundamental atom 
and bond sets derived from the connection table used in the 
CAMEO organic reaction system, as previously described by 
Salatin and Jorgensen.62 The aim is to generate an SSSR and 
any symmetrically equivalent rings (Le., Plotkin’s set of X- 
rings). 

As with many of the fundamental basis algorithms already 
described, tracing of cycles occurs during spanning-tree pro- 
duction. If one spanning tree does not yield the nullity number 
of rings, then another tree is grown; this situation may arise 
due to the restrictions imposed on the path tracing. Th,e 
algorithm has three stages: (1) All acyclic side chains are 
pruned. ( 2 )  The vertex of highest connectivity is selected as 
start atom, unless it is already in two or more known cycles 
and other unused vertices are available. Iterations are con- 
tinued until the nullity number of rings has been reached and 
all atoms are included in the ring set or until there are no more 
suitable start atoms left. (3) From each start atom a tree is 
grown, breadth-first, until a cycle is formed or the path 
branches. Tracing stops at this point to avoid finding an 
envelope ring. 

Any cycles found are checked for duplication and stored if 
new. Stopping at a branch point has the unfortunate conse- 
quence of ensuring that embedded rings cannot be found (i.e., 
Zamora’s type I11 rings). To overcome this, if the number 
of paths from the start atom, divided by 2 and incremented 
by 1, is greater than the number of cycles found from that start 
atom, then an embedded ring is sought! 

If all the start atoms have been used but the nullity number 
of rings has not been reached and there are still vertices not 
present in the ring set, then separate procedures are called to 
check for asteranes, cyclophanes, or porphyrins (which are the 
classes known to fail at this point). These procedures rely on 
the observation that if two cycles have been found and four 
start atoms are present, then it is a potential cyclophane, while 
more than four start atoms indicates an asterane and more 
than two cycles indicates a porphyrin. 

It is immediately obvious that stopping path tracing at stage 
3, when a branch is encountered, leads to a host of problems 
that require several additional subprograms to solve. It is not 
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evident whether all possible circumstances are catered for even 
after all this laborious additional processing. It would seem 
more sensible to extend the capabilities of the original path 
tracing rather than rely on further levels of processing. 
Deo, Prabhu, and Krishnarno~rthy~~ show that the problem 

of finding the “minimum-length fundamental cycle” set (i.e., 
an SSSR) as efficiently as possible is the same as finding the 
associated shortest total path length spanning tree. They then 
prove that to find such a spanning tree is NP-complete, and 
so it is necessary to use heuristics to achieve a sub-optimal 
solution. 

This proof concludes a long line of research started originally 
by StepanecM and Zykov.65 The research led by Syslo over 
many years6Mg covered much of the theory involved, showed 
the limitations to the Stepanec-Zykov algorithm, and led to 
the proposal of the Hubicka-Syslo algorithm. K o l a ~ i n s k a ~ ~  
has described both these algorithms in terms of matroids and 
by so doing has revealed problems in the Hubicka-Syslo ap- 
proach. The paper by Kolasinska gradually comes to the 
conclusion that only a suboptimal solution is feasible. 

Deo et al. start with a proof of this assertion before moving 
on to consider the efficiency of generating the spanning tree 
from which an SSSR is generated, a matter not considered 
elsewhere. In common with many other NP-complete graph 
theoretic algorithms, the approach to generation of the 
spanning tree can be classified as depth-first, breadth-first, 
or mixed search (see Tarjan7* and Deo7*). They state that the 
depth-first method, such as that of Tarjan (and the approach 
used in many algorithms in this review), will inevitably produce 
a spanning tree that generates very long fundamental cycles. 
Paton’s mixed-search method is reckoned to be better on av- 
erage, but can still produce unacceptable worst cases. Since 
the breadth-first approach usually produces short-diameter 
spanning trees, it is more likely to produce the smallest fun- 
damental cycles. Deo et al. suggest and test four different 
heuristics to make the breadth-first search more efficient. The 
four heuristic approaches are the static degree sort, the dy- 
namic degree selection, the unexplored edges, and the mul- 
tipoint breadth-first search (the term degree is equivalent to 
the term connectivity used in this review). 

In the static degree sort, the adjacency matrix is reordered 
in descending order of the connectivities of the corresponding 
vertices. The spanning tree is then generated in the normal 
breadth-first fashion, starting with vertex 1, the highest con- 
nectivity vertex. For the next vertex, the highest connectivity 
vertex from the successors of the oldest vertex is chosen, which 
is not necessarily the highest connectivity vertex in the partial 
tree. 

The dynamic degree selection method differs in that the next 
vertex is taken from the highest connectivity vertex already 
in the partial tree. 

For the unexplored edges approach, as each vertex is chosen, 
its connectivity is decremented by 1 so that when the next 
vertex is chosen, it is taken from the vertex of highest unex- 
plored edge connectivity in the partial tree. 

The opposite approach to these three is the multipoint 
breadth-first search in which exploration proceeds from the 
vertex of highest connectivity irrespective of whether it is 
already in the partial tree. This produces a forest of subtrees. 
If both vertices associated with a new edge belong to the same 
tree, then that edge is a chord; otherwise, the edge is a tree 
edge, and the two subtrees are merged. The edges are chosen 
with those with the highest sum of the incident vertex con- 
nectivities first. 

The performance of each of these approaches is analyzed 
in detail and the conclusion reached that the static degree 
search and multipoint breadth-first search are the best to use. 

2 1 0 c 0 1 2  1 
3 1 ~ 0 0 0  1 1  
4 1 0 0 0 c  1 1  
5 0 1 O c O  1 1  
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Figure 9. 

In contrast to such attempts to generate a spanning tree with 
a short fundamental set of cycles, H ~ r t o n ~ ~  has recently pro- 
posed the first polynomial-time algorithm for generating the 
shortest cycle basis for two-connected graphs. Unfortunately, 
on average it is much slower than the other algorithms men- 
tioned in this category. In conclusion, Horton suggests that 
further research is necessary to integrate the various ap- 
proaches to obtain greater efficiency. 

Hendrickson, Crier, and T o c ~ k o ~ ~  use a method based on 
work from a previous paper by Hendrickson and Toczko which 
showed that any graph can be uniquely numbered by creating 
its maximal adjacency matrix.75 In the later paper reviewed 
here they state 

“This maximal matrix is created by assigning 
numbers to the atoms, or graph points, in such a 
way that each row in the matrix, considered as a 
binary number, must be the maximum possible 
number .” 

The result is a symmetric V X I/ matrix, usually with the 1’s 
as far up to the left as possible, leaving the upper right and 
bottom left areas as 0’s. This not only enables the repre- 
sentation to be stored efficiently but also allows an SSSR to 
be found easily and rapidly. 

The maximal matrix corresponds to the maximal spanning 
tree for the structure, plus its chords if it is cyclic. The con- 
nectivity for each vertex of the spanning tree and for each 
chord is given in the so-called T and R lists. From these lists 
the complete matrix can be reconstructed. These lists are 
therefore a very compact structure representation. The 
structure in Figure 9, for instance, gives the matrix 
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Figure m-m 10. 

Such pruning often exposes previously hidden edges that can 
then be used to find the embedded rings. 

This process is known to fail for such structures as cubane 
and dodecahedrane, for which the full range of ring sum 
combinations is required. 

Elk,76 in contrast, does not present an algorithm for finding 
an SSSR, but expounds a technique for drawing a structure 
such that all SSSR rings are included within the perimeter 
ring that, in bridged polycyclic structures, is usually non-SSSR. 
(In two further papers he investigates the theoretical basis on 
which ring perception for taxonomic purposes should be 

He reiterates that Euler’s formula refers to a spherical 
projection while a planar (Schlegel) projection moves exactly 
one of the faces to the outer perimeter of the whole structure; 
hence, the nullity (determined by the Cauchy formula) is 1 
less than Euler’s polyhedral formula. 

Elk then proceeds to give an alternative to the Cauchy 
formula for determining the nullity. This relies on the concept 
of “incidence excess”, a function of the number of vertices with 
ring connectivities (incidences) greater than 2. The number 
of rings is calculated as 1 plus half the incidence excess, i.e. 

p = 1 + XC(i, - 2) 

where p is the nullity, is the sum over all vertices u,  and 
i, is the ring connectivity of each vertex u. 

In terms of visual inspection to determine an SSSR, Elk 
shows that if the largest ring of a planar projection is larger 
than the perimeter ring, then there exists a different planar 
projection in which the largest ring is the perimeter ring, as 
shown in Figure 10. 

The underlying logic of the Schlegel projection is considered 
and produces the following theorem: If the largest ring il- 
lustrated in a connected set of rings is bigger than the boundary 
ring, the Schlegel projection chosen does not yield the SSSR. 
The aim is to produce the maximal Schlegel projection to 
ensure that, for visual inspection at least, there is no ambiguity 
in determining ring sizes for an SSSR. However, where there 
are several largest rings leading to one becoming the boundary 
ring, the ambiguity with respect to the choice of rings remains. 

Although this paper raises some very important topological 
points related to projection and the SSSR, the idea of ma- 
nipulating a structure to obtain its maximal Schlegel projection 
seems to have little practical value for trying to find an SSSR 
automatically. By virtue of the nature of the processing, 
algorithms such as Zamora’s will usually find the maximal 
projection SSSR rings by default, without any active manip- 
ulation of the structure input. However, these ideas could be 
important in the display of structures and could be used in 
algorithms similar to that of Shelley. 

CHOOSING A RING SET 

This review has shown that many algorithms have been 
devised and implemented in an attempt to achieve a variety 
of ring sets. It can be shown quite readily that each of these 
approaches has its disadvantages or failures, some more major 
than others, in terms of the efficiency of the algorithm or of 
the ring set obtained. As a quick summary, Table I1 shows 
that when the categories in this review are used, four initial 
ring sets give rise to nine final ring sets. 

In addition to presenting the algorithms, it is also desirable 
to review the ring sets produced by them, in particular with 
respect to obtaining some idea of the “optimum” ring set for 
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Table 11. Summary of Rina Set Categories” 
initial ring set 

All simple-cycles-P-rings 

final ring set 

Essential Set of Essential Rings 

(Set of K-rings?) 

Real rings (maximum proper covering set)[*] 

Fundamental-rings 

Fundamental basis-Fundamental basis 

Supplemented Smallest Set of Smallest Rings [*I 

Set of K-rings 

Smallest Set of Smalleat Rings 

All cycles 

Smallest Rings 

“Theasterisk indicates that heuristics were used to supplement the 
ring set. 

Figure 11. 

representing structures for retrieval. The main problem is one 
of including only the necessary number of rings that is suf- 
ficient to describe ring systems. For instance, Elk77 considers 
the definition of a face of a structure and uses cubane to 
illustrate his points. Viewing cubane as a polyhedron, one can 
identify 6 “simple” faces (four-edged), 12 “double” faces 
(six-edged), 20 ”triple” faces (eight-edged and six-edged), 15 
“quadruple” faces (eight-edged and six-edged), 6 “quintuple” 
faces (four-edged), and 1 “sextuple” face (the entire cube). 
It can be seen that the simple and quintuple faces share a 
common contour, as do the six-edged double and quadruple 
faces, the simple and eight-edged quadruple faces, and half 
of the triple faces with the other half. Thus, each edge is 
represented as having effectively two sides. By counting those 
faces sharing a common contour only, one is left with 28 faces 
in cubane. Although these are definitely sufficient to describe 
cubane, they are far more than is strictly necessary for most 
purposes. Elk observes that to define completely the topology 
of cubane it is necessary only to include four of the simple 
faces, chosen so that they cover all vertices and edges. How- 
ever, since the nullity for cubane is 5 ,  most systems regard 
cubane as having five such rings due to their reliance on a 
fundamental basis or an SSSR. This requires either the ar- 
bitrary addition of one simple face to the set of four already 
chosen or the arbitrary exclusion of one simple face from the 
set of all six simple faces. However, if one considers the 
heteroatom analogue of cubane given in Figure 11, choosing 
four or five of the simple faces will not sufficiently describe 
it. If the infinite region is excluded, the set of four simple faces 
would all contain one phosphorus atom, while the SSSR would 
also contain the all-carbon simple face. Neither of these would 
contain the simple face with two phosphorus atoms. It is 
obvious that such a situation could lead to identical structures 
producing different ring analyses and hence a loss of recall. 
These problems are particularly acute for highly symmetric 
or complex structures. If any multiple faces are added, then 
no more discrimination is achieved; the only effect is to reduce 
the precision by the inclusion of unnecessary rings. 
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of X-rings. The minimum spanning set and the minimum 
covering set are other names used for the SSSR and have been 
supplemented by the inclusion of all rings up to and including 
seven and eight vertices, respectively. These heuristic selection 
criteria are intended to reflect the essential features of a ring 
system for synthesis planning. For retrieval purposes, the 
inclusion of these rings permits certain multiple faces to join 
the set. Cubane, for instance, would be regarded as having 
16 six-edged rings in addition to the 6 four-edged rings, while 
inclusion of eight-edged rings will add another 6 rings.1° Such 
an unnecessary situation can significantly decrease the pre- 
cision. 

8-Rings. This set may be inconsistent for subgraph iso- 
morphism, and so 100% recall is not guaranteed. Precision 
is relatively high, and the ring set is invariant. However, it 
is not readily amenable to manual analysis, especially not when 
extension to structurally explicit generics is considered. It relies 
upon generating the set of all simple cycles first, which has 
severe consequences with respect to cycle generation limits and 
subsequent elimination of nonrelevant simple cycles. Due to 
its reliance upon taking all linear combinations of cycle vectors, 
it would need a “whole structure” approach, making deter- 
mination of logical relationships very difficult. Trying to take 
linear combinations across the whole spectrum of partial 
structures could result in rings classified as O-rings at a lower 
partial structure ceasing to be 8-rings at a higher level. Sim- 
ilarly, in substructure searching, the query may contain a ring 
that is not the linear combination of three or more smaller 
O-rings, but which in the file structure is such a combination 
and hence not a O-ring. In these cases, the substructure will 
fail to retrieve the relevant file structure, leading to a loss of 
recall. 

Essential Set of Essential Rings. In a similar manner to the 
set of O-rings, this ring set is selected from the set of all cycles 
and so there is a problem with limiting the production of cycles 
in complex ring systems. From the set of all cycles, the set 
of simple cycles is chosen, to which a series of complex rules 
are applied to enable elimination of the non-ESER cycles. As 
with the above, these rules can make manual analysis difficult 
and introduce the problem of inconsistent substructure han- 
dling. In this case, the inclusion of cycles in the set is affected 
by the atom types present in the ring system. If only part of 
the ring system is described, as in a substructure query, then 
there is a possibility of retrieval failure. 

Hence, for cubane, each simple face is necessary, but not 
sufficient. Including all simple faces achieves sufficiency with 
the minimum of necessary rings. The inclusion of multiple 
faces is not necessary. For cubane, the optimum ring set is 
realized by inclusion of all simple faces, i.e. all regions, finite 
and infinite, of the maximal Schlegel projection. 

For the demanding retrieval requirements and perception 
environment presented by the structurally explicit parts of 
generics, the following broad criteria have been used to define 
the general optimum ring set: 

100% recall 
high precision 
invariant set 
concept amenable to manual analysis and assignment 
consistent handling of graph and subgraph isomor- 
phism (full and substructure searching) 

extendable to structurally explicit parts of generics (and 
potentially infinite graphs) in such a way as to be 
orientation and partition independent and have limits 
on cycle generation. 

The list of final ring sets can now be considered in terms 
of this list of requirements (the fundamental ring set is omitted 
since it has been superseded by the &ring set). 

The Set of All Cycles and the Set of All Simple Cycles. 
These guarantee 100% recall, but in large and complex 
structures there will be an overgeneration of rings to give far 
more than are necessary, with resultant high processing costs 
and low precision for substructure search. The ring sets are 
invariant, but can be too large for manual analysis. They are 
consistent for isomorphism and can be extended to structurally 
explicit generics, but with consequently severe processing 
overheads compounding the low precision encountered with 
specifics. All current retrieval systems regard these ring sets 
as impractical, with the primary use being as the initial ring 
set from which a more practical subset can be chosen. 

Fundamental Basis Sets. These can give less than 100% 
recall due to a variant ring set. Obviously, the rings generated 
are dependent upon such things as the tree or matrix used so 
that similar or identical query and file structures may produce 
a wide range of different fundamental sets. This has unpre- 
dictable effects upon both recall and precision, making manual 
analysis difficult and extension into structurally explicit gen- 
erics fraught with problems. However, due to their ease of 
generation, they are generally used as a basis for refinement 
of the ring set to an SSSR or a heuristically supplemented set. 

Smallest Set of Smallest Rings and the Set of X-Rings. 
Although the SSSR provides a more refined fundamental 
basis, it still suffers from being a variant ring set and so cannot 
guarantee 100% recall. An SSSR is thus not consistent for 
isomorphism, as has been shown already by the cubane ana- 
logue in Figure l l .  The set of X-rings, being the union of 
all SSSRs, overcomes this variance. Both these sets have a 
lack of precision in complex ring systems, but are easy to 
generate and can readily be implemented for structurally 
explicit generics. The set of X-rings is easy to analyze 
manually and is particularly suitable for extension into 
structurally explicit generics. These sets form the basis for 
most implemented systems, with a few using additional heu- 
ristic supplements. 

The maximum 
proper covering set assumes that all cycles have already been 
found, from which a selection can be made. Several limitations 
of this set have already been given. The classification of rings 
as being either real or pseudo results in the anomaly of the 
infinite region of cubane being pseudo, while the infinite region 
of norbornane is real. This does not even have the predicta- 
bility of the arbitrary exclusions of the SSSR or the omission 
of nonsymmetrically equivalent infinite regions from the set 

Heuristically Supplemented Ring Sets. 

CONCLUSIONS 

In terms of specific structure systems it does not matter 
particularly which ring set is used for full structure retrieval, 
so long as the ring set obtained is consistent. The governing 
factor becomes the ease of representation of the chosen ring 
set and the retrieval performance obtained from this repre- 
sentation. Unfortunately, many of the algorithms reviewed 
fail for the more complex ring systems, and so consistency of 
ring set perception is not maintained. Of the ring sets reviewed, 
the set of X-rings seems the most appropriate minimum re- 
quirement, but Plotkin’s algorithm to find this set has known 
limitations. 

For substructure retrieval of specific structures, the only ring 
set fulfilling the criteria for subgraph isomorphism is the set 
of all simple cycles. However, perception of this set is time- 
consuming for complex ring systems, and the size of the set 
makes it difficult to represent concisely. Furthermore, the 
precision of the retrieval is likely to be low, especially if the 
end-user does not expect a six-membered ring to retrieve cu- 
bane, for instance! The minimum requirement is, once again, 
the set of X-rings. 

The general conclusion is that none of the ring sets suggested 
so far are ideal for specific structure systems and that most 
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of the algorithms have their problems. It is necessary therefore 
to consider the theoretical basis of ring perception further, to 
obtain a better solution that is applicable to specific and generic 
environments. This is the topic of the following paper.2 
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There are many unresolved issues concerning the definition of an optimum ring set for retrieval 
purposes. This paper considers the problems associated with processing planar (two-dimensional) 
representations of three-dimensional structures. To overcome the ambiguity of such representations, 
a new ring set is defined in terms of simple faces and cut faces. The concept of a cut-vertex 
graph is introduced to explain the combinatorial relationship between the number of simple faces 
and the number of planar embedments. 

INTRODUCTION 
The previous paper’ reviewed algorithms and ring sets de- 

vised to represent and handle chemical structures and reached 
the conclusion that none of them presents an ideal solution 
even for specific structures. It is interesting to note that many 
of the methods developed have resorted to the use of heuristics, 
indicative of an underlying and hitherto unresolved problem. 

The work on ring perception reported in this series of papers 
has concentrated on providing a solution for generic environ- 
ments, of which the specific environment is a special case. In 
particular, it has concentrated on extension of ring perception 
capabilities into structurally explicit generics, Le., those de- 
scribed in full structural detail represented by partial con- 
nection tables. To provide a general solution, it has been 
necessary to consider the theoretical basis of ring perception 
in greater detail. Due to the lack of suitable formalisms for 
the description of generalized ring systems as a whole, it has 
been necessary to consider individual cases and extrapolate 
to reveal the underlying theory necessary to support such 
formalisms. This paper presents the conclusions of these 
considerations, which are reported more fully in reference 2. 
The task has not proved trivial, but as Elk3 states 

“What is important is the recognition of the 
problem rather than an attempt to ‘paper over’ the 
inconsistencies. Ad hoc solutions would never 
have been selected in the past if a ‘simple’, 
‘obvious’ solution existed.” 

As shown in the preceeding review paper,’ Zamora4 has 
achieved a certain degree of generalization by defining three 
distinct classes of ring system in terms of overlap within the 
vertex and edge sets of the smallest set of smallest rings 
(SSSR). Methods that reduce a graph to its basic form, such 
as those of Lederberg,5 Carhart,6 Sridharan,’ and Balabans 
similarly go only part way to providing a generalization and 
do not help particularly in making a solution any easier. 

Analyses of the distribution and type of ring systems within 
specific structure databases, by Adamson et al.:alo have shown 

that most Occurrences are of very simple systems. The more 
recent studies of the project’s database of structurally explicit 
generics, by Mawby” and Kirk,’* show similar results. 
However, ring perception techniques have to cater for the worst 
possible cases of complex systems, and they are judged by their 
handling of these cases. The review paper has shown that 
current techniques have difficulty with the more complex cases, 
and many instances of failure have been mentioned. Before 
extension to the complexity of variation allowed in structurally 
explicit generics, it seemed sensible first to develop a sound 
perception technique that would process the worst-case spe- 
cifics, rather than build on the recognized limitations of current 
specific techniques. It should be noted, therefore, that most 
of the circumstances considered in this research are extreme 
cases and are not necessarily representative to the types of ring 
system commonly encountered. Most ring systems in specific 
structures are simple to process and do not cause problems for 
other techniques nor for the extended set of smallest rings 
(ESSR) concept presented here. 

ASPECTS OF GRAPH THEORY 

This paper assumes an elementary knowledge of graph 
theory; further explanation, clarification, and definition of the 
concepts outlined below are given in the many general 
treatments and introductions to the subject, such as those by 
Behzad and Chartrand,13J4 Berg,I5 and Mayeda,16 and the 
classic work by Harary.” More applied works include those 
by Marshall18 and Bandy and MurtyI9 and the excellent 
presentation by Deo.Zo A few texts deal specifically with 
chemical applications, including those by Balaban2’ and the 
highly recommended two-volume work by TrinajstiE.22 This 
paper also uses the terms and definitions given in the review 
paper’ such as component, block, simple cycle, fundamental 
basis, X-ring and 8-ring. 

The long-recognized correspondence of the atoms and bonds 
of a chemical structure diagram to the vertices and edges of 
a graph allows graph theory to be used to represent, manip- 
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