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The bulk pure water reference state: the Cage Water Model

We have used an analytical 3D version of a model, similar to the Mercedes-Benz
model of water, developed by Urbic et. al. [1]. This model has been described in
several studies [2, 3]. Here we are introducing the model briefly. In this model, the
liquid state of water is taken as the perturbation from a hexagonal lattice of the ice.
Each grid point of the underlying lattice is assigned to a single water molecule, i.e.
no two waters can occupy the same grid point. Each water molecule is modelled as
a sphere having four hydrogen bonding (H-bonding) arms which are tetrahedrally
oriented. In this model, we consider the interaction of a water molecule (called as
test water) to its clockwise neighboring molecule. The clockwise-like direction is
chosen only for the bookkeeping purpose. This model considers that each water
molecule can be in any of the three possible states with its clockwise-like neighbor:
(a) Hydrogen-bonded (HB) state, (b) Lennard-Jones (LJ) state, and (c) Open (O)
or non-interacting state as represented in the following Figure S1. Depending on
the relative orientation and distance between the test water and its clockwise-like
positioned water, the interaction between them can be characterized as one of the
three states which are mentioned above. If a clockwise-like neighboring molecule
points one of the H-bonding arms towards the test water and an H-bonding arm
of test water forms an angle with the line joining the centers of these two waters
within the range π/3, then the state is characterized as HB state. If the distance
criterion between the test and clockwise-like neighbor is satisfied but not the orien-
tational one then the two waters form LJ contact but no hydrogen bond. If neither
distance nor orientational criteria is satisfied then the two waters are considered to
be in open state i.e. two waters do not have interaction between themselves.

First, we have computed the isothermal-isobaric partition functions of each state,
∆j, as a function of temperature, pressure and interaction energies, which is de-
scribed below.

∆j = c(T )

∫ ∫ ∫ ∫ ∫
dxdydzdϕdψ

∫ π
3

0

exp

(
−(uj + pvj/2)

kT

)
sin θdθ (S1)

where c(T ) is the kinetic contribution to the partition function, uj is the interaction
energy between two waters in the jth state, and p, T , and k are pressure, temper-
ature and Boltzmann constant, respectively. The triple integration

∫ ∫ ∫
dxdydz

represents the translational freedom over which the two waters can be in the jth
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Figure S1. Pairwise water-water interactions. (a). Hydrogen
bonded state (b). Lennard-Jones (LJ) state (c). Open state.

state and is defined as vjeff . The double integration
∫ ∫

dϕdψ represents the orien-

tational freedom over which test water can still be in the jth state and is equal to
4π2 [2]. vj is the volume per water molecule in the jth state. θ is the angle between
one HB arm of the test water molecule and the line joining the centers of the test
and clockwise-like neighbor water molecule and the integration is upto π/3 because
it corresponds to one fourth of the total solid angle.

From the partition function of the different states we can get the partition func-
tion of one hexagon as follows:
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Q1 = (∆HB +∆LJ +∆O)
6 (S2)

If all water molecules of the hexagon form hydrogen bonds between themselves
then this state will have a higher co-operativity than the pairwise hydrogen bonds.
After including the higher co-operativity, we get the partition function of the
hexagon as :

Q1 = (∆HB +∆LJ +∆O)
6 −∆6

HB + exp(−βϵc)∆6
cage (S3)

The last term of eq S3, (exp(−βϵc)∆6
cage), is used for higher co-operativity which

replaces the corresponding weak pairwise term (∆6
HB), where ϵc is the co-operativity

energy and exp(−βϵc) is the corresponding Boltzmann factor and ∆cage is termed
as the isothermal-isobaric partition function of the cooperative state termed as
cage. ∆cage is same as ∆HB with only difference that it uses a different volume per
water molecule such that solid state has higher density. The interaction between
the hexagons is treated by the mean-field attractive energy −Na/v where N is the
number of particles, a is van der Waals dispersion coefficient and v is the average
molar volume. This is implemented in the same way as described in the work of
Truskett et. al. [4, 5].

The fractional populations (fj) and the ensemble average energies (⟨uj⟩) of dif-
ferent states are calculated as described previously [2, 3]. After summing the in-
dividual state’s average energies, we get the average energy of a water molecule in
the bulk water as :

⟨ϵ⟩b = 2[ ⟨uHB⟩fHB + ⟨ucage⟩fcage + ⟨uLJ⟩fLJ ] (S4)

Inserting a solute causes a geometric restriction of waters

We have treated the insertion of a non-polar molecule into water in the same way
as has been done by previous analytical models consisting of variants of MB water
model as their pure water models [3, 6, 7]. The insertion of non-polar solute per-
turbs two aspects of the water molecules in the first solvation shell of the non-polar
solute. The first is the geometric aspect and the second is the energetic aspect. Due
to its geometric aspect, the insertion of the solute prevents water molecules of the
first solvation shell from forming maximum number (four) of the hydrogen bonds
with other water molecules. The geometric restrictions on the maximum number
of hydrogen bonds depend on the size of the solute. For smaller solutes, the water
molecules in the first solvation shell can form 3 or 4 hydrogen bonds depending
on its orientation, while for larger solutes, this maximum reduces to only 1,2, or 3
hydrogen bonds. An angle ϕ is defined as the angle between the line joining the
centers of a water molecule in the first solvation shell and the solute and one of the
HB arms of the water molecule in the first shell. The value of this angle at which
an HB arm points along the tangent to the solute is defined as the critical angle
while the water is in LJ minimum with the solute. Thus, the HB arms, for which ϕ
is less than the critical value, will lose its ability to form hydrogen bond with other
water molecules. This is shown in the Figure S2.
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Figure S2. Definition of the critical angle. The shaded sphere
represents the solute and other spheres represent water molecules

The expression for the critical angle is given by

θ0 = arccos
( rHB
(σLJ + 2r)21/6

)
(S5)

where rHB ,σLJ and r are HB distance, LJ distance and solute radius respectively.
Using this definition of the critical angle, we calculated the average number of the
hydrogen bonds formed by a water molecule of the first solvation shell as explained
in the following section.

Exact geometric formulas for how much a solute occludes
first-shell water-water hydrogen bonding.

Basic definitions.

(1) Water molecule: radius 1 (scale to water radius).
(2) Water molecule: H-bonding arm mutual angle α = cos−1(−1/3) = 109.4712o.
(3) Spherical solute (no H-bonding) radius ρ; however we represent the solute

by the critical angle θ0 of apperture of the spherical cap about an arm that
it will occlude if it is tangent anywhere on that cap. To stress its role in
occluding a particular arm from h-bond formation, we shall refer to θ0 in
the sequel as the “occultation angle”.

(4) Occultation angle (convex locally spherical boundary) 0 ≤ θ0 ≤ 90o (S5).
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The occultation cup. Water molecules are spheres on which the h-Bonding arms
a⃗i, i = 1, 2, 3, 4 are located at coordinates (scaled ×3−1/2): (1, 1, 1), (1,−1,−1),
(−1, 1,−1), (−1,−1, 1). We want to compute the total volumes Vi, i = 0, 1, 2, 3
in SO(3) of states where 0,1,2, or 3 arms are occluded by solute sphere, assumed
featureless. The computation is simplest in the body frame of the water molecule,
with the solute sphere rolling on the water sphere. This reduces the integral of
the relative rotation over the common axis to a constant (2π) and allows a simple
geometrical interpretation of multiple arm occultation as the overlap of spherical
caps, centered at each of the arm loci and having apperture equal to the solvent
occultation angle θ0. The occultation angle of the solute sphere is a function of
the ratio r of its radius to that of water. It is defined in Figure S2. If the solute
sphere is tangent to the water sphere at any point whose radius vector makes an
angle less than θ0 to an arm, that arm is occluded and cannot participate in H-
bond formation with another water moledule. For values of θ0 less than α/2 only
single arm occultation is possible while for greater values double and triple overlaps
may occur. 4 arm occultation is impossible near a convex object, even in the limit
of infinite radius, i.e. a planar hydrophobic surface. However it is possible at a
concave surface (not considered here). In the rotated geometry considered the arm
a1 points along the positive z-axis ; a2 is on the x − z plane, and the remaining
arms arranged counterclockwise around a1. Specifically, with

sα =
2
√
2

3
, cα = −

(
1

3

)
:

a⃗1 = (0, 0, 1) ,

a⃗2 = (sα, 0, cα) ,

a⃗3 =
(
−sα/2,

√
3sα/2, cα

)
,

a⃗4 =
(
−sα/2,−

√
3sα/2, cα

)
.

We want to consider the volume of such states where different numbers of arms
are occluded for a water molecule in the first layer around spherical solute. These
are simply the areas spanned by the cups about each arm, provided we identify
and properly account for areas of regions away from all cups (0-arm occultation),
areas covered by only one, only two or only three cups. This means that we need
to consider the arrangement of the cup bounding circles on the water sphere for
values of θ0 in the whole range, and identify their mutual intersections.

We compute these volumes by integrating the measure

sinθdθdϕdψ

over appropriate limits. Due to symmetry, all ψ integrations will simply contribute
a factor of 2π throughout. Integrating this measure over all possible orientations
gives the ”Total Volume”

V0 =

∫ 2π

ϕ=0

dϕ

∫ π

θ=0

dθ sin θ

∫ 2π

ψ=0

dψ = 8π2 . (S6)

We proceed now to compute areas for various types of intersections. We see that
there are three possibilities, depending on θ0

(1) only 1-arm occultation: 0 ≤ θ0 < α/2 ≈ 54.7356o
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Figure S3. A circular polygon on the unit sphere

(2) 1- or 2-arm occultation: α/2 ≤ θ0 ≤ π − α ≈ 70.5288o

(3) 1-, 2- or 3-arm occultation: π − α ≤ θ0 ≤ π/2

For reasons explained below (’Inclusion-Exclusion’ argument and symmetry) we
will only consider the following problems:

(1) Compute v1, the total volume in SO(3) of states where the arm a1 is
occluded, regardless of what other arms are doing.

v1 =

∫ 2π

ϕ=0

dϕ

∫ θ0

θ=0

dθ sin θ

∫ 2π

ψ=0

dψ = 4π2 (1− cθ0) . (S7)

(2) Compute v12, the total volume in SO(3) of states where the arms a1,a2
are jointly occluded, regardless of what other arms are doing.

(3) Compute v123, the total volume in SO(3) of states where the arms a1,a2,a3
are jointly occluded. Arm a4 will necessarily be free in this case.

The 2− and 3−arm occultation integrals are easiest done using the Gauss-Bonet
formula, giving the area of a spherical region bounded by circular arcs Figure S3

A = 2π −
∑
i

(π − γi)−
∑
j

kg,j lj . (S8)

Here the first summation involves the exterior angles of intersection between suc-
cessive arcs (that is, the γi are the interior angles), while the second summation
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Figure S4. The meniscus u12 of intersection of the occultation
caps associated with arms a⃗1 and a⃗2.

involves the length lj of the j−th arc times its geodesic curvature, kg,j . The geo-
desic curvature of a circle of radius r on a sphere of radius R is given by

kg =

√
R2 − r2

rR
.

From spherical trigonometry we know that the equation of a circle of apperture θ0
on the unit sphere, with center on the radius with spherical coordinates (θ1, ϕ1) is
given by

c(ϕ− ϕ1) =
cθ0 − cθcθ1
sθsθ1

. (S9)

The center of such a circle is located at distance sθ0 from the center of the unit
sphere while its radius r = cθ0. Therefore the geodesic curvature is given by

kg = cot θ0 .

To compute the area v12 of intersection of the occultation cup of arm a2, a circle of
apperture θ0 centered at (θ1, ϕ1) = (α, 0) with the cup of arm a1, a circle of apper-
ture θ0 centered at the north pole Figure S4 we need their intersection angles and
arc lengths. In equation (S9) we simply set θ = θ0 to find ϕc, the ϕ coordinate(s),
as

cϕc = cotθ0
1− cα

sα
=

√
2cotθ0 . (S10)
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Therefore the arclength of each circular arc bounding the meniscus of double inter-
section (nonzero only if θ0 ≥ α2), is given by

lj = l := 2rϕc = 2sθ0 cos
−1

(√
2 cot θ0

)
, j = 1, 2 . (S11)

The exterior angle of intersection of these two circles is found by considering the
dot product of their tangent vectors at one of the points of intersection, say at
(θ0, ϕc). We have

t⃗1 = (−sϕc, cϕc, 0) =
1

sθ0

(
−
√
1− 3c2θ0,

√
2cθ0, 0

)
while the tangent vector on second circle is found after algebra to be

t⃗2 =
a⃗2 × d⃗

||⃗a2 × d⃗||

=
(
−cα

√
1− 3c2θ0, cθ0(

√
2cα− sα), sα

√
1− 3c2θ0

)
so that

t⃗1 · t⃗2 = cγ =
1/3 + c2θ0

s2θ0
.

Collecting results, we find for v12 = 2πA:

v12/(2π) = 2 cos−1

{
1/3 + c2θ0

s2θ0

}
− 4cθ0 cos

−1
(√

2 cot θ0

)
.

We now compute the area of a triple intersection, v123, which can occur in the
range π − α ≤ θ0 ≤ π/2. Since cup 3 is cup 2 rotated about the z-axis by 2π/3
degrees, that displaces the second intersection point by 2π/3 Figure S5 giving a
common arc of

∆ϕ = 2ϕc −
2π

3
with arc length r∆ϕ. Then, since now we have three arcs and three intersections,
while angles of intersection and geodesic curvature are as before, we find

v123/(2π) = 3γ − 3lkg

= 3 cos−1

{
1/3 + c2θ0

s2θ0

}
− . . .

−6 cos θ0

(
cos−1

(√
2 cot θ0

)
− π

3

)
The total volumes computed through inclusion-exclusion. We can now find
the total volumes of 0,1,2 and 3 arm occultation as

(1) 3-arm occultations: Simply add together all possible combinations of 3
arms, since they represent disjoint states (can’t have all four occluded):

V3 = 4v123 (S12)

(2) 2-arm occultations: if we add up all 6 alternatives, we will be adding in
also pieces of triple intersections: e.g. the states where arms a1,a2 are
occluded, whose volume is v12, will not be pure 2-arm occultations but will
also include the (mutually disjoint) volumes v123 and v124. So, considering
all combinations, we have

V2 = (v12 − v123 − v124) + . . .+ (v34 − v134 − v234) = 6v12 − 12v123 (S13)



SUPPLEMENTARY INFORMATION CRUSTWATER MODEL OF SOLVATION 9

j = jc

J = J0
j = 2p/3-jc g

(1,3)

(1,2)

(2,3)

(1)

(2)
(3)

Figure S5. The spherical triangle u123 of intersection of the oc-
cultation caps associated with arms a⃗1, a⃗2 and a⃗3.

(3) 1-arm occultations: if we add up all 4 alternatives, we will be adding in
also pieces of double and triple intersections: e.g. the states where arm a1
is occluded include the states where arm pairs (a1,a2), (a1,a3) and (a1,a4)
are occluded and in there one can also find all triple intersections including
a1. So, if we subtract double intersections (v12, v13 and v14) we will need
to subtract triple intersections v123, v124, v134 (which will then need to be
also reconciled so the proper amounts are subtracted or added back in), as
follows:

V1 = v1 − {v12 − v123 − v124} − {v13 − v123 − v134} − . . .

. . .− {v14 − v124 − v134} − {v123 + v124 + v134}
= v1 − {v12 + v13 + v14}+ {v123 + v124 + v134}

and adding up all arms

V1 = 4v1 − 12v12 + 12v123 . (S14)

Computing the integrals. Collecting results from above, we arrive at the fol-
lowing sets of equations, applicable at the various ranges of the parameter θ0. We
have

(1) only 1-arm occultation: 0 ≤ θ0 < α/2 ≈ 54.7356o

v1/(2π) = 2π(1− cθ0) (S15)
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Figure S6. Relative volumes of Hb arms loss, given by the areas
of intersection of the corresponding occultation caps, plotted as
a function of the critical angle, θ0. Here 0, 1, 2 or 3 arms loss
areas are shown resp. in red, green, cyan and blue. Insets show
the corresponding spherical sectors on the unit sphere. θ0 = π/2
corresponds to an infinite planar interface while larger values would
correspond to a concave surface (not considered here).

v12 = v123 = 0
(2) 1- or 2-arm occultation: α/2 ≤ θ0 ≤ π − α ≈ 70.5288o v123 = 0 while v1 as

above and

v12/(2π) = 2 cos−1

{
1/3 + c2θ0

s2θ0

}
− . . . (S16)

−4 cos θ0 cos
−1

(√
2 cot θ0

)
(3) 1-, 2- or 3-arm occultation: π − α ≤ θ0 ≤ π/2 v1 , v2 as above, while

v123/(2π) = 3γ − 3kgl (S17)

= 3 cos−1

{
1/3 + c2θ0

s2θ0

}
− . . .

−6 cos θ0

(
cos−1

(√
2 cot θ0

)
− π

3

)
Implementation code for the geometric calculations.
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function Qsphere( )

alpha = pi-acos(1/3);

alphad = alpha*180/pi

calpha = -1/3; sa = 2*sqrt(2)/3;

k=0;

for i = 1:110

k=k+1;

theta0_d(k) = i;

theta0 = (i/180)*pi;

ct0 = cos(theta0);st0 = sin(theta0);

v1=(1-ct0)/2;

V3(k) = 0; V2(k) = 0;

V1(k) = 4*v1;

if (theta0 <= alpha/2 )

v12 = 0;v123=0;

else

v12 =(.5/pi)*acos((1/3+ct0^2)/st0^2)-...

(1/pi)*ct0*acos(sqrt(2)*ct0/st0);

if (theta0 <= pi-alpha)

v123 = 0;

else

v123=(.75/pi)*acos((1/3+ct0^2)/st0^2)-...

(1.5/pi)*ct0*(acos(sqrt(2)*ct0/st0)-pi/3)-.25;

end

end

V3(k) = 4*v123;

V2(k) = 6*v12-12*v123;

V1(k) = 4*v1-12*v12+12*v123;

if (theta0 <= pi - alpha)

V0(k) = 1-V1(k)-V2(k);

else

V0(k) = 0;

end

end

plot(theta0_d,V0,’b-’,theta0_d,V1,’g-’,...

theta0_d,V2,’r-’,theta0_d,V3,’c-’)

end

The average number of hydrogen bonds one water molecule of the first shell can
form is given by (see Figure S6):

⟨ζ(θ0)⟩ = 4V0 + 3V1 + 2V2 + V3 (S18)

Water-solute interaction energetics

Apart from the geometric perturbation, the solute also perturbs the energetics of
the water-water interactions in the first solvation shell. After inserting the solute,
the average energy of a water of the first shell can be written as:
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⟨ϵ(θ0)⟩h =
1

2
[⟨ζ(θ0)⟩{⟨uHB⟩fHB + ⟨ucage⟩fcage}+ 4⟨uLJ⟩fLJ + ϵSW ] (S19)

In the above equation, ϵSW represents the energy of interaction between solute
and water whose expression is given in the eq. (9) of the main text. We have fitted
ϵSW used in the equation (S19) for the four inert gases namely Ne, Ar, Kr, Xe &
four molecular solutes methane, benzene, naphthalene and C60 to get free energy
(∆G) of transferring a non-polar solute (calculated from the eq. (4), of the main
text ) from the model which reproduces corresponding values of the experimental
data. From the dependence of ϵSW on the solute radius and temperature for the
four inert gases, ϵSW of the other two inert gases ( Ne and Rn ) were determined.
It is to be noted that for calculating the density perturbation of water we have
used a generic solute-water interaction term, which is same for all gases. On the
other hand, for calculating the average energy of an average water, the best value
of the solute-water interaction term has been optimized for each gas to reproduce
experimental hydration free energy.

Procedure for parameterizing ϵSW . One practical problem of fitting our cal-
culated thermodynamic quantities to the experimental ones is that our model uses
a reduced unit. Hence, it is necessary to scale our results to have a fair comparison
between theory and experiments. To scale the temperature, we have taken the
model of Urbic et al. [3] where it was reported that the reduced temperature range
0.1 to 0.2 represents the liquid water range, therefore we scaled this range as 0 to
100 ◦C.

To compare theoretical and experimental hydration thermodynamic results on
equal footing, they must have same units. For this, we have taken the ratio of
theoretical and experimental ∆G for hydration at the highest temperature for the
liquid range i.e. at T ∗ = 0.2 for theory and T = 100◦C for Xe as the scaling
factor for the ∆G for hydration as shown in the following equation. Then ∆G of
hydration at all temperatures from experiment are divided by this factor to make
the experimental ∆G of hydration in reduced unit.

scaling factor =
Experiment[∆GXe(T = 100◦C)]

Theory[∆GXe(T ∗ = 0.2)]
= 5.58 (S20)

The solute-water interaction, ϵSW is optimized for each system so that it repro-
duces the experimental hydration free energy expressed in reduced units.

For optimizing the parameters, a1, a2, b1, b2, f1,f2, and f3 as given in eq. (9) of
the main text, we have used simulated annealing (SA) as the optimization technique
and the objective function (Obj) used in SA is given by the following equation:

Obj =

4∑
i=1

n∑
j=1

(∆GExperiment
ij −∆GTheory

ij )2 (S21)
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The indices i and j represent the number of molecules under consideration and
the experimental data points, respectively.

We minimize Obj by varying ϵSW . Usually at least ten trajectories starting with
different values of ϵSW are used in the SA calculation. The starting temperature
was taken as 10000 in SA and the cooling rate used was 0.98. At each temperature
100000 steps were run. The values of the optimized parameters for all the four in-
ert gases and the four molecular solutes taken in this study are given in the Table S1.

The atomic non-polar solutes (Ne, Ar, Kr, Xe) and molecular solutes (CH4,
C6H6, C10H8, C60) are parameterized separately since they do not have the same
interaction energy but we have kept the functional form of the interaction energy
for the both types of the solutes same.

Values of the parameters. All the parameters for pure water are taken to be
same as used in the ref [1]. The parameters are : ϵHB = 1.0 , rHB = 1.0 , ϵLJ = 0.1
, σLJ = 0.7 , a = 0.045 , ks = 78 and ϵc = 0.18. All calculations are performed in
the reduced units e.g. temperature, T ∗ = kBT/|ϵHB |, distances are scaled by rHB
e.g. σLJ = 0.7 will imply that σLJ = 0.7rHB and then scaled to the real units.
The scaling from reduced units to the real units is done by multiplying the reduced
hydration free energy with the scaling factor i.e. 5.58.

Units of the parameters in ϵSW . Eq. 9 of the main text as in reduced units is

ϵSW (r∗, T ∗) = (a1 + a2r
∗2)+ (b1 + b2r

∗2) T ∗ − (f1 + f2r
∗ + f3r

∗2)) T ∗ lnT ∗ (S22)

The parameters for the above eq. S22 is given in the following table.

Table S1. The values of the parameters for the inert gases, Ne,
Ar, Kr, and Xe and molecular solutes CH4, C6H6, C10H8, C60

a1 a2 b1 b2 f1 f2 f3
Inert gases 0.05 -2.84 6.09 10.42 2.97 -22.85 19.39

CH4,C6H6,C10H8,C60 -0.55 -0.39 7.37 7.22 0.66 -9.99 1.77

The above eq. for ϵSW after multiplying with 5.58 (scaling factor) can be written
in real units as follows :

ϵSW (r, T ) = 5.58
[(

a1 +
a2
r2HB

(rHBr
∗)2

)
+

(
b1 +

b2
r2HB

(rHBr
∗)2

)
(T − 173.15)

1000

−
(
f1 +

f2
rHB

(rHBr
∗) +

f3
r2HB

(rHBr
∗)2

)
(T − 173.15)

1000
ln

(T − 173.15)

1000

]

ϵSW (r, T ) =
(
A1 +A2r

2
)
+

(
B1 +B2r

2
) (T − 173.15)

1000

−
(
F1 + F2r + F3r

2
) (T − 173.15)

1000
ln

(T − 173.15)

1000
(S23)
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Figure S7. The solute-water interaction components as
given in eq. (9) of main text for (a) enthalpy (b) −T∆S vs
temperature, for Ar. A, B, and F denote first, second, and the
third terms of equation (S23).

whereA1 = 5.58a1 kJ/mol;A2 = a2

(
5.58
r2HB

)
kJ/(mol.Å2);B1 = 5.58b1 kJ/(mol.K);

B2 = b2

(
5.58
r2HB

)
kJ/(mol.K.Å2); F1 = 5.58f1 kJ/(mol.K); F2 = f2

(
5.58
rHB

)
kJ/(mol.K.Å);

F3 = f3

(
5.58
r2HB

)
kJ/(mol.K.Å2). The values of the parameters of eq. S23 are given

in the Table 1 of the main text in lower case letters to be consistent with eq. 9.

The relative contributions of each of the terms of eq. (S23) are shown in Fig-
ure S7. The first term (the ‘A’ term) of eq. (S23) has only enthalpy component,
while the other two terms have both enthalpy and entropy parts. The second (‘B’ )
term (S23) is the primary reason for the favorable solute-water interaction. In the
entropy part, both second and third terms contribute with the second term being
dominant.

Additional plots

Temperature Dependences for Nonpolar Inert Gases. Here, in the figure
S8, we have compared the hydration thermodynamic data for the remaining three
inert gases, He, Ne, Rn. Our results differ from experimental values for Rn but
our model gives correct trends in accordance with experimental results of the first
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Figure S8. Comparison of thermodynamic quantities with tem-
perature from our Crustwater theory (lines) for other three inert
gases (Color code: Red (He), Green (Ne), and Black (Rn) with
experiment (symbols). ).[8, 9, 10]

five inert gases. The main reason of the deviation in the case for Rn is that the
experimental ∆G(T ) for Rn has downward curvature while other five have upword
curvature.

Pressure Dependences for Nonpolar Inert Gases. Figure S9 shows the pres-
sure dependence of the remaining five inert gases, He, Ne, Kr, Xe, and Rn. The
Figure S10 shows the enthalpy and entropy components of SW and WW contribu-
tion to the solvation for Ar.

Pressure dependence for Methane. Figure S11 shows pressure effects on methane
solvation results from the simulations of Chan [11] for comparison with prediction
from our theory (Figure 8 of main text). The variation of ∆G with p from our
theory has a similar trend to the extensive simulations of Chan. This positive slope
is also consistent with that found by Koga [12]. The variation of both ∆H and ∆S
with p from our model differs from the trend obtained from the simulation although
it must be pointed out that the simulated values of enthalpy and entropy have large
standard deviations. We can conclude that both hydration enthalpy and entropy
is likely to be less variable as compared to their temperature dependence. This is
main conclusion from our calculation and Chan’s simulated results. This amounts
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Figure S9. Variation of thermodynamic quantities with pressure
for remaining five inert gases (Color code: Purple (He), Blue (Ne),
Dark green (Kr), Light green (Xe), and Black (Rn) ).

to small change in heat capacity as shown in panel (d) of Figure 8 in the main text
as found in Chan’s work and also in the experimental work of Hnedkovsky et al.
[13] .

Size Dependences.

Reference comparison: size Dependence with ϵsw = ϵLJ . We looked at the
size dependence of different hydration thermodynamic quantities using different
types of solute-water interaction (ϵsw ). Figure S12 shows the results with a con-
stant value of ϵsw taken as ϵLJ at T = 298 K and p = 1 atm. As expected, with
the increase of size values of all thermodynamic quantities increase. In that regard,
this is similar to hard-sphere system.

Fractional population plots. Figure S13 shows the microscopic interpretations
of pressure effects in terms of the model state populations. In our model the popula-
tions remain the same for pure water and water with a solute. The cages melt with
the increase of pressure and converted to pairwise Hbond (fHB). The variation of
fHB is more gradual with pressure due to lesser rate of cage melting. However, as
higher pressure makes the system more ‘tight’, the open state population is actually
decreasing with p. In other words, breaking of Hbonds lead to more LJ states with
p. Generally speaking, the changes in populations are more gradual in the case of
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Figure S10. The WW and SW components of the enthalpy
and entropy components of solvation free energy vs pressure, for
Ar. The top line just shows the totals given in Fig 5 of the main
text for Ar.

Solute ∆G (kJ/mol) ∆H (kJ/mol) T∆S (kJ/mol) ∆Cp (J/mol/K)
He 11.79(12.10) -4.59( 0.62) -16.38(-35.87) 8.55
Ne 11.08(11.16) -5.46(-02.48) -16.54(-44.52) 9.59
Ar 8.42( 8.20) -11.99(-11.01) -20.42(-65.03) 14.19
Kr 7.23( 7.05) -16.40(-14.02) -23.64(-70.27) 16.95
Xe 5.22( 5.38) -26.49(-19.23) -31.71(-82.24) 23.27
Rn 4.09( 3.74) -34.17(-15.05) -38.27(-18.79) 28.15
CH4 7.84(8.21) -14.77(-10.98) -22.52(-19.35) 188.59
C6H6 -0.53(-3.6) -38.95(-29.6) -33.69(-26) 168.31
C10H8 -10.3(-2.39) -129.40 -22.61 53.5
C60 -12.18(-17.4) -215.11 -38.43 -111.24

Table S2. Comparison between experimental and theory for all
the solutes studied here at 25◦C and 1 atm. Values in the paren-
thesis are for experimental data.

pressure than that with temperature.



18 A K YADAV, P BANDYOPADHYAY, E A COUTSIAS, K A DILL

10

20

30

∆
G

 (
k

J
/m

o
l)

−5

0

5

∆
H

 (
k

J
/m

o
l)

12

15

18

−
T

∆
S

 (
k

J
/m

o
l)

0 1,000 2,000 3,000
0

100

200

p (atm)

∆
C

p
 (

J
/(

m
o

l 
K

)) (d)

(c)

(b)

(a)

Figure S11. Variation of thermodynamic quantities with pres-
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