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There are many unresolved issues concerning the definition of an optimum ring set for retrieval 
purposes. This paper considers the problems associated with processing planar (two-dimensional) 
representations of three-dimensional structures. To overcome the ambiguity of such representations, 
a new ring set is defined in terms of simple faces and cut faces. The concept of a cut-vertex 
graph is introduced to explain the combinatorial relationship between the number of simple faces 
and the number of planar embedments. 

INTRODUCTION 
The previous paper’ reviewed algorithms and ring sets de- 

vised to represent and handle chemical structures and reached 
the conclusion that none of them presents an ideal solution 
even for specific structures. It is interesting to note that many 
of the methods developed have resorted to the use of heuristics, 
indicative of an underlying and hitherto unresolved problem. 

The work on ring perception reported in this series of papers 
has concentrated on providing a solution for generic environ- 
ments, of which the specific environment is a special case. In 
particular, it has concentrated on extension of ring perception 
capabilities into structurally explicit generics, Le., those de- 
scribed in full structural detail represented by partial con- 
nection tables. To provide a general solution, it has been 
necessary to consider the theoretical basis of ring perception 
in greater detail. Due to the lack of suitable formalisms for 
the description of generalized ring systems as a whole, it has 
been necessary to consider individual cases and extrapolate 
to reveal the underlying theory necessary to support such 
formalisms. This paper presents the conclusions of these 
considerations, which are reported more fully in reference 2. 
The task has not proved trivial, but as Elk3 states 

“What is important is the recognition of the 
problem rather than an attempt to ‘paper over’ the 
inconsistencies. Ad hoc solutions would never 
have been selected in the past if a ‘simple’, 
‘obvious’ solution existed.” 

As shown in the preceeding review paper,’ Zamora4 has 
achieved a certain degree of generalization by defining three 
distinct classes of ring system in terms of overlap within the 
vertex and edge sets of the smallest set of smallest rings 
(SSSR). Methods that reduce a graph to its basic form, such 
as those of Lederberg,5 Carhart,6 Sridharan,’ and Balabans 
similarly go only part way to providing a generalization and 
do not help particularly in making a solution any easier. 

Analyses of the distribution and type of ring systems within 
specific structure databases, by Adamson et al.:alo have shown 

that most Occurrences are of very simple systems. The more 
recent studies of the project’s database of structurally explicit 
generics, by Mawby” and Kirk,’* show similar results. 
However, ring perception techniques have to cater for the worst 
possible cases of complex systems, and they are judged by their 
handling of these cases. The review paper has shown that 
current techniques have difficulty with the more complex cases, 
and many instances of failure have been mentioned. Before 
extension to the complexity of variation allowed in structurally 
explicit generics, it seemed sensible first to develop a sound 
perception technique that would process the worst-case spe- 
cifics, rather than build on the recognized limitations of current 
specific techniques. It should be noted, therefore, that most 
of the circumstances considered in this research are extreme 
cases and are not necessarily representative to the types of ring 
system commonly encountered. Most ring systems in specific 
structures are simple to process and do not cause problems for 
other techniques nor for the extended set of smallest rings 
(ESSR) concept presented here. 

ASPECTS OF GRAPH THEORY 

This paper assumes an elementary knowledge of graph 
theory; further explanation, clarification, and definition of the 
concepts outlined below are given in the many general 
treatments and introductions to the subject, such as those by 
Behzad and Chartrand,13J4 Berg,I5 and Mayeda,16 and the 
classic work by Harary.” More applied works include those 
by Marshall18 and Bandy and MurtyI9 and the excellent 
presentation by Deo.Zo A few texts deal specifically with 
chemical applications, including those by Balaban2’ and the 
highly recommended two-volume work by TrinajstiE.22 This 
paper also uses the terms and definitions given in the review 
paper’ such as component, block, simple cycle, fundamental 
basis, X-ring and 8-ring. 

The long-recognized correspondence of the atoms and bonds 
of a chemical structure diagram to the vertices and edges of 
a graph allows graph theory to be used to represent, manip- 
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ulate, and analyze chemical structures. These graphs are 
unoriented and without self-loops or multiple edges. 

It is evident that visual inspection to determine the rings 
in a structure depends upon the way a three-dimensional 
chemical structure is projected onto a two-dimensional plane. 
This has major implications for defining a ring set and stems 
from the problems caused by moving down a dimension. The 
process of mapping n dimensions to n - 1 dimensions is referred 
to as embedment. If the graph representation of a three-di- 
mensional structure can be embedded in a plane such that no 
two edges intersect other than at a vertex, then the graph is 
said to be a topological planar graph, G. Such a planar graph 
divides the plane into regions. A region is characterized by 
the set of edges, e,  and vertices, u, forming its boundary and 
is not defined in a nonplanar graph, or even in a planar graph 
not embedded in a plane (Le., it is a property of a particular 
plane representation of a graph). Any two points in the region 
can be connected by a continuous curve that meets no vertices 
or edges. A region of a planar graph corresponds to a face 
of the equivalent three-dimensional structure. The boundary 
of a region is the set of all edges that touch that region. The 
contour of a region is defined as the cycle formed with the 
edges of the boundary of the region that contains the region 
as its interior. 

From Jordan’s curve theorem (after Jordanz3) it can be 
shown that embedment in a plane results in exactly one un- 
bounded region, otherwise called the infinite region, which has 
no contour. All other regions are bounded, have exactly one 
contour, and are called finite regions. The contours of the 
different finite regions constitute a cycle basis (Le., the min- 
imum number of linearly independent cycles covering all 
vertices and edges) with their number (the nullity, p)  predicted 
by the Cauchy formula, p = e - u + 1 (after Cauchy24). Note 
that for a simple polyhedron the total number of regions or 
faces,f, including the infinite region or face, is given by Euler’s 
polyhedral formula, u - e + f =  2 (after E ~ l e r ~ ~ ) ,  Le., one more 
than the Cauchy formula. 

A planar graph may be embedded in a plane to produce a 
Schlegel diagram (after Schlege126), such that any region of 
specified edges can be made into the infinite region. Obtaining 
some degree of uniformity by embedding so that the infinite 
region is as large as possible (the maximal Schlegel projection) 
is a task much discussed by Elk.27 

It is often easier to envisage embedment upon a sphere to 
understand the topological significance of the infinite region. 
A graph can be embedded in the surface of a sphere if and 
only if it can be embedded in a plane, and so the two repre- 
sentations are directly comparable. In terms of regions on the 
sphere, it is immediately obvious that there is no real difference 
between finite regions and the infinite region. A plane may 
thus be regarded as the surface of a sphere of infinitely large 
radius. If it is not readily obvious whether or not a structure 
can be embedded on the surface of a sphere, imagine an elastic 
model of the structure with a deflated balloon in the center. 
Inflate the balloon and the polyhedron will gradually flatten 
and stretch onto the outer surface of the balloon. This process 
flattens out any surface irregularities of the original three- 
dimensional model; Le., it reduces any inherent three-dimen- 
sionality to two dimensions by turning any nonconvex areas 
to convex. 

If the spherical representations of two projections of a planar 
graph are rotated and, if necessary, the regions distorted 
without letting a vertex cross an edge, then they may become 
identical. If such manipulation shows all possible projections 
to be identical, then that graph has a unique embedding in a 
plane or sphere. For instance, the projections i and ii of Figure 
1 are of the same graph but rotation will not make them 
coincide. The first projection has no regions bounded by five 
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edges, whereas the second projection has the infinite region 
bounded by five edges. This structure thus has two possible 
embedments, corresponding to two distinct three-dimensional 
structures with different faces. 

Topological transformation therefore involves a “rubber 
sheet geometry” approach, as described by Courant and 
Robbins:8 whereby all projections of the same embedment can 
be transformed into one another by simple deformation, 
whereas transformation to a projection of a different embed- 
ment requires cutting or tearing followed by repair. 

When there is no unique embedding, the problem of ring 
perception can become acute, especially for the definition of 
a particular ring set. This potential for topological ambiguity 
has not been appreciated in many of the ring perception 
techniques advocated. 

Although a planar graph may have different embedments, 
each with many different projections, the number of regions 
(finite and infinite) resulting from each projection of each 
embedment is the same and is given by Euler’s polyhedral 
formula. Furthermore, in any simple, connected planar graph 
withfregions and more than two edges there must be at  least 
one vertex with a connectivity of less than 6 and 

e I yd and e I 3 u  - 6 

must hold; otherwise, the graph is nonplanar.” The concept 
presented in this paper relies on the definition of regions of 
a planar graph and hence is not strictly applicable to nonplanar 
structures, although there are distinct parallels between the 
two. 

Planar structures are covered by the theory of convex po- 
l y t o p e ~ . ~ ~  A hull is the boundary to a set of points, such as 
the Jordan curve, J ,  of Figure 2. A hull is convex if any two 
points within the hull can be joined by a line without crossing 
the boundary to the exterior. For instance, in Figure 2, points 
a and b and b and c can be joined legitimately, but points a 
and c cannot; thus, this is not a convex hull. A polytope is 
a hull containing a finite set of points. It is only the points 
which lie on the boundary that are of interest in the theory 
of polytopes; points on the interior or exterior are ignored. 

A structure in which each vertex has a connectivity of at 
least d is said to be d-connected. A d-connected polytope is 
referred to as a d-polytope. The study of convex polygons 
(convex 2-polytopes) and polyhedra (convex 3-polytopes) has 
a very long history, being the subject of Greek geometry. 
Consideration of combinatorial aspects was started by Leon- 
hard Euler, Jacob Steiner, and Arthur Cayley with respect 
to determining the numbers of nonisomorphic polyhedra. The 
regular polyhedra that Euler studied were convex polytopes, 
although a polyhedron does not have to be convex. Obviously 
a sphere is convex, and so the theory of convex polytopes can 
be applied legitimately in the following discussions on planar 
graphs. 

Several general findings are of particular interest here, such 
as every block with at least three vertices is 2-connected, and 
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Figure 3. 

Figure 5. 

Figure 4. 

Balinski’s theorem30 that every d-polytopal graph is d-con- 
nected. G r U n b a ~ m ~ ~  uses the term “valent” for connectivity 
so that if there exist vertices of ring connectivity d + 1 in the 
structure, then it is referred to as a d + 1 valent d-polytope. 
To stress the d-valent nature over the general case, this is 
extended here to cover d-valent d-polytopes. For instance, in 
Figure 3, projection i is a 2-valent 2-polytope, projection ii is 
a 3-valent 2-polytope, projection iii is a 3-valent 3-polytope, 
and projection iv is a 4-valent 3-polytope. In general, pro- 
jections i and ii are 2-polytopes, while projections iii and iv 
are 3-polytopes. 

For 3-polytopal graphs, Steinitz3’ stated that “a graph G 
is polyhedral if and only if it is planar and 3-connected”. This 
does not mean that a planar graph with every vertex with a 
ring connectivity of at least 3 is polyhedral. For instance, in 
Figure 4 removal of vertices 1 and 2 will result in an increase 
in the number of components (to three), even though each 
vertex has a ring connectivity of 3. Vertices 1 and 2 are thus 
cut vertices. Whitney studied this area and gives some of the 
fundamental results of graph theory: 

“A graph G with at least d + 1 nodes is d- 
connected if and only if every subgraph of G, 
obtained by omitting from G any d - 1 or fewer 
nodes and the edges incident to them, is con- 
nected.” 

An important result that Whitney derived from Steinitz’s 
theorem is that the faces of every 3-connected structure are 
uniquely determined by the planar graph. Hence, every 
polyhedron is uniquely embeddable on a sphere (or plane), and 
the regions of this embedment correspond to the faces of the 
polyhedron. 

Note that the faces of a polyhedron are coplanar; Le., all 
vertices of the face lie in the same plane. Chemical structures 
are inherently noncoplanar in that they are usually bent or 
twisted in some way. Polyhedra are a subset of the more 
general case. However, using a two-dimensional representation 
removes the problem and treats all faces as equivalent; Le., 
if they form a region of any planar or spherical embedment, 
then they are equivalent, regardless of coplanarity. Where 
these faces are simple cycles, Le., without Nachbarpunkte (see 
references 1 and 32), they will be referred to as simple faces. 

EMBEDMENT CONSIDERATIONS 

In mapping from three dimensions down to two dimensions 
most of the ring systems likely to be encountered in chemical 
information systems give a graph with a unique embedment. 
However, certain classes of complex ring system may give more 
than one embedment; Le., the two-dimensional planar graph 
representation may correspond to more than one three-di- 
mensional structure. Elk3 discusses one such class and shows 
how different isomers of 4.3.2.1-paddlanes can lead to different 
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Figure 6. 

planar embedments (the 4, 3, 2, and 1 refer to the number of 
CH2 groups inserted into the rings of the paddlane). The four 
possible isomers result from two pairs of mirror images, as 
shown in Figure 5 ,  with each pair having a different set of 
faces. In planar form there are thus two embedments, each 
with two different projections; each embedment and projection 
will have the same number of regions, as given by the Euler 
formula, or finite regions, as given by the Cauchy formula, 
but the set of regions for each embedment will be different. 

Original consideration of the problem of finding all alter- 
native embedment regions came from the test structures given 
in Appendix A (Table 111), referred to as the DBR database. 
While some, such as DBR-18 and DBR-23, have more than 
one embedment, most do not. The question arises as to what 
circumstances lead to ring systems having more than one 
embedment as planar (or spherical) projections. 

Since any convex 3-polytope is uniquely embeddable, this 
is a possible upper limit to our problem-if a ring system is 
complex enough to be a 3-polytope, then we will only have one 
distinct embedment. The simplest possible convex 2-polytope 
is an isolated ring, i.e., a 2-valent 2-polytope. Embedded on 
a sphere or plane, it can have only one distinct embedment, 
giving two regions that have the same contour. This represents 
an initial lower bound for our problem. If vertices with a 
connectivity greater than 2 are introduced to our simplest 
2-polytope, then, by the corollary to Euler’s theorem, the 
number of vertices of odd connectivity must be even; i.e., there 
must be at least two of them. Similarly, for vertices of even 
connectivity greater than 2, if just one of them is introduced 
into a 2-valent 2-polytope (to give a spiro-fusion), then the 
graph is split into more than one block, with each block having 
a unique embedment. Thus, there must be at least two vertices 
of even ring connectivity greater than 2 for more than one 
embedment to be possible. The lower bound can now be more 
tightly defined as 2-polytopes with at least two vertices with 
a ring connectivity greater than 2. The upper bound is still 
a 3-polytope. A condition on the upper bound to consider is 
that if all vertices have a ring connectivity greater than 5 ,  then 
the graph is nonplanar and the theory we are using is not 
appropriate. 

It is now necessary to consider simple situations under which 
more than one embedment occurs. Figure 6 shows two em- 
bedments of DBR-23. Embedment i has four regions giving 
two five-edged faces, a six-edged face, and an eight-edged face, 
while embedment ii also has four regions, but these give two 
five-edged and two seven-edged faces. The six- and eight- 
edged faces of embedment i and the two seven-edged faces of 
embedment ii are not interchangeable by simple deformation. 
As solid polyhedra, the change would require the pushing of 
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one face through another; in terms of the models it requires 
the flipping of one wing over, or under, another. However, 
these structures are isomorphic, since incidence is preserved. 

Now consider introducing a new edge to DBR-23 to join 
any pair of vertices with a connectivity of 2. Figure 7 shows 
the five possible ways of doing this. Notice that only structure 
ii has more than one embedment; all the rest have unique 
embedments. Could it be that the presence of wings with 
vertices with a connectivity of 2 enables more than one em- 
bedment? In other words, is the property confined to struc- 
tures with vertices with a ring connectivity of 2? 

Consider the structure in Figure 8; all the vertices have a 
ring connectivity of more than 2, and yet structures i and ii 
are two different embedments. Hence, the problem is not 
solely attributable to ring connectivity. Notice, however, that 
this structure is not a 3-polytope. Vertices 1 and 2 are cut 
vertices (articulation points); their removal, plus their incident 
edges, increases the number of components to four. It is the 
presence of the pairs of cut vertices that allows parts of the 
structure toflip into a different embedment. If there are no 
such pairs of cut vertices, then the structure is either a 2-valent 
2-polytope or a 3-polytope and is thus uniquely embeddable. 
The presence of these pairs of cut vertices is thus a necessary 
condition for the occurrence of more than one embedment. 
However, as shown by structures i, iii, iv, and v of Figure 7, 
it is not a sufficient condition. Vertices 1 and 2, 3 and 4 are 
pairs of cut vertices (1 and 3, 1 and 4, etc. are not), but they 
do not allow another embedment. In Figure 7ii, 1 and 2, 3 
and 4 do give rise to another distinct embedment. Note that 
in this structure these vertices have a connectivity of 3, with 
the pair 3 and 4 having the two unlinked paths, (3,7,4) and 
(3,6,5,4), joining them. In all the other structures there is only 
one unlinked path between vertices 3 and 4. For all structures, 
including structure ii, vertices 1 and 2 have at most one un- 
linked path between them. 

It is suggested here that it is the presence of more than one 
unlinked path between pairs of cut vertices that is sufficient 
to give more than one embedment. An unlinked path (ULP) 
between a cut-vertex pair (CVP) is one that is not linked to 
any other edges incident to that CVP; otherwise, it is a linked 
path (LP). In other words, when tracing a path from one edge 
incident to one cut vertex, it is not possible to form a cycle 
containing that cut vertex without first having passed through 
the other cut vertex. It can be seen immediately that unlinked 
paths occur from areas displaying 2-polytopal characteristics, 
while linked paths occur from areas displaying 3-polytopal 
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characteristics. A further distinction can be made with respect 
to the simple cycles (Le., regions of a planar graph) generated 
by the interaction between ULPs, ULPs, and LPs, and LPs. 
(There also exist simple cycles that cannot be generated by 
such interactions-these are the topic of the next section.) The 
simple cycles generated by these interactions can be divided 
into two categories: 

Those formed by ULPs and/or LPs incident with the 
same CVP will be referred to as intra-CVP combi- 
nations. 

Those that also include paths between, and leading to, 
other CVPs will be referred to as inter-CVP combi- 
nations. 

Consider the structures given in Appendix A (Table 111) to 
verify these suggestions; only norbornane (DBR- 1) seems to 
be a problem. From Figure 9i it can be seen that 1 and 4 is 
a cut vertex pair and paths (1,2,3,4), (1,7,4), and (1,6,5,4) are 
unlinked. Therefore, by the above suggestions, norbornane 
should have more than one embedment. This is shown in 
Figure 9ii, but the regions defined are the same as in structure 
i. That structure ii is another distinct embedment can be 
shown to be true if one considers that Euler’s formula predicts 
two faces for an isolated ring, a top side and a bottom side, 
but they have the same contour and hence give rise to only 
one distinct cycle. The two embedments of norbornane can 
be thought of in the same way. Imagine norbornane with 
vertex 7 pushed down through the plane; one is left looking 
at the top side of the six-edged face. Embed this on a sphere 
and it can be rotated to give the bottom sides of two five-edged 
faces. Now pull vertex 7 above the plane; one is looking at 
the top side of the two five-edged faces. Embed on a sphere 
and rotation reveals the bottom side of the six-edged face. 
Hence, there are two distinct embedments that look at different 
sides of a face. The sides of the faces may be different, but 
the contours are the same, and hence the ring sets are identical. 
The case of only one cut-vertex pair, with a ring connectivity 
of 3 and three ULPs connecting them, represents the lower 
bound for the occurrence of flipping embedments! 

The problem for ring perception is that from a two-di- 
mensional connection table it is necessary to consider each 
possible three-dimensional realization to include all possible 
regions from all embedments to find all possible simple faces. 
In discussing the problems associated with paddlanes, Elk3 
states 

“For compounds that are intrinsically three- 
dimensional, the indiscriminate use of Schlegel 
diagrams can lead to major inconsistencies. In 
fact, the entire concept of projection is, at best, 
inappropriate for some compounds such as the 
paddlanes and buttaflanes.” 

This is not the case if all embedments are considered. The 
development of the ESSR and the underlying theoretical basis 
of finding all possible alternative embedment regions refute 
Elk’s statement. 

CUT FACES 

Including all possible alternative embedment regions is not 
always sufficient. There is an additional problem for sub- 
structure retrieval as shown by Figure 10. The file structure 
(i) is a heteroatom analogue of DBR-28. In the query 
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Figure 10. 

Figure 11. 

structure (ii) all the six-edged simple cycles are symmetrically 
equivalent, and hence all should be included in the ring set. 
Unfortunately, in the file structure the six-edged simple cycle 
with two heteroatoms cannot be made into a region of any 
embedment and hence would not be included in the set of all 
simple faces. Failure is a result of this simple cycle in some 
way being “internal” to the file structure, so that it in effect 
cuts through the structure and has all its edges associated with 
more than one other simple cycle that can be regarded as 
“external” to the structure. 

To extend the terminology already used in graph theory, 
any simple cycle that can be drawn as a region of some em- 
bedment of a structure will be called a simple face, as given 
earlier. Any simple cycle that cannot be drawn as a region 
of some embedment will be called a cut face. The simple faces 
correspond to the external simple cycles mentioned above and 
are the simple cycles that can be generated through the in- 
teraction of ULPs and LPs mentioned in the previous section. 
The cut faces correspond to the internal simple cycles men- 
tioned above and are simple cycles that cannot be generated 
through the interaction of ULPs and LPs. 

The infinite region of the maximal Schlegel projection also 
causes problems for substructure search. If it is larger than 
all the adjacent finite regions, then it should not be included 
in the query ring set since it will not necessarily occur in the 
ring set’of the file structure, whereas all finite regions will. 
Hence, ifthere is a unique maximal infinite region, then it 
should not be included in the query ring set. Likewise, any 
cut faces that are symmetrically equivalent to such a maximal 
infinite region should be excluded from the ring set if they are 
similarly larger than all adjacent finite regions. For instance, 
the structure in Figure 11 has a four-edged maximal infinite 
region with two symmetrically equivalent cut faces (drawn in 
bold). All finite regions are three-edged, and so all the 
four-edged faces need to be excluded from the ring set if this 
structure is used as a substructure query. 

The set of all simple cycles is thus divided into simple faces, 
which can form a region of some planar embedment, and cut 
faces, which cannot. Certain cut faces need to be included 
as members of a ring set to enable consistent substructure 
matching, while others need to be explicitly excluded. If all 
cut faces are included, then obviously the result is the set of 
all simple cycles! It is necessary therefore to investigate 
whether it is possible to define those cut faces that should be 
included and those that should not. 

Cut faces can be divided into three classes: Class I contains 
those in which the cut face is smaller than at  least one of its 
adjacent simple faces; Le., it is the smallest ring for at  least 
one of its edges. For instance, in Figure 12 the four-edged 
cut face (drawn in bold) is smaller than any of the adjacent 
regions and is the smallest ring in the structure. In these cases, 
although the cut face cannot become a region of the planar 
projection, it will occur in all SSSRs and hence in the set of 
X-rings (see references 1 and 33). Class I1 contains those in 
which the cut face is the same size as at least one of its adjacent 
simple faces, but never smaller (Le., it is a symmetrically 
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Figure 13. 

Figure 14. 

Figure 15. 

equivalent ring for at least one of its edges), or is otherwise 
linearly independent of all its adjacent simple faces. Structures 
DBR-26, -28, -39, and -40 from Appendix A all contain such 
cut faces. Class I11 contains those in which all edges of the 
cut face are included in smaller simple faces and it is not 
linearly independent of them. For instance, in Figure 13 the 
six-edged cut face (drawn in bold) has all edges adjacent to 
the three four-edged simple faces, to which it is linearly de- 
pendent. 

It can be seen from this that class I and class I1 cut faces 
are X-rings and hence should be included in a ring set since 
they can be in at least one SSSR; they will be referred to as 
primary cut faces. Class I11 cut faces should not be included 
since they are not linearly independent of the simple faces 
associated with each edge; these will be referred to as secondary 
cut faces. Thus, primary cut faces are members of the set of 
X-rings, while secondary cut faces are not. 

It was mentioned in the review’ that embedded ring systems 
present the problem that their SSSRs cannot be derived from 
any spanning tree. For instance, in Figure 14a the SSSR is 
(3,3,3,3,4), but no spanning tree exists whose chords generate 
this smallest set. If a spanning tree is produced whose chords 
generate the four three-edged simple faces, then the fifth chord 
must generate one of the larger non-simple-cycles and not the 
four-edged simple cycle. This is a problem for those techniques 
that rely on generation of a minimal spanning tree to generate 
an SSSR. For the structure in Figure 14b, by visual inspection 
the SSSR should be (3,3,3,3,3,3,3,3,4). There is a choice 
between two four-edged simple faces, neither of the which can 
be derived from a spanning tree whose chords generate all the 
three-edged simple faces. The structure in Figure 15 continues 
the series. By visual inspection, the SSSR should be 16 
three-edged simple faces and 1 four-edged. There are now 
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Figure 16. 

three four-edged simple cycles to choose from; two are simple 
faces (the infinite and innermost finite regions), and one is a 
primary cut face (in bold). Each SSSR must contain one of 
them, and so the set of X-rings contains all of them. 

In  Figure 16, the eight-edged primary cut face (drawn in 
bold) is smaller than the two nine-edged simple faces. For 
this structure the only SSSR is (5,5,5,5,5,5,8)-the nine-edged 
simple faces are thus not in the set of X-rings. 

Such potential problems with the SSSR and X-ring ring 
sets are revealed by introducing the concept of simple faces 
and cut faces, and it is .for this reason that the extended set 
of smallest rings is based on this concept to avoid such prob- 
lems. 

EXTENDED SET OF SMALLEST RINGS (ESSR) 

The name ESSR is a result of the way in which the al- 
gorithm to find it has been developed; for historical reasons 
it has been kept in preference to the more correct “set of simple 
faces and primary cut faces”. The ESSR contains 

all regions (finite and infinite) for every embedment, 

all primary cut faces for every embedment. 
i.e., all simple faces, and 

The concept is applicable only to planar graphs due to its 
reliance on regions. 

The relationship between the ESSR and the sets of all cycles, 
simple cycles, simple faces, cut faces, SSSRs, X-rings, and 
@-rings (see references 1 and 34) is shown by the Venn diagram 
in Figure 17. A fundamental basis (see reference 1) can 
contain any cycle and so is an indeterminate subset of all cycles 
that cannot be conveniently represented. The essential set of 
essential rings (ESER) similarly cannot be conveniently rep- 
resented due to the use of ideas of “synthetic importance” (see 
references 1, 35, and 36) .  

The proportions of the Venn diagram are not significant-it 
is the inclusion within and overlap between the different ring 
sets that is important. Similarly, the ring sets represent their 
respective general cases to indicate the possibility of a par- 
ticular ring set including certain rings. 

From the Venn diagram the following organization can be 
seen: 

The set of cut faces is divided into primary and sec- 
ondary cut faces. 

The set of X-rings includes all primary cut faces and 
a subset of the simple faces. 

*An  SSSR is a subset of the X-rings that includes 
simple faces and possibly some primary cut faces. 

The set of &rings includes a subset of all simple faces, 
all primary cut faces, and possibly some secondary 
cut faces. 

The ESSR contains all simple faces and all primary 
cut faces. Thus, it can be defined alternatively as the 
union of the set of simple faces and the set of Xi-rings 
(as defined above). 

The ESSR is the most appropriate ring set for file and query 
structures in a full-structure search and for file structures in 
a substructure search. For query structures in a substructure 
search only those members of the ESSR that are X-rings can 
be used to ensure 100% recall, i.e., the set of X-rings is the 
most appropriate ring set for substructure queries. 

=/%rings 

Figure 17. 

Appendix A (Table 111) gives a comparison between the 
rings included in the ESSR, an SSSR, and the sets of simple 
cycles, X-rings, and @rings for each of the DBR structures. 

CAN THE ESSR CARDINALITY BE PREDICTED? 

One of the most useful features of a fundamental basis, such 
as an SSSR, is that its cardinality can be calculated by the 
Cauchy formula, which simply requires the numbers of vertices 
and edges present. Thus, no knowledge of the rings or of their 
relationships is required. For simple structures, with a unique 
embedment and no primary cut faces, the only difference 
between the SSSR and the ESSR is the inclusion in the ESSR 
of the infinite region of the planar projection. For these 
structures the ESSR cardinality should be given by the Euler 
formula. However, for a single isolated ring the prediction 
would be for two rings, due to the two-faced nature of such 
rings, as mentioned earlier! In this special situation, the 
Cauchy formula is applicable. 

The connection tables used on the Sheffield project benefit 
from a certain amount of preprocessing of the graph so that 
edges are denoted as being in a ring or chain. Thus, the 
information directly available from the connection table 
without any further ring perception or path tracing, includes 

the number of vertices, V 
the number of edges, E (separated into ring or chain) 
the ring connectivity of each of the vertices 
the number of vertices of given ring connectivity 
the basis cardinality, p (Cauchy formula) 
the face cardinality (Euler formula), Le., p + 1 

The question is whether this information can be used to obtain 
a more accurate lower bound to the ESSR cardinality than 
the basis cardinality or even to give the exact ESSR cardi- 
nality. Table I lists these characteristics for the DBR database 
and for comparison includes the ESSR cardinality, E. 

Although many different calculations have been attempted, 
it has not been possible to identify a formula that successfully 
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Table I. DBR Connection Table Characteristics 
ring connectivity 

E V 2 3 4 5 6 p t  
ring connectivity 

E V 2 3 4 5 6 p c  
DBR-1 8 7 5 2 - - -  2 3  
DBR-2 9 8 6 2 - - - 2 3  
DBR-3 8 5 - 4 1 - - 4 5  
DBR-4 15 13 9 4 - - - 3 4  
DBR-5 12 8 - 8 - - - 5 6  
DBR-6 9 6 - 6 - - - 4 5  
DBR-7 13 11 7 4 - - - 3 5  
DBR-8 12 10 6 4 - - - 3 4  
DBR-9 13 11 7 4 - - - 3 4  
DBR-10 18 12 - 12 - - - 7 8  
DBR-11 30 24 12 12 - - - 7 8  
DBR-12 24 18 6 12 - - - 7 8  
DBR-13 16 12 4 8 - - - 5 5  
DBR-14 12 8 4 4 - - - 5 5  
DBR-15 16 12 8 4 - - - 5 5  
DBR-16 13 12 10 2 - - - 2 3  
DBR-17 14 12 8 4 - - - 3 4  
DBR-18 10 8 6 2 - - - 3 6  
DBR-19 13 10 6 4 - - - 4 1  
DBR-20 16 11 1 10 - - - 6 7 

predicts the ESSR cardinality or finds a better lower bound 
using these characteristics alone. More information is required, 
for which it is necessary to consider the underlying theory 
behind the number of rings in any given ESSR. The rest of 
this section studies the theory and develops a means of pre- 
diction for the number of simple faces in any ESSR to provide 
a better lower bound to the ESSR cardinality than the nullity. 

First, it ought to be stated that the number of primary cut 
faces cannot be predicted. Although the total number of cut 
faces can be calculated, whether each cut face is primary or 
secondary is a feature of the ring sizes of the particular 
structure under consideration. It therefore requires the per- 
ception of all adjacent simple faces first, which, of course, 
removes the predictive element! Thus, the problem can be 
confined to prediction of the number of distinct regions re- 
sulting from all possible embedments of a structure, i.e., 
prediction of the number of all possible simple faces-the 
simple face cardinality. 

The first assumption is that the individual blocks of a graph 
are processed separately. For a structure such as the spiro- 
fused adamantanes in DBR-37 the blocks correspond to the 
two adamantanes. Processing each one individually is simpler 
than processing them together and is more efficient, as shown 
by the separate processing of blocks in Wipke and Dyott’s 
algorithms3’ As mentioned above, if all vertices in a block have 
a ring connectivity of 2, then it is a single ring (which adds 
1 to the ESSR cardinality, not 2). In this special case there 
is no possibility of there being a cut face, and so the simple-face 
cardinality and ESSR cardinality are the same. Thus, there 
is no problem in correctly predicting the ESSR cardinality for 
2-valent 2-polytopes. 

If one vertex of even ring connectivity (>2), such as a 
spiro-fusion, is added, then this vertex constitutes a cut vertex 
and the graph can be split into two separate blocks. If two 
or more such vertices are added to a single block, then, if it 
remains a single block, the ESSR cardinality becomes more 
difficult to predict due to the possibility of other embedments 
and primary cut faces. Recalling that the number of vertices 
of odd connectivity must be even, if one adds two odd-con- 
nectivity vertices (or more) to a block, then once again the 
ESSR cardinality becomes difficult to predict. 

I f  a structure is a 2-valent 2-polytope, or can 
be reduced to such by separating the structure 
into its blocks, then the ESSR cardinality is given 
by the Cauchy formula. 

If  a structure is a 3-polytope, then it has a 
unique embedment and the simple-face cardi- 

DBR-21 17 11 - 10 1 - - 7 8  
DBR-22 21 13 2 6 5 - - 9 10 
DBR-23 12 10 6 4 - - - 3 6  
DBR-24 12 10 8 2 - - - 3 6  
DBR-25 47 34 22 8 4 - - 9 12 
DBR-26 19 14 4 10 - - - 6 7  
DBR-27 11 9 5 4 - - - 3 4  
DBR-28 15 12 6 6 - - - 4 6  
DBR-29 24 20 16 - 4 - - 5 5 
DBR-30 28 22 18 - 4 - - 5 15 
DBR-31 24 20 18 - - - 2 5 15 
DBR-32 22 19 17 - - 2 - 4 1 0  
DBR-33 16 13 11 - - 2 - 4 1 0  
DBR-34 14 12 10 - 2 - - 3 6 
DBR-35 14 12 10 - 2 - - 3 5  
DBR-36 12 6 - - 6 - -  7 8  
DBR-37 24 19 10 8 1 - - 6 8  
DBR-38 23 18 10 6 2 - - 6 8 
DBR-39 22 17 8 8 1 - - 6 9  
DBR-40 18 14 6 8 - - - 5 7  

nality is predicted by the Euler formula. 
In between are the (2 + n)-valent 2-polytopes for which the 

number of simple faces is more difficult to predict due to the 
possibility of more than one embedment. Hence, it is the lower 
bound of the simple-face cardinality that is predicted by the 
Euler formula for (2 + n)-valent 2-polytopes. Additional rings 
can arise from the presence of alternative embedments and/or 
primary cut faces, but there cannot be fewer rings, and so this 
also represents the lower bound of the ESSR cardinality. 
Similarly for 3-polytopes the lower bound of the ESSR car- 
dinality is predicted by the Euler formula, but additional rings 
can arise only from the structure having primary cut faces. 

From the information directly available, such as that given 
in Table I, it is not possible to predict the occurrence of ad- 
ditional embedments or cut faces. However, it was shown 
earlier that more than one embedment results from the 
presence of pairs of cut vertices with more than one unlinked 
path between them. Let us assume that, by a certain amount 
of additional processing, it is possible to detect the pairs of 
cut vertices and find the unlinked paths between them. Given 
this information, it is possible to predict the total number of 
simple faces resulting from all distinct embedments? 

In the following discussion it is necessary to introduce a new 
concept, that of the cut-vertex graph. This is similar to the 
vertex graphs used by Lederberg and others5-* in that vertices 
with a ring connectivity of two are condensed (contracted) into 
an arc, Le., the basic graph is produced in which vertices 
represent atoms with a ring connectivity of 3 or more. The 
difference is that for the cut-vertex graph concept introduced 
here an additional constraint is that the vertices represent cut 
vertices only. 

The arcs of a cut-vertex graph represent either 
unlinked paths (ULPs) or boundaries to regions 
that contain linked paths (LPRs).  

An LPR is formed when at least two arcs incident to a cut- 
vertex pair (CVP) are linked to each other by edges not in- 
cident to the CVP. If there are more than two dependent arcs 
in such a region, then any arcs contained within the outer arcs 
can be ignored since they can never form simple faces with 
any ULPs; i.e., they can never combine with a ULP to form 
a region of any embedment. This can be visualized more easily 
by attempting to transform the graph so that an inner 
linked-path arc combined with a ULP becomes the infinite 
region. In Figure 18i, arc b through the LPR is not free to 
move to the other side of arcs a or c and hence can never be 
part of an infinite region. Note also that the combination of 
both boundary arcs, ac, is similarly unable to form the infinite 
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Table 11. ExamDles of NachbarDunkte Cut-Vertex Pairs 

Figure 18. 

Figure 19. 

region. Thus, LPRs can be represented just by their boundary 
arcs, as shown in Figure 18ii. 

By definition, an LPR contains no pairs of cut vertices. 
Hence, an isolated LPR is a 3-polytope, has a unique em- 
bedment, and, since the boundary defines the infinite region, 
contains the number of simple faces predicted exactly by the 
Euler formula. If, however, an LPR has one or more incident 
CVPs, then the boundary, as shown in Figure 18, cannot form 
the infinite region. It can only contribute to the number of 
simple faces by combination with the adjacent ULPs, and so 
the number of simple faces in any LPR having incident CVPs 
is given exactly by the Cauchy formula. 

An LPR with no incident CVPs has a simple- 
face cardinality calculated by the Euler formula; 
otherwise, its simple- face cardinality is given by 
the Cauchy formula (i.e., the nullity). 

In cut-vertex graphs, LPRs are shown as shaded areas 
bounded by as many arcs as there are incident cut vertices. 
None of the inner connections of the LPR are shown. All ULP 
and LPR arcs connecting CVPs are labeled alphabetically. 
ULP arcs by definition must join some CVP, but it is possible 
to have LPR arcs that do not. For instance, in Figure 19 the 
LPR has two incident CVPs, (1,2) and (3,4). The pairs (1,3) 
and (2,4) are not CVPs, although their arcs are labeled because 
they can contribute to a region. 

If the fusion points between two or more simple cycles are 
Nachbarpunkte, then it is not possible for a further simple 
cycle to include vertices from two or more of these simple 
cycles and the Nachbarpunkte fusion points. Similarly in a 
cut-vertex graph it is possible to have CVPs that are Nach- 
barpunkte. These are shown as straight lines connecting cut 
vertices rather than as arcs. These CVPs cannot contribute 
to alternative embedment regions of the cut-vertex graph, and 
so the graph can be simplified by their removal. This can be 
achieved by contracting all Nachbarpunkte CVPs to a single 
vertex, which allows simplification to further blocks. The 
concept of contraction of edges between vertices of a “vertex 
graph”, Le., a basic graph, has already been outlined by 
Carhart et a1.6 (who use the term “collapse” instead of con- 
traction). If contraction is applied to cut-vertex graphs, the 
results can include self-loops, multiple edges, and contraction 
to a single vertex. An alternative that avoids these compli- 
cations is to concentrate on the nature of the edge between 
the Nachbarpunkte cut vertices. This edge is a cut edge, the 
cutting of which enables the separation of the cut-vertex graph 
into further blocks. Separation of these CVPs thus involves 
cutting the graph along the length of the intervening edge and 
replacing the CVPs by an arc in both the blocks formed by 
the separation. For the DBR test structures most of the re- 
sultant blocks are thereby reduced to 2-valent 2-polytopes, each 

cut-vertex Nachbarpunkte Nachbarpunkte 
graph contracted separated 

1 (DBR-17) 

m 
2 (DBR-29) 

(DBR-14) 

@ 
3 (DBR-22) 

m 

coo 
0 

ii) 
Figure 20. 

iii) 

of which can contribute no more than one simple cycle to the 
ESSR. 

Nachbarpunkte CVPs can occur in three situations, as 
outlined in Table 11. This table contrasts the results obtained 
from contraction and separation for certain of the DBR 
structures (DBR-17, -29, -14, and -22, respectively). All four 
examples result in the occurrence of self-loops under con- 
traction, while the second and third examples contract to 
multiple edges and a single vertex. Separation of the cut-vertex 
graph yields much simpler blocks in all cases. Note that in 
the fourth example separation yields a 3-polytopal block for 
which the number of simple faces is given by the Cauchy 
formula, not the Euler formula, since the 3-polytopal status 
has been achieved by separation of the incident CVPs. 

A single edge can also connect two cut vertices of different 
CVPs. These edges are not between Nachbarpunkte CVPs 
and so are not cut edges that can be used to separate the 
cut-vertex graph into simpler blocks. Such non-CVP Nach- 
barpunkte can occur incident to areas displaying either 2-valent 
2-polytopal or 3-polytopal characteristics. Unlike the CVP 
Nachbarpunkte, it is not necessary to represent the non-CVP 
Nachbarpunkte by straight edges rather than arcs, since, as 
there is only ever one path directly linking them, they cannot 
contribute to alternative embedment regions other than those 
formed by the interaction of the Nachbarpunkte CVPs. 

To differentiate LPRs it is necessary to consider all CVPs. 
What may be thought of as an LPR with respect to one CVP 
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primary LPR, to which both boundary arcs contrib- 
ute. Where there is more than one incident CVP to 
an LPR, then each Gundary arc contributes only to 
combinations with the ULPs incident to the associated 
CVP. This will be referred to as a secondary LPR. 
A secondary LPR effectively contributes only one arc 
to all intra-CVP combinations. CVG-7 illustrates the 
subtraction of one arc from the factorial calculation 
for each secondary LPR; Le., only one boundary arc 
is included. 

*The number of inter-CVP regions is calculated by 
summing the products of the number of ULPs or 
primary LPR arcs between each cut vertex in each 
inter-CVP combination. 

Where CVPs are contained within other pairs, as shown by 
CVG- 13 and - 14, they can be regarded as nested subproblems. 
In this way added complexity can be dealt with by taking the 
sum and product of less complex subgraphs of the cut-vertex 
graph. 

The general formula for the number of regions of a cut- 
vertex graph that corresponds to the number of simple faces 
in the full graph is 

all valid intra-CVP combinations, plus 
all valid inter-CVP combinations, plus 
all primary and secondary LPR nullities, plus 
1 for each 2-valent 2-polytopal block, plus 
the nullity of each 3-polytopal block resulting from 
Nachbarpunkte CVP separation, plus 

the Euler number from each 3-polytope 
where “valid” is a function of any LPRs that may be present 
and is determined by their primary or secondary nature. 

li) 
Figure 21. 

may not necessarily be 3-polytopal, thus making it possible 
to define further CVPs and ULPs. For instance, DBR-4, 
Figure 20i, is a composite of three CVPs. Figure 20ii shows 
the viewpoints from the individual CVPs (1,2), (1,3), and (2,3) 
leading to the overlaid situation for all three. As can be seen, 
when all three CVPs are considered, the LPR effectively re- 
duces to the central vertex and incident edges of (i), with a 
nullity of 0. The CVPs have common vertices, but the ULPs 
do not overlap to give common parts of an arc. Hence, the 
ULPs from these CVPs can be said to be independent of one 
another. 

In contrast, the structure in Figure 21i has a cut-vertex 
graph (ii) comprising an LPR with two incident CVPs and 
two non-CVP single-vertex boundary edges, four non-CVP 
single-edged ULPs, and one ULP arc. In this case the ULPs 
between the CVPs (2,3) and (43) are interrupted by the CVP 
(1,6), and hence these ULPs can be said to be dependent. 

The simplification of a graph to its cut-vertex form is ideally 
suited to revealing the combinatorial relationship between 
ULPs, LPRs, and the simple-face cardinality. This relation- 
ship has been revealed by consideration of 146 cut-vertex 
graphs comprising 20 series of increasing complexity, ranging 
from simple combinations of ULPs around a single CVP to 
mixtures of independent and dependent ULPs and LPRs with 
large numbers of CVPs. Although not exhaustive, these series 
are sufficient to show that the underlying combinatorial re- 
lationship between the arcs and regions of the cut-vertex graph 
generates all the alternative embedment regions corresponding 
to the equivalent simple faces of the associated ESSR. A 
sample cut-vertex graph from each of the 20 series is given 
in Appendix B (Table IV). 

The general conclusions drawn from consideration of the 
series of cut-vertex graphs are as follows: 

If a cut-vertex graph is a 2-valent 2-polytope, or a series 
of 2-valent 2-polytopes, then each such block con- 
tributes 1 to the number of regions (simple faces) in 
the graph. The same is true if the blocks are a result 
of separation of Nachbarpunkte CVPs. 

If a cut-vertex graph is a 3-polytope, or a series of 
3-polytopes, then each contributes a number of regions 
calculated by the Euler formula for each such block. 
If a 3-polytopal block is a result of the separation of 
incident Nachbarpunkte CVPs, then it will contribute 
a number of regions calculated by the Cauchy for- 
mula. 

For blocks that are not just 2-valent 2-polytopal or 
3-polytopal, the number of alternative embedment 
regions corresponds to the sum of the intra-CVP 
combinations and the inter-CVP combinations. 

The number of intra-CVP regions formed by incident 
ULPs is calculated as the number of combinations of 
two of these ULPs. When an LPR is incident to a 
CVP, if this is the only CVP incident to that LPR, 
then both LPR boundary arcs can contribute to 
combinations with any incident ULPs, but the com- 
bination of both LPR boundary arcs is not valid since 
it forms a cut face. This will be referred to as a 
primary LPR. CVG-2 and -3 illustrate the subtrac- 
tion of one from the intra-CVP combinations of each 

SUMMARY 

This paper has investigated the topological principles nec- 
essary to define a new ring set, the extended set of smallest 
rings, that overcomes the ambiguities associated with other 
ring sets, as revealed by the previous review of ring perception 
techniques. 

The differentiation of the set of all simple cycles into simple 
faces and cut faces (primary and secondary) enables a direct 
generalized comparison between the ESSR and most of the 
other ring sets in a way that highlights the areas of difference 
clearly and understandably. 

The important of considering alternative embedment regions 
and cut faces has been discussed in detail. The theory of 
convex polytopes is particularly useful in explaining the con- 
ditions necessary for the occurrence of alternative embedment 
regions. The idea of cut-vertex pairs with incident unlinked 
paths and linked path regions has led to the cut-vertex graph 
concept. The cut-vertex graph reveals the combinatorial re- 
lationship between the full graph and all its possible regions 
(simple faces) and conceptually provides a simple formalism 
for the description of the whole range of possible ring systems. 

An appendix is given in which the ESSR is compared with 
various other ring sets for 40 specific structures mostly gleaned 
from the literature as problem structures for other ring per- 
ception programs. A second appendix presents 20 repre- 
sentative cut-vertex graphs from the series used to explain the 
combinatorial relationship between the cut-vertex graph and 
all possible regions. 

The algorithms developed to find the ESSR within specific 
and structurally explicit generic structures and to represent 
the rings as bit vectors in the correct logical relationships are 
given in subsequent  paper^.^^,^^ 
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Table IV. 

DOWNS ET AL. 

Cut-vertex graph  

C V G l  

CVG-2 

a 

CVG-3 

a 

CVG-4 

h 
C V G 5  

CVG-6 

Arc combina t ions  

a b  bc cd  d e  
a c  bd ce  d f  
a d  be c f  
a e  b f  
a f  e f  

( a b )  bc cd d e  
a c  bd c e  d f  
ad  be c f  
a e  b f  
a f  e f  

( a b )  bc cd  ( d e )  
a c  bd ce d f  
a d  be c f  
a e  b f  
a f  e f  

ab bc d e  e f  
a c  d f  

a s f h  b s f h  c g f h  

a g d h  b g d h  c g d h  
a g e h  b g e h  c g e h  

a b  cd e f  
a g c i  bgca c h e j  d h e j  
a g d i  bgdz c h  f j  d h  f j 

a g h e j i  b g h e j z  
a g h  f j i  b g h  f j i  

a b  e f  
a g c j  b g c j  c h d k  
d i e l  d i  f 1 

a g  h d k j  b g h d k j  
c h i e l k  chi f Ik 

a g h i e l k j  b g h i e l k j  
a g h i  f lk j b g h i  f lk j 

F 

15 

14 + 
uab 

- 

1 3  + 
pab+ 
de 

15 

15 

15 

- 

Zombina tor ia l  e q u a t i o n  

3! E + & + [(3.1.3.1)] = 15 

+ + & + o + o + o + o +  
& + [(2.1.2.1) + (2.1.2.1) + 
(2 .1 .1 .2 .1 .1) ]  = 15 

~ + o + o + o + ~ + o +  
o +  0 + [(2.1.1.1) + (1.1.1.1) + 
(1.1 J . 2 )  + 
(2.1.1.1.1.1) + ( 1 . 1 . 1 . 2 . 1 . 1 ) +  
(2.1.1.1.2.1.1.1)] = 15 
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Table IV (Continued) 
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Cut-vertex graph 

ZVG-7 

2VG-8 

CIVG-9 

Arc combinations 

ab ( c d )  e f  
aecg  becg 
a e d g  bedg 
a f c g  b f c g  
a f d g  b f d s  

( a b )  d e  e f  
df 

a g c i  b g h  
( c h d j )  ( c h e j )  ( c h f j )  

( a g h d j i )  a g h e j i  a g h f g i  
( b g h d j i )  b g h e j i  b g h f g i  

ab bc 
a c  d e  e f  

d f  g h  
a d g  bdg cdg 
a d h  bdh  c d h  
aeg  beg ceg 
a e h  b e h  c e h  

a f h  b f h  c f h  
a f s  b f s  c f s  

10 + 
PCd 

9 +  
pab+ 
PCd 

25 

- 

~~ ~ ~~~~~ 

Combinatorial equation 

2! - 2,0!  + & + (& -1) + 0 + 
[(2.2.2.1)] = 10 

(+ 2.0. - I)+&+(& - 1 ) + 0 +  
[(2.2.2.1)] = 9 

(& - 1) + 0 + 0 + 0 + & + 
[(2.1.1.1) + (0.1.2.1) + 
(2.1.1.2.1.1)l = 9 
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Table IV (Continued) 
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I C V G 1 5  

C u t - v e r t e x  graph  

I CVG-12 

W 

ICVG-14 

n 

p&-J-J e 

W 
CVG-16 

A r c  c o m b i n a t i o n s  

ab a c  bc 
d e  e f  
d f  g h  hi 

si 
adg  bdg cdg 
a d h  b d h  c d h  
a d i  bdi  c d i  
aeg  beg ceg 
a e h  b e h  c e h  
aei bei c e i  
a f s  b f g  c f s  
a f h  b f h  c f h  
a f i  b f i  c f i  

ab a c  ( b c )  
d e  e f  
df g h  hi 

gr 

( a d h )  [%] [%)) 
( a d ; ]  ( b d i )  ( c d z ]  

( a e h )  [ b e h ]  c e h  
( a e i )  ( b e i )  c e i  

[ b f h ]  c f h  
( a f i )  ( b f i )  c f k  

( a d g )  

( a e g  beg ( c e g  

b f s  ( c f s )  

ab bc d e  

g h  hi a j ,  

a j d  b j d  c j d  
a j e  b j e  c j e  

a t .  bi. c i .  
a h .  bh. c h .  
og. bg .  cg. 

a c  e f  df  

g i  h j  S? 

a j , f  b j f  c j f  

3 

11 

36 

12 + 
pbdg 

48 

C o m b i n a t o r i a l  e q u a t i o n  

- 3! +‘+A+ 
[ (2 .2.1)]  = 11 
2.1! 2 . 1 !  2 O !  

2.0! + (& + & + 0) + 
[ (2 .1)+(2.3.3)+(1.3.3)]  = 
36 

- + (& + & + 0) + 
[( 1.1)+( 1 .O.O)+( 1.2.2)]  = 
12 

3!+&+(2!- + ”)+ 
2 . l !  2.1! 2.0! 2 .0 !  
[ (3 .3.2)+(3.3.2)+(  2 . 2 ) ]  = 
48 

3! 
2.1’ 

P . l !  2.0! 2.0!  

- 1 

3! + (2 + (” - 1))  j 

[ (2 .2.1)  + (2 .2 .2)  + (2 .2)]  
23  
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Cut-vertex graph 

CVG-17 

& d e f  g h  J 

CVG 

C V G 2 0  m 

I 

Arc combinations 

ab e f  gh  
cde cdf 
i j g  i j h  

acki bcki 
a d l j  bdlj  
ekgl f k g l  
ekhl f k h l  

ab e f  gh  
cde ( c d f )  

( i j g )  i j h  
ackt bcki 
a d l j  bdlj  

ab e f  gh  

ekhl )  ( f k h l )  

7 

15 

11 + 
PCed 

Combinatorial equation 

& + o + o + & + & +  
0 + [(1.2.1) + (1.2.1) + 
(2.1.1.1) + (2.1.1.1) + 
(2.1.2.1)] = 15 

1 ' + 0 + 0 + 1 ' + 1 '  
2 . 0 !  + 

(1.2.1) + (2.1.1.1) + 
(2.1.1.1) + (1.1.2.1)] = 11 

0"; 0 + 0 + 0 ?i(O.l.O) + 

- 2 2 ; ! + o + o + & + ~ +  

0 + 0 + 0 + 0 + [(1.1.1) + 
(1.1.1) + (2.1.1.1) + 
(2.1.1.1) + (1.0.1.0)] = 9 

% + o + o + & + * +  
0 + 0 + 0 + 0 + [(0.1.0) + 
(0.1.0) + (2.1.1.1) + 
(2.1.1.1) + (1.1.1.1)] = 8 

Chemie mbH), whose staff also assisted by means of many 
lively discussions. In addition, guidance on polytopal theory 
was gratefully received from Dr. R. J. Cook, Department of 
Pure Mathematics, University of Sheffield. Many thanks also 
to Dr. Cheng Qian, Chemical Abstracts Service, for Figure 
16 and for last-minute mathematical insights! 

APPENDIX A 
A comparative tabulation of ring sets for the DBR database 

(based on a tabulation by N i ~ k e l s e n ~ ~ )  is given in Table 111. 
Block 1 gives the DBR structure with its number and nullity. 
Block 2 gives the cycle sizes and types present. Block 3 gives 
the comparative perception of type for each ring set. Block 
4 gives the number of rings found of each type. Block 5 gives 
comments about particular types, where necessary. Other 
symbols are p = nullity, G = ring size, e = simple cycle, 8 = 
8-ring, S = SSSR, X = X-ring, Q = ESSR, d = included 
in ring set, and X = not included in ring set. The comment 
codes given in the note column are F = simple face, A = SSSR 
has to choose arbitrarily between symmetrical equivalents, D 
= Doppelpunkte exclude cycle as a simple cycle, I = sym- 

metrically equivalent maximum infinite region (simple face), 
M = maximal infinite region (simple face), N = Nachbar- 
punkte exclude cycle as a simple cycle, 0 = nonmaximal 
infinite region (simple face), P = primary cut face, R = al- 
ternative embedment region (simple face), S = secondary cut 
face, and Y = symmetrically equivalent alternative embedment 
finite region (simple face). 

APPENDIX B 
Twenty representative cut-vertex graphs and their simple- 

face combinatorics are shown in Table IV. 
Each simple face can be constructed by taking sequences 

of two or more of the alphabetically labeled arcs to form all 
possible regions of the cut-vertex graph. No distinction is made 
between non-CVP Nachbarpunkte single edges and the more 
general arcs. The lack of this distinction does not affect the 
combinatorial relationships. All pairs, triples, etc. of arcs under 
consideration are tabulated; those that cannot be topologically 
transformed into the infinite region of any planar projection 
are cut faces of the structure and are given in parentheses to 
show their exclusion as simple faces of the structure. 
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For CVG-1-10 all ULP and LPR arcs are labeled. This 
distinguishes the intra-CVP combinations from the inter-CVP 
combinations in the arc combination arrays. The intra-CVP 
combinations are always pairs of labeled arcs, while the in- 
ter-CVP combinations are triples, quadruples, etc. The in- 
ter-CVP combinations can become very long, and so for 
CVG-11-20 only those arcs that make some contribution to 
the combinations are labeled. It is consequently harder to 
distinguish between the intra- and inter-CVP combinations 
in these arrays. In addition, many of the arrays have been 
compacted by moving elements around to enable the use of 
fewer columns. 

For the combinatorial equations, the intra-CVP combina- 
tions are given first followed by the inter-CVP combinations 
enclosed in square brackets. Those arcs that contribute nothing 
to the combinations are indicated by a zero. 

The column marked 9 is the total number of simple faces 
for each cut-vertex graph and includes the nullity ( p )  number 
of rings for each LPR where appropriate. In contrast, the 
combinatorial equation only includes the non-LPR simple 
faces. 

DOWNS ET AL. 
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