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The problem of determining a current density confined to a volume from measurements of the
magnetic and electric fields it produces exterior to that volume is known to have nonunique solutions.
Despite the nonuniqueness of the inversion we show that one may nevertheless uniquely determine
certain moments of the vector spherical harmonic expansion of the current. It is demonstrated that
the determination of these moments allows for the unique inversion of a current density confined to a
spherical shell. Although unique the inversion may be ill-conditioned and 0 require a regularization
of the inversion as demonstrated in an example numerical inversion.

I. INTRODUCTION

The electromagnetic inverse problem consists of the de-
termination or estimation of the current source underly-
ing the electric and magnetic fields measured outside the
source. However, as was shown by Helmholtz in 1853!,
a current distribution inside a conductor cannot in gen-
eral be determined uniquely from knowledge of the elec-
tromagnetic field exterior to the conductor. There exist
current distributions which give rise to no magnetic field
outside, no electric field outside or neither>®. However
if certain constraints are known to apply to a current
distribution one can perform the inversion uniquely (see
planar case?).

In neuroscience applications one is usually interested
in the primary current source J” due to direct neuronal
activity and defined in the following decomposition of the
total current, J = JP 4+ ¢E. One is then faced with the
problem of inverting for both J? and E simultaneously
given external field data. This task is further compli-
cated by the difficulty of performing detailed measure-
ments of tissue conductivity o(x)®>7. In the case of an
infinite homogeneous conductivity the ohmic currents,
o(x)E, make no contributions to the external magnetic
field, which can then be expressed in terms of the primary
current alone. Of course, the essential non-uniqueness of
the inversion remains® requiring additional constraints or
assumptions for a unique inversion®?.

The purpose of this paper is twofold: (1) to give a
complete characterization of those quantities related to
the current density which can be determined by a linear
inversion and (2) to present a numerical algorithm for
the unique inversion on a spherical shell.

We state the idealized near-field electromagnetic in-
verse problem as follows: Given the magnetic field B(r,t)
and the electric field E(r,t), known everywhere on a
spherical shell and due to the current source J(r,t) con-
tained in the interior of the shell, invert the field data
to obtain the current density or some of its properties.
Initially we do not invoke the infinite homogeneous con-
ductor assumption and we seek instead inversion for the

more general problem of total (primary plus Ohmic) cur-
rent. We take this approach since there is considerable
dispute over the applicability of the infinite homogeneous
conductor and spherically symmetric conductor assump-
tions to most situations of practical interest’. However
we do contrast our results to the infinite homogeneous
conductor model since it is a useful idealization® 7.

The paper is organized as follows. In section IT we
give a consistent presentation of the near-field approxi-
mation as pertains to an inversion for the total current
density. In section III we investigate the uniquely de-
termined properties of a current density for the inverse
magnetometry problem. In section IV we investigate in
what manner electrical potential data may add to the
inversion problem. Section V then makes connection
with the infinite homogeneous conductor case. Section
VI applies the results of the preceding sections to the
unique inversion of a current on a spherical shell. Al-
though unique, the inversion is still not well-posed in the
Hadamard sense since, as will be shown, the inversion can
be ill-conditioned leading to "high frequency” noise am-
plification. Regularization may be needed to make the
inversion well-behaved. In section VII we formulate a
simulated experiment to illustrate the competing effects
of increased magnetic field sampling, noise amplification
and regularization. Conclusions appear in section VIII.

II. A CONSISTENT NEAR-FIELD
APPROXIMATION

Although Plonsey® has treated with success the qua-
sistatic problem for primary currents by neglecting cer-
tain time derivatives in the Maxwell equations such an
approximation leads to inconsistency if applied to the
total current situation. Namely the neglect of the dis-

placement current 22 implies that V - j = 0. But since

the charge distribution @ is initially zero the equation
V-j = 0 implies, through the equation of continuity, that
it will remain zero as will the electric potential. Clearly
an approach focused on the total current must account

for the near-field electric potentials which are measured



routinely in the low-frequency EEG experiment.

In this section we derive a consistent near field approx-
imation to form the basis of the inverse problem for the
total current. The microscopic Maxwell equations are

written as
V-b(x,t) =0 V -e(x,t) = 4mq(x, 1)
10 47,
V x b(X, t) - Eae(xat) - ?J(X, t) (1)
10
-—b =0.
V x e(x,t) + e (x,8) =0

It will be assumed that there exists no initial charge dis-
tribution despite the fact that charge separation does ex-
ist across a resting polarized neuron. To do so assumes a
spatial scale of interest which we take to be a volume V
inclusive of many neurons (possibly a cubic millimeter)
over which the average charge is zero. Such an average
denoted by f(x,t) for a microscopic quantity f(x,t) is
defined by f(x,t) = + [, f(x + x/,t)d*x’. Since this
averaging process is linear we may then write the macro-
scopic equations at this scale of interest to simply be

V:b(x,w)=0 V- -ex,w)=4rg(x,w)

V xbixw) + Celxw) = Tixe)  (2)
V x e(x,w) — I%E(x,w) =0.

where we have also transformed into frequency space to
benefit from the change of time derivatives to algebraic
quantities. In the remainder of this paper we will drop
the explicit frequency dependence of vector and scalar
fields.

In terms of the vector potential a(x) and scalar poten-
tial ¢(x) the Maxwell equations may be written in the
Lorentz gauge as

w 47+

Vi) + L) = - ©
V50 + 5000 =~V (%) @

where the potentials are defined by

b(x) =V xa(x) ,

and the Lorentz gauge is given by

iw—

V-a(x) = —¢(x). (6)

The frequencies involved in neuronal activity (typically
~100 Hz)® are small compared to the reciprocal of the
time needed for the signal to propagate from the source

to the sensor. This leads to a near-field expansion with
respect to the small dimensionless parameter e = RQ./c,
the ratio of a characteristic distance R between the source
positions and the positions of the field measurements (ap-
proximately 25 cm) to the distance that would be prop-
agated by the electromagnetic field in vacuum during a
characteristic period. Here (. is the characteristic fre-
quency of the current density. To accomplish this equa-
tions (3)-(4) are written in terms of the dimensionless in-
dependent variables r = x/R, w = w/€,, and the dimen-
sionless dependent variables J = j/J., A = ca/J.4nR?,
® =c¢/JAnR? E = ce/JAnR, and B = cb/J 47 R as:

V2A(r) + Ew?A(r) = -J(r) (7

V2D (r) + Ew?d(r) = iv I(r) ®)

where J. is a characteristic current magnitude. The def-

initions of the potentials (5) and Lorentz gauge (6) be-
come

B(r) =V x A(r) iewA(r) — E(r) =Ve(r) (9)
V- A(r) = iew O(r). (10)
We obtain a near-field approximation by expanding the

magnetic, electric and current fields in terms of the small-
ness parameter € as follows:

A(r;e) = Ze”An(r) ®(r;e) = Ze”@n(r) (11)

n n

J(r;€) = z €"J,(r). (12)
Substitution of equations (12) into equations (7)-(10)
yields, upon collecting the zeroth order contributions, the
following set of equations

VZAg=-Jo¢ Eo=-V& (13)
V'J():O B():VXA() (14)
V-Ay=0. (15)

Similarly, the first order contributions yield the addi-
tional set of equations

VA, =-J, V23, =-V.J (16)

B1 =V x A1 i'LUAO — E1 = V(I)l (17)

V- A1 = iw@o. (18)

The solutions of the potential equations given in (13)

and (16) are, respectively:

_ 1 [ 3a)

An(r) = E/ s (19)
_ i V' -Jix) 5,

By(r) = ~irw Ty d°r (20)



where n = 0,1. The expansion of the current density in
the smallness parameter, €, shows the dependence of the
current on the characteristic distance, R. That depen-
dence is implicit in the confinement of the current within
a volume of radius R.

III. MAGNETIC FIELD DATA AND
INVERSION

In this section we investigate the uniquely deter-
minable quantities of the inverse magnetometry prob-
lem. Since the measurements are performed on a spher-
ical shell it is natural to expand the magnetic field (and
vector potential) in terms of vector spherical harmon-
ics (VSH). The resulting expressions will allow a pre-
cise characterization of the properties of the current den-
sity which the idealized MEG measurements determine
uniquely. External to the current containing region we
may write equation (19) with n = 0 as'®:

,r/l Yl'm 0
Ay(r) = Z /Ql——l—lJO(rl) -Y;‘ffn(Q')d3r' 7:7(T(1))
ljm v

(21)
where | = 7,5 + 1,5 — 1 (with the exception that [ = 1
for j =0),and m = —j,—j+1,...,5 — 1,5. We will,
as in the above equation, use the variable Q to denote
the ordered pair of angular variables (6, ¢). By writing
the zeroth order current in the VSH expansion Jo(r) =
> tjm A (1) Y, (Q) equation (21) becomes

ml\ Y (Q
Ao(r):2<21f:’l> ;ﬁ(l) (22)

ljim

where we have defined m/}, = f3 rkal (r)yr2dr. Now
since V - Jo(r) = 0 it can easily be shown (see appendix
A) that mg;l’j L =o. Using this property and taking
the curl of equation (22) gives the magnetic field on the
unit shell surface:

. 1/2
. J .. .
Bo() = —i ) (2 o 1) mg] Vi) (23)
jm

Since we are interested in determining the moments
mJ) we can simply write equation (23) in terms of the

radial component of By - e, = By, only to obtain

¥ Vim(Q)  (24)

and, transforming back to the time domain, we arrive at
the result of this section:

g . 25+1 : i1
B — Jm §=1] -
mjm( ) 1j1/2(j ¥ 1)1/2 BOT (t) mjm (t) 0

| (25)
where we have defined Bj" = [ By ()Y}, (2)dQ. In

equation (25) the j = 0 term poses no special problem
since Y3, () = 0.

From equation (23) we can conclude that the [ =
j—+1,7—1 components of the current are always silent in
this lowest order near-field approximation since they do
not contribute to the magnetic field. Furthermore, any
current with vanishing moments m;J is as well a silent
current. From equation (25) we may conclude that the
measurement of the magnetic field can only give infor-
mation about the [ = j component of the current density
while the V - Jy = 0 constraint yields a restriction upon
the [ = j — 1 component of the current density. No in-
formation about the [ = j + 1 component of the current
density is obtained from the field measurement without
additional constraints being placed upon the current.

IV. ELECTRIC FIELD DATA AND INVERSION

EEG measurements give information about the small
but, as we will see, not necessarily negligible J;. The
zeroth order solution for the electric potential given by
equation (20) can be written as'®

V’ J1 ’I‘I * 3

(26)

Substituting the VSH  expansion, Jq =

m(M)Y5 (Q), into equation (27) and sim-
phf]ymg we obtaln

WY (). (27)

jm

where we have used n-J; = 0 on the surface of the
unit sphere and we have defined %, fo )ridr.
Defining ®;,, = [ ®o(r)Y7,(2)dQ, where the 1ntegra1 is
taken over the unit sphere, equation (27) can be written

as

. 1/2
27 +1
9t = i, (212) (25)

Also since J; obeys equation (20) one can write, as for
Jo, that

27 +1 im

M;m = '41/2(.7 + 1)1/2 1r (29)



Transforming into the time domain we can now write the
result of this section as:

y o2 +1 ;

713 — _ Jm
ij(t) - 1]-1/2(]- + 1)1/2 1r (t) (30)
. 2j + 1\ 08,

J 1,j—1 — J jm

Although electric potential measurements only give in-
formation about the relatively small ¢ J; contribution to
the current, this information is not necessarily negligi-
ble. Such is the case for the I = j — 1 component of
the current density for which the zeroth order magnetic
field measurements give no direct information. Although
knowledge of the small first order current (obtained from
equation (31)) contributes little to the total current mag-
nitude, it may provide localization information. In addi-
tion it should be noted that the J; contribution to the
current is notably different from the Jo contribution in
that the former leads to a net charge formation (the di-
vergence is non zero) and therefore may give information
of a special nature albeit of smaller amplitude than the
Jo term. Note that equation (31) provides no significant
additional information about the [ = j component of the
current density since Bj, is negligible compared By, and
can not be measured independent of By,.

V. INFINITE HOMOGENEOUS CONDUCTOR

In the this section we make connections with the infi-
nite homogeneous conductor model. If one has knowledge
of the conductivity of the medium containing the pri-
mary current sources one may write J = J, —oV® where
Jp is the primary current source and —oV @ is the cur-
rent given by Ohm’s Law. Note that this expression uses
the dimensionless conductivity constant o = 4noRJ./c
where o is the conductivity averaged over a suitable spa-
tial scale. This relationship is valid for all orders of the
expansion in the smallness parameter € so that

Jo(r) = Jop(r) — o Vo (r). (32)

Strictly speaking we should include the contribution of
effective current densities from magnetization and polar-
ization effects. However these currents make negligible
contribution to the total current as shown by Plonsey®.
If the conductivity o can be considered to be infinite ho-
mogeneous this form of the total current density, when
combined with equations (13) and (16), yields the follow-
ing connection between zeroth and first order contribu-
tions to the current density

V-Ji(r) = %“’v Top(r). (33)

Substitution of equations (32) and (33) into (20) then
gives

Ao(r) = i t’”_(i,)l (34)
Bo(r) = ! Md%'. (35)

- dno |r — /|
As noted by others® the Ohmic contribution to the cur-
rent density does not contribute to the magnetic field in
this case of a homogeneous conducting medium. Note
that equations (34) and (35) both depend on the zeroth
order primary current only.

A derivation similar to those presented in the preceding
sections of this paper results in the uniquely determined
quantities

y . 2 +1 :
Ji _ Jjm
mjm(t) - 1j1/2(j+1)1/2‘BO7' (t) (36)
S 24 1/2
) = o () e e

where mi¥ (t) = 01 rkal_ (r,t)r?dr and the al,(r,w) are
the VSH coefficients of the zeroth order primary current
Jop- Therefore, in the case of the homogeneous conduc-
tor the electric and magnetic field measurements yield
zeroth order current density information in orthogonal
subspaces. Notice that, as in the total current case,
there is no information obtained about the [ = j + 1
components of the current density. Also notice that, un-
like the total current case, the determinable quantities
J—1,j—1 : : -
my,, depend on the electric potential rather than its
time derivative.

VI. A UNIQUELY INVERTIBLE CURRENT
DENSITY

We now look at a case where the magnetic and elec-
tric field information is enough to uniquely determine the
current density. In the following we assume that the cur-
rent is restricted to a shell of radius r,. Results are given
for both the total current and the primary current of an
infinite homogeneous conductor. Although the infinite
homogeneous conductor is rarely realized as a suitable
approximation to the practical problems of interest this
does serve as an important case with which to draw dis-
tinction with the total current case.

A. Total Current Case

In this case J = Jg + €J1 and we may write the coeffi-
cients of the VSH expansion of the current density as:



b, (r) =r=25(r

l ! -2 l
j —1,)b; Uy =17 76(1 — To)ﬂjm

jm j

, (38)
where [ = j, j +1,j — 1 and the coefficients b}, and 87,
are to be determined from measurement of the moments
mj, and ,uJ L3~ Multiplying each side of equations
(38) by the appropriate power of r and integrating we
obtain

m'% (r) = rkbt phe, = rkB; (39)

m or)m m

One can view the solution of equation (39) as a simple
inversion of a diagonal matrix. However, the dependence
on r, may make these diagonal matrices ill-conditoned
with condition number given by rl~J where j. is a cut-
off number for j. As a result noise in the high spatial
frequency components of the current density may be am-
plified. To obtain a well-conditioned inversion we apply
a Tikhonov regularization (see appendix D) to filter the
high frequency noise. For a diagonal matrix the classical
Tikhonov regularization takes the simple form:

U re i (1) l_ re ko (40)
Jm Tgk + )2 Jm rgk + )2 Fjm
where ) is the regularization parameter and we have set
f° =0and L = I (see appendix D). A proper choice of
the regularization parameter o balances spatial smooth-
ing against noise reduction.

The restriction of the current to the shell surface com-
bined with V- Jy = 0 implies that Jo -r = 0. This condi-
tion gives the following relationship between the l = j+1
and [ = j — 1 components:

j+1 .7 1 j+1 .7 1
Y G Y e T Tt

Combining the definition of the known quantities m’

j—1,j-1 j—1,5-1

m’,, and g, with equation (41) one then ob-

tains the current den51ty

]m’

Je j—2
_ i To J
J =46(r—r,) ; [mjm 27 Y5, (42)

ri=3 Yi-1
1,7—1 jm

+ € ;ﬂ . -+
\/_ 2j— <\/J_

P22 4 2

+1
Y,
Vvit+l

or in terms of the magnetic and electric field quantities

Je 21 ri?
J =6(0r—-r E —iB!™ 0 J 43
) m MRV/EEN R T )
9% ; ’f'j73 Y,j+1 Y] 1
+ oe/2j+1im 1o m_y
T o AT ( Vi Vi1

B. Infinite Homogeneous Conductor Case

Now we consider the case of an infinite homogeneous
conductor. In this case we write the coeflicients of the
VSH expansion of the current density as:

a;m(r) =r=28(r — ro)bém (44)
where again the bg-m are coefficients to be determined. If
we assume that J, - r = 0 we may write, in a manner
similar to the total current,

2j+1  ri-?
Jop = (5(7’—7‘0)2 J

: Y/

i Vi +jre 42

ri=3 Y/t '

+ 04/2j +18; =+
er2] —2 \/3

+ 2

—iBJ™ (45)

Yyi~t
jm
NZi +_1)

Note that the condition J, - r = 0 is an additional con-
straint which is not implied by restriction to the shell as
in the total current case.

C. Validity of inversion

Having found the VSH expansion of the current den-
sities of sections VIA and VIB from measurements of
the magnetic and electric fields does not guarantee that
the series given by equation (43) or (45) will converge.
If we insist that the currents have finite energy, then it
is appropriate to require that ||J||2 < oo; for the case
in equation (43) without electric field contributions, e.g.,
this implies

[Bg, (25 + 1)J?
13 =D o < (46)
jzm MG+ 1)

Clearly, this restricts the magnetic field, and the
smaller we desire ry to be for the shell on which we per-
form the inversion, the more severe the restriction. The
above condition is of course met whenever the radius of
reconstruction, rg, is greater than or equal to the radius
of a sphere completely enclosing the current, r.. But re-
construction on a spherical shell of smaller radius 7o < 7,
could be also found for sufficiently fast decaying B]’*. On
the other hand, for regularized data such as that associ-
ated with a truncated spherical harmonic expansion, a
reconstruction is guaranteed for arbitrary rq > 0.

VII. A SIMULATED INVERSION ON A
SPHERICAL SHELL

In this section we present a simulation to test the inver-
sion on a spherical conducting shell. In the next section



we will use this simulation in a number of examples to
test the inversion method on the shell. We assume the
current density to be restricted to a shell of known radius
r, < 1. We also assume that the radial component of the
magnetic field, B, can be sampled on a grid (to be spec-
ified below) of a larger spherical shell of radius r = 1. We
will make use of the Spherepack-3.0 Fortran-77 code!!:12
to perform the analysis of a simulated magnetic field to
find the values B, and the subsequent synthesis of the
current density.

A. The Simulation

The Jo part of the current density given by equation
(43) may be reconstructed according to

im 2]+]. 7'(]; 2 Y]
NV E TR

In the case of the current shell it is somewhat simpler to
represent the results of the inversion in terms of a scalar
streamfunction (6, ¢) such that J(r) = r=28(r —r,)e, x
Va1 where

J==id(r—r,) f: B (47)

r 2j+1
p=S"pm_To °J -
; i+

(48)

To create simulated magnetic field measurements we
make use of a current density of the form

Jo = e¢L;msin9G(a) (49)

o

N,
2n+1
GoO) = > 5

P, (cosb,)P,(cosb)

n=0

where the P, are Legendre functions and the function
G(0) is a truncated Legendre expansion of d(cosf —
cosb,).

The radial component of the magnetic field due to the
currents of the type given in equation (49) is directly
calculated as:

N,
B, = Y a;Pi(cosb) (50)
=1

rEF I+ 1)

o

dr 20+1

o = [Pi41(cosb,) — P,_1(cosb,)] (51)

where we have taken r = 1. The field due to these el-
emental currents can be rotated by the angles (6,, @)
see appendix C and superimposed upon others to give

a richer set of simulated fields to test the inversion al-
gorithm and its limitations. In the next section of this

paper we will use these simulated fields to test the inver-
sion method on the shell.

We also add noise to the simulated field to test the sta-
bility of the inversion and our ability to eliminate insta-
bility through regularization. We do so by adding noise
of a given signal-to-noise ratio (SNR) to each field point
in the simulated measurement. The SNR is given by
SNR = S0:0 where Sp,4, is the maximum signal over
all field points and and o is the standard deviation of 0
deviates'®.

For the purpose of error analysis we combine equations
(48), (50) and (51) to obtain the current stream function
directly as

N,
b= 1_; ; Pp(cos§) [Pnt1(cos ;) — P—1(cos8,)]  (52)

which will be useful in the next section of this paper.

As discussed by Swarztrauber!!'?, the analysis of By,
into spherical harmonic components B}, requires trun-
cations with j < N the number of zonal harmonics in-
cluded. For each j there are 25 + 1 values for m therefore
the determination of (N + 1)2 spherical harmonic coeffi-
cients is required. On the other hand, the spherical trans-
form algorithms given in Spherepack-3.0 require sampling
on a grid that is equally spaced in both longitude ¢ and
latitude 6. With the product grid containing N points
in the @ direction and 2N points in the ¢ direction, this
results in 2N? data points, making the analysis prob-
lem 1. This results in the analysis being performed as a
least squares problem!!4. A spectral filtering where at
6 = 6; only 2N sin §; longitudinal points are required can
be employed without effective loss of resolution'®. This
reduces the number of required sample values to mN?/2
for the entire sphere although the analysis problem is still
1. To employ the above algorithm, our method requires
the values on the reduced grid and produces the values on
the equispaced grid (used by Spherepack-3.0) by fft-based
interpolation.

B. An Example

In this section we give an example inversion to test the
ability of the method to resolve currents on a spherical
shell and we explore the amount of regularization needed
to control the instability discussed in section VI. The
example demonstrates the effect of variation in the fol-
lowing parameters: the number of latitude and longitude
sampling points, nlat and nlon; the signal-to-noise ratio,
SNR; and the regularization parameter, A.

In figure 1 we show the graphical results of an exam-
ple inversion for two closely spaced current rings, with
reconstruction performed at 7o =?777. Insert A is a direct
plot of the current stream function as given by equation
(52). The plots of inserts B-F can be compared to this



|| nlat | nlon | error ||
9 | 16 | 0.633616464
17 | 32 | 0.499727286
25 | 48 | 0.194608761
33 | 64 | 0.044827409
41 | 80 |5.70662263E-11

49 | 96 |6.27447749E-11
57 | 112 |1.05221049E-10
65 | 128 |3.34401624E-10

TABLE I: Relative error with SNR = oo

direct plot for a visual check of inversion accuracy. Ta-
bles VIIB and VIIB give a more precise check of the
inversion error.

Inserts B and C pertain to a noiseless sampling of the
magnetic field. These inserts illustrate the progressively
better resolution of the current density as sampling of
the magnetic field is increased. Table VII B shows a pre-
cipitous reduction in the error near a sampling such that
nlat = 41 and nlon = 80. Although increasing the sam-
pling of the field allows one to compute components of
the current stream function of larger j and m values and
therefore provide greater detail in the inversion this trend
does not persist as one can see when the sampling is near
nlat = 49 and nlon = 96. Near this sampling density an
amplification of machine precision “noise”, due to the ill-
conditioned nature of the inversion, begins to compete
with the reduction in error due to increased sampling
density. Of course the precise limit imposed by the noise
to the effectively attainable resolution worsens exponen-
tially with decreasing values of ry, the reconstruction ra-
dius.

Inserts D-F illustrate the importance of regularization
in any practical situation with added noise. Here we vary
the regularization parameter A to illustrate the trade-off
between the noise filtering and the smoothing effects in-
herent to a Tikhonov regularization of the inversion. In
insert D, where regularization of A = 0 is used, the 5
percent sampling noise entirely obscures the inversion.
In insert E a value of A = 0.03 suppresses the noise but
at a high cost to resolution. From insert F and table
VIIB it appears that A = 0.002 is a good choice of a
regularization parameter that balances noise amplifica-
tion reduction against smoothing effects of the Tikhonov
regularization. Table VIIB shows that the same sam-
pling as that used in the noiseless case appears to give
the best error but this error value is considerably higher
as compared to the noiseless case.

VIII. CONCLUSIONS

We have shown that for the idealized inverse magne-
tometry problem the uniquely determinable quantities in
a VSH representation are moments of the expansion co-

|| nlat | nlon | error ||
9 | 16 | 0.633567187
17 | 32 | 0.49996694
25 | 48 | 0.199766954
33 | 64 | 0.106897188
41 | 80 | 0.096111095
49 | 96 |0.0965699241

57 | 112 ]0.0960985884
65 | 128 {0.0960139612

TABLE II: Relative Error with SNR = 20

efficients. Only one moment per coefficient is fixed by
magnetic field measurements alone. This clearly exhibits
the need for additional trusted and testable constraints
in the inverse magnetometry problem. In general these
added constraints will clearly contain the majority of the
information needed in an unique inversion for the current
density of the idealized inverse magnetometry problem.

We have shown in what sense electric potential data
may be incorporated to give additional information on
the total current. When inverting for the total current
MEG gives information about zeroth order near-field con-
tributions to the current density whereas EEG gives in-
formation about the first order contributions. When the
conductivity is known both the MEG and EEG give ze-
roth order near-field information about primary currents
in a homogeneous conductor.

Lastly we have shown that for a spherical shell a unique
inversion is possible. However, the inversion has been
shown to be ill-conditioned in general. A regularization
may be needed and this regularization must balance the
filtering of amplified "high frequency” noise against the
smoothing of spatial detail in the inversion.

APPENDIX A: DIVERGENCE CONSTRAINT

In this appendix we derive the restriction on the mo-
ments m] Li=1 = 0 given by the condition V -J, = 0.

From th1s condition we have!®

o
Il

Vi -5 o

r
- d + 2\
— I3+ 1 (% + JT) aj-zl(r).

Multiplying equation (A1) by rkF+2
parts gives

(A1)
and integrating by

1
0 = k+1(k—j)/ k= 1a;+1(r)r dr
0

1 .
- Vilk—j+3) /0 rk’lag.:nl(r)rzdr. (A2)
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FIG. 1: (A) Direct plot with Ny1 = 35,(0r,¢,)1 = (45,0), Np2 = 35, (6., ¢,)2 = (67,0); (B) Reconstruction with Ny =
25, Nior, = 48,S2N = inf,e, = 0.195; (C) Reconstruction with Ny = 65, Njo, = 128,S2N = o0,e, = 3.34E — 10; (D)
Reconstruction with Nige = 65, Njop, = 128, S2N = 20, A = 0, e, = 71.9; (E) Reconstruction with Nio; = 65, Njon, = 128, S2N =
20, A = 0.03, e, = 0.400 and (F) Reconstruction with Ni,: = 65, Njop, = 128, S2N = 20, A = 0.002, e, = 9.60FE — 2

; here ro =777.



since there is no current on the shell of radius 1. There-
fore, we obtain

(k—j)mli k=t 4 jjﬁ(k+j+1)m§7’nl’k*1 =0, (A3)

1,7—-1

which for k = j becomes m;-; = 0. It is easy to see

that the condition V- A, = 0 is equivalent to mgj;I,j—l —
0, so the vanishing of the divergence of A, is implied by

that of J, as expected.

APPENDIX B: SPHERICAL HARMONIC
PROPERTIES

In this appendix we give some information on vec-
tor spherical harmonics. The vector spherical harmonics
may be generated from the scalar spherical harmonics
according to:

i j+ 1 1 09Y;
yitt = (1T (e, J B1
jm 2j+1 €er Jm+e0j+1 60 ( )
im Yim
+ e¢j +1 sinH)
Y! = —e mn Y oY;

)
= > —e
m G ) sind G+ 1) 08

Njm @ij)

-1 J
a6 °75 sinf

im- A2 +1

1
(erij +eg—
J
In addition the following property is used this paper

Ygfm = (e, X Va)Yjm (B2)

JG+1)
The vector spherical harmonics obey the orthogonality
property

T 2
/0 /0 Y3 YL sin0d0dp = 8,50 0mm  (B3)

and the following relations for the divergence operator

: i+1 (d  j+2
V'[fYﬁnl] - 2Jj+1(% Jr )ij (B4)
v [5Yd.] = 0

-1 J d _j—1
V'[ijm] - 2j+1<$_7>fyjm

and the curl operator!®:

1l J 4 j+2 j
v [fYi] = 2j+1(dr+ 7 ) I (B9)
Vx[fyi ] = i)t (LI pyst
m] = " oiri\ar ")) Tim
j+1 /d j+1 1
da Y’
o 2j+1(dr+ I i

V x [ngi;l] =

where f = f(r). We also give the connection between the
spherical harmonics and associated Legendre functions:

Yim(6,6) = jim)zp.m (cosf) expime (B6)

APPENDIX C: ROTATION OF ELEMENTAL
MAGNETIC FIELDS

In section VII we performed rotations upon elemental
fields to obtain our simulated fields. Each elemental field
B, is a sum of Legendre polynomials of the form B, =
> 1 a1P(cosf). The rotation operator R, = R(¢y,6;)
acting on a Legendre polynomial P;(cos§) yields

RyPi(cost) = Fi(6,)Fi(0) (C1)
L (1 =m)!
I+ m)!

+ 2

m=1

P™(0,)P[™(0) cosm(¢r — ¢)
so that the rotated elemental field becomes

+ zgal%mwnpﬁw) cosm(gy — 9)

The fields due to each elemental current can then be
added at the sampling points for the simulated field mea-
surement.

APPENDIX D: TIKHONOV REGULARIZATION

In this appendix we give a brief review of Tikhonov
Regularization as it applies to this paper. An excellent
reference can be found in chapter 5 of'5. We assume one
wants to invert the following linear equation given the
data d.



Af=d (D1)
We will also assume that the matrix A is ill-conditioned.
Tikhonov regularization of equation (D1) obtains a well-
conditioned solution by minimizing the following func-
tional:

fr = arg min{N’||L(f — f*)|” + [ld - Af|’} (D2)
where A is the regularization parameter and f*° is a
default solution. If A is large the data misfit term,
|ld — Af]|?, becomes negligible and the solution tends
to f°° in which high frequency behavior has been effec-
tively smoothed, regardless of its origin. If ) is small the
solution tends to the solution of equation (D1) which is
presumably ill-conditioned resulting in noise amplifica-
tion. A practical choice of the regularization parameter

10

balances smoothing of the solution against reduction of
the amplified high frequency noise in the data. Minimiz-
ing equation (D2) one obtains

(NL'L+ A'A) f = NX’L'Lf>* + A'd . (D3)
For systems of equations which are relatively small (a few
hundred equations) this equation may be directly solved
for f. For larger systems one may employ searching or
iterative algorithms.
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