RMSD and Symmetry

Evangelos A. Coutsias, Michael J. Wester ${ }^{\dagger}$

February 8, 2019

Abstract

A common approach for comparing the structures of biomolecules or solid bodies is to translate and rotate one structure with respect to the other to minimize the pointwise root-mean-square deviation (RMSD). We present a new, robust numerical algorithm that computes the RMSD between two molecules or all the mutual RMSDs of a list of molecules and, if desired, the corresponding rotation matrix in a minimal number of operations as compared to previous algorithms. The RMSD gradient can also be computed. We address the problem of symmetry, both in alignment (possible alternative alignments due to indistinguishable atoms) as well as geometry. In the latter case, it is possible to have degenerate superposition. A necessary condition is optimal superimposability to one's mirror image. Double (respectively, triple) degeneracy results in a 1- (respectively, 2)-parameter family of rotations leaving the superposition invariant. The software, frmsd, is freely available at http://www.ams.stonybrook.edu/~coutsias/codes/frmsd.tgz.

Keywords: optimal superposition, alignment, symmetry, chirality, degeneracy.

[^0]

Structure similarity is commonly determined by computing the minimal pointwise root-mean-square deviation (RMSD). We present a new algorithm for computing RMSDs and superposed molecules robustly in a minimal number of operations as compared to previous algorithms. In addition, the problem of symmetry is addressed, both in geometry (such as degenerate superposition) as well as alignment (alternatives due to indistinguishable atoms: left figure alignment corresponds to geometric similarity; on right, improper match results from random relabeling).

INTRODUCTION

The Root Mean Squared Distance (RMSD) is one of the most commonly used expressions for the structural (dis)similarity between two conformations of a molecule. The calculation of the RMSD involves two main steps: (i) alignment and (ii) optimal superposition. Aligning two conformations means establishing a 1-1 correspondence between equivalent atoms in each conformation. Optimal superposition is found by rotating and translating one structure so that the weighted sum of the squares of the distances between equivalent atoms in the two structures is minimized. The optimal translation simply superimposes the barycenters of the two point sets, while the optimal rotation requires solving a 4×4 eigenvalue problem for the quaternion giving the optimal rotation about the common barycenter ${ }^{1}$. Alternatively a method based on the SVD of a 3×3 matrix may be employed ${ }^{2}$.

Most available algorithms for the computation of RMSD assume a pre-existing 1-1 alignment among pairs of points on the two objects. For typical RMSD calculations between pairs of protein structures, a $\mathrm{C} \alpha$-based backbone RMSD computation may proceed regardless of specific sequence composition, simply on the basis of identical chain lengths for the two proteins under comparison, aligning atoms based on similar residue indices. However, in sidechain refinement comparisons involving all-heavy atoms in a protein or in applications such as docking in which the details of sidechain placement are critical for contact formation, symmetry matching must be considered, where certain ring structures or atoms at the ends of certain sidechains may introduce classes of valid alternative alignments. These alternatives arise by noting that the labeling of indistinguishable atoms is arbitrary, resulting in non-unique RMSD assignments. For example, the ε oxygens in a glutamic acid residue are indistinguishable. Similarly, in comparing two different conformations of a tyrosine residue, two distinct alignments involving indistinguishable ring atoms will generally result in two different RMSD values. Clearly, all-heavy atom RMSD comparisons for proteins are not relevant unless such residue symmetries are fully accounted for ${ }^{3}$. This becomes even more serious in comparisons of other complex molecules composed of indistinguishable sub-units, arranged in a symmetric graph. Clearly, the alignment giving the lowest RMSD must be considered in each case.

The mathematical statement of the basic problem (presupposing an alignment and having both point-sets shifted to barycentric coordinates for simplicity) is:
Given an ordered set of vectors \mathbf{y}_{k} (target) and a second set \mathbf{x}_{k} (model), $1 \leq k \leq N$, both having barycenters at the origin, find an orthogonal transformation \mathcal{U} such that the residual E (weighted by w_{k})

$$
\begin{equation*}
E:=\frac{1}{N} \sum_{k=1}^{N} w_{k}\left|\mathcal{U} \mathbf{x}_{k}-\mathbf{y}_{k}\right|^{2} \tag{1}
\end{equation*}
$$

is minimized. The weight factor w_{k} permits emphasizing various parts of the structure, such as the backbone of a polypeptide. Often, the weights will be equal to one. Since the weights can be incorporated into \mathbf{x}_{k} and \mathbf{y}_{k}, we omit w_{k} below.

Two direct methods are known for computing the RMSD after conversion to barycentric coordinates. The first, commonly referred to as the SVD method ${ }^{2}$ (or Kabsch's method ${ }^{4}$), computes the RMSD in terms of the singular values of a 3×3 matrix, while the second, based on quaternions, finds the RMSD in terms of the largest eigenvalue of a symmetric, traceless 4×4 matrix 5,6. In the latter case, the optimal superposition is expressed by the leading eigenvector, viewed as a unit quaternion.

Several algorithms exist for the efficient computation of the RMSD. We mention but a few: Tietze ${ }^{5}$, Kearsley ${ }^{6}$, Kneller ${ }^{7}$, Coutsias et al. ${ }^{1}$, Theobald and Liu et al. ${ }^{8-10}$. In previous works ${ }^{1,11}$, we proved the mathematical equivalence between the SVD and quaternion methods. A survey of the extensive related literature was presented there and we refer the reader to it.

The most efficient algorithm for computing the RMSD (and rotation) to date appears to be the approach suggested by Theobald ${ }^{8}$ as implemented in the algorithm qrmsd 9 : since the 4×4 matrix is symmetric and traceless, its largest eigenvalue can be robustly computed from the characteristic polynomial using a Newton iteration; once the eigenvalue is known to adequate precision, the corresponding eigenvector can be computed. From the eigenvector, the optimal rotation, presented as either a quaternion or a rotation matrix, can then be easily produced.

In this note, we show how to achieve an additional, substantial speedup by taking advantage of the algebraic equivalence between the SVD and quaternion approaches. In^{1} simple
formulas were found, relating the coefficients of the characteristic polynomial of the 4×4 matrix that appears in the quaternion method to the coefficients of the characteristic polynomial of the 3×3 matrix appearing in the SVD method (the latter is the resolvent cubic of the former). In this paper we present a new algorithm, frmsd, that exploits this correspondence to substantially reduce the operation count involved in the RMSD computation. Our algorithm, like that of Theobald ${ }^{8}$ and Liu et al. ${ }^{9}$, is based on solving the characteristic polynomial for the largest eigenvalue. The main differences are: the use of the equivalent cubic formulation in ${ }^{1}$ to arrive at more compact forms of the polynomial coefficients; and the use of symmetric maximal pivoting for finding the corresponding eigenvector efficiently and stably, again in a minimum of operations as compared to the approach used in Liu et al. ${ }^{9}$, even when degeneracy is present. We demonstrate the speed of frmsd by comparison to qrmsd ${ }^{9}$ in Supporting Information A.

An important feature of our algorithm is that it is designed to efficiently compare large numbers of molecules, for example, all the molecules in a list with either the first or with each other, so conversion to barycentric coordinates is done initially for all molecules. Furthermore, the algorithm allows for encoding indistinguishable atom equivalence and incorporates an efficient combinatoric search through a table of pre-specified symmetries to discover the alignment producing the minimal RMSD between two structures, with matrix recalculation involving only the transposed atoms. It has been been argued ${ }^{3}$ that for molecules of more than ≈ 100 atoms, e.g., for all-heavy atom RMSD calculations for even small proteins, the dominant part of the operational cost is the setup of the 4×4 RMSD matrix, overwhelming the rest of the calculation. However, as Figure 3 shows, accounting for residue symmetries in most cases alters that picture, making the search for the optimal alignment the dominant part, provided the matrix setup is optimized against redundancy. We demonstrate in Figure 4 the effect of accounting for sidechain symmetries in a high-resolution decoy-set based on all-heavy atom comparisons.

Besides alignment symmetries, our implementation takes care of structural symmetry as well: existence of degeneracy may indicate geometric symmetry. Indeed, if the leading positive eigenvalue is degenerate, then there is a continuum of superpositions that results in identical optimal RMSDs. As the 4×4 matrix is traceless, a degeneracy in the leading
positive eigenvalue implies that the most negative eigenvalue must be of greater absolute value (or, equal if also degenerate). Thus, a necessary condition for such degeneracy is that the enantiomeric superposition is optimal, so that a mirror image of one structure has a better fit with the other structure. The calculation of eigenvectors presented here is capable of detecting doubly or triply degenerate leading eigenvalues and of adapting the leading eigenspace calculation accordingly. Our method takes advantage of the special structure of the quaternion based eigenproblem by first performing symmetric pivoted Gauss elimination to robustly reduce the system size, and then by considering a judiciously chosen set of minors to complete the calculation while detecting the possibility of degeneracy. Thus, our algorithm is guaranteed to complete in all cases. In this context, we will exhibit examples of degenerate superposition. Our algorithm is publicly available under an open source BSD license at http://www.ams.stonybrook.edu/~coutsias/codes/frmsd.tgz.

METHODOLOGY

The Optimal Rotation

$$
\begin{equation*}
\mathbf{r}=\mathcal{U} \overline{\mathbf{x}}-\overline{\mathbf{y}}:=\mathcal{U} \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_{k}-\frac{1}{N} \sum_{k=1}^{N} \mathbf{y}_{k} \tag{2}
\end{equation*}
$$

Shifting the two sets, $\left\{\mathbf{x}_{k}\right\}$ and $\left\{\mathbf{y}_{k}\right\}$, to their respective barycenters $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$, we introduce:

$$
\tilde{\mathbf{x}}_{k}:=\mathbf{x}_{k}-\overline{\mathbf{x}}, \quad \tilde{\mathbf{y}}_{k}:=\mathbf{y}_{k}-\overline{\mathbf{y}} .
$$

Below we drop the tildes (i.e., we will assume that both sets have been shifted to bring their respective barycenters to the origin), and then the residual becomes:

$$
\begin{equation*}
E=\frac{1}{N} \sum_{k=1}^{N}\left|\mathcal{U} \mathbf{x}_{k}-\mathbf{y}_{k}\right|^{2} \tag{3}
\end{equation*}
$$

Calculation of the RMSD begins with the product matrix, \mathcal{R} :

$$
\begin{equation*}
\mathcal{R}:=\mathcal{X} \mathcal{Y}^{T}=\sum_{k=1}^{N} \mathbf{x}_{k} \mathbf{y}_{k}^{T} \rightarrow R_{i j}=\sum_{k=1}^{N} x_{i k} y_{j k}, i, j=1,2,3 \tag{4}
\end{equation*}
$$

with $x_{i k}$ denoting the $i^{\text {th }}$ component of \mathbf{x}_{k}, and likewise for $y_{j k}$.

Minimal Residual through Quaternions

The quaternions-based method gives the residual as

$$
\begin{equation*}
N E_{q}=\sum_{k=1}^{N}\left(\left|\mathbf{x}_{k}\right|^{2}+\left|\mathbf{y}_{k}\right|^{2}\right)-2 \mathcal{Q}^{T} \mathcal{F} \mathcal{Q} \tag{5}
\end{equation*}
$$

Here, \mathcal{Q} is the 4 -vector corresponding to the quaternion q that codes the rotation $U=U(q)$. The explicit form of the matrix \mathcal{F} in terms of the matrix elements of the product matrix \mathcal{R} (4) is
$\mathcal{F}=$

$$
\left(\begin{array}{cccc}
R_{11}+R_{22}+R_{33} & R_{23}-R_{32} & R_{31}-R_{13} & R_{12}-R_{21} \tag{6}\\
R_{23}-R_{32} & R_{11}-R_{22}-R_{33} & R_{12}+R_{21} & R_{13}+R_{31} \\
R_{31}-R_{13} & R_{12}+R_{21} & -R_{11}+R_{22}-R_{33} & R_{23}+R_{32} \\
R_{12}-R_{21} & R_{13}+R_{31} & R_{23}+R_{32} & -R_{11}-R_{22}+R_{33}
\end{array}\right) .
$$

In the quaternion formulation, the problem is reduced to finding the extrema of a quadratic form $\mathcal{Q}^{T} \mathcal{F} \mathcal{Q}$ in the four variables $q_{i}, i=0,1,2,3$, subject to the constraint $\mathcal{Q}^{T} \mathcal{Q}=1$. Note that here we are using the vector \mathcal{Q}, so that the squared quaternion norm $q^{c} q:=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}$ is written equivalently as $\mathcal{Q}^{T} \mathcal{Q} . \mathcal{Q}^{T} \mathcal{F} \mathcal{Q}$ is the standard Rayleigh quotient for a symmetric matrix \mathcal{F}, and the maximum value achieved by $\mathcal{Q}^{T} \mathcal{F} \mathcal{Q}$ is equal to its largest eigenvalue. Thus, the desired minimization leads to the eigenproblem

$$
\begin{equation*}
\mathcal{F} \mathcal{Q}=\lambda \mathcal{Q} \tag{7}
\end{equation*}
$$

We see that the extremum λ is equal to one of the eigenvalues of a 4×4 symmetric, traceless matrix, and the corresponding eigenvector gives one of the candidate rotations that extremize the residual. We are thus led to the following expression for the best-fit RMSD e_{q} :

$$
e_{q}=\sqrt{\min _{\|q\|=1} E_{q}}=\sqrt{\frac{\sum_{k=1}^{N}\left(\left|\mathbf{x}_{k}\right|^{2}+\left|\mathbf{y}_{k}\right|^{2}\right)-2 \lambda_{\max }}{N}}
$$

where $\lambda_{\text {max }}$ is the maximum eigenvalue of \mathcal{F}. The quaternion corresponding to a rotation by angle θ about a (unit) axis \mathbf{k} is $q=(\cos \theta, \sin \theta \mathbf{k}$, while the rotation matrix $\mathcal{U}(q)$ in terms
of the quaternion q is given by

$$
\mathcal{U}(q)=\left(\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \tag{8}\\
2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right)
$$

see Eq. (35) in ${ }^{1}$. If a rotation reflection is allowed, then the minimal eigenvalue λ_{4} must also be considered. If $-\lambda_{4}>\lambda_{1}$, then the improper rotation $-\mathcal{U}\left(q_{4}\right)$ will give a better fit than the proper rotation $\mathcal{U}\left(q_{1}\right)$. This is easily seen, since the matrix \mathcal{F} is linear in both \mathcal{X} and \mathcal{Y}, therefore the substitution $\mathcal{X} \rightarrow-\mathcal{X}$ changes the sign of the eigenvalues. By examining the connection between the quaternion and SVD based methods in the next section, we will see how these cases relate to the sign of the determinant of \mathcal{R}.

Minimal Residual through SVD

A method proposed in 1976 by Kabsch ${ }^{4,12}$ (and used previously in factor analysis studies ${ }^{13}$) produces the residual in terms of the singular values of the product matrix, \mathcal{R} : Consider the SVD of the matrix \mathcal{R} :

$$
\mathcal{R}=\left(\begin{array}{lll}
R_{11} & R_{12} & R_{13} \tag{9}\\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right)=\mathcal{V} \Sigma \mathcal{W}^{T}
$$

where \mathcal{V}, \mathcal{W} are the matrices of left and right singular vectors, respectively, and Σ is the positive semi-definite diagonal matrix of singular values ${ }^{2}$.

The minimal residual is found as

$$
E_{\min }=\frac{1}{N} \sum_{k=1}^{N}\left|\mathbf{x}_{k}\right|^{2}+\left|\mathbf{y}_{k}\right|^{2}-\frac{2}{N}\left(\sigma_{1}+\sigma_{2}+\chi \sigma_{3}\right)
$$

where $\chi=\operatorname{sgn}(\operatorname{det} \mathcal{R})$, and σ_{i} is the $i^{\text {th }}$ singular value of \mathcal{R} with $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq 0$. The rotation matrix that brings the model to optimal superposition with the target is then

$$
\mathcal{U}=\mathcal{W}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \chi
\end{array}\right) \mathcal{V}^{T}
$$

The rotation aligns the right and left singular vectors of \mathcal{R} when the determinant of \mathcal{R} is positive, while it anti-aligns the third pair of singular vectors $\mathbf{w}_{3}, \mathbf{v}_{3}$ otherwise. Cases where
an improper rotation, i.e., a rotation combined with a reflection, is desired are also easily treated.

It can be shown that all the extrema of the residual are found as:

$$
\begin{equation*}
N E_{s}=\sum_{k=1}^{N}\left|\mathbf{x}_{k}\right|^{2}+\left|\mathbf{y}_{k}\right|^{2}-2 \sum_{i=1}^{3} \chi_{i s} \sigma_{i}, s=1,2,3,4 \tag{10}
\end{equation*}
$$

with $\chi_{1 s} \chi_{2 s} \chi_{3 s}=\operatorname{sgn}(\operatorname{det} \mathcal{R})$. The corresponding rotation operators are given by

$$
\mathcal{U}_{s}=\mathcal{W}\left(\begin{array}{lll}
\chi_{1 s} & & \\
& \chi_{2 s} & \\
& & \chi_{3 s}
\end{array}\right) \mathcal{V}^{T}
$$

Degeneracy is possible for the optimum rotation if $\operatorname{det} \mathcal{R}<0$ and $\sigma_{2}=\sigma_{3}$ since then \mathcal{U}_{1} and \mathcal{U}_{2} give the same minimal residual. In this case it turns out that there is a one-parameter family of rotations that also give the same minimal residual. In fact, in this case the singular vectors corresponding to the equal singular values form a subspace, any orthonormal basis of which would serve equally well to form the rotation matrix. The enantiomeric superposition may give a lesser residual, unless $\operatorname{det} \mathcal{R}<0$ and $\sigma_{2}=\sigma_{3}=0$, in which case the enantiomeric superposition is also doubly degenerate. Triple degeneracy for the optimal superposition is possible if $\operatorname{det} \mathcal{R}<0$ and $\sigma_{1}=\sigma_{2}=\sigma_{3}>0$. In that case, there is a two-parameter family of superpositions for which the minimal residual remains constant. In this situation, the enantiomeric superposition is guaranteed to give a smaller value of the residual.

In general, unless some of the σ_{i} vanish, in the negative correlation case, a rotationreflection will always give a better fit. Indeed, it is easy to see that the improper rotation $\mathcal{U}^{\prime}=-\mathcal{U}_{4}$ will produce the least residual. Degeneracy and related issues are easiest to handle when this method is contrasted to the quaternion method of the previous subsection; they are also discussed in the Degenerate Superposition subsection later.

Chirality and the Cubic-Quartic Relationships

The 9 quantities appearing in the matrix \mathcal{R} enter both in $\mathcal{R} \mathcal{R}^{T}$ and in the traceless matrix \mathcal{F} (6). In 1 we show equivalence of the methods by proving that the set of eigenvalues of \mathcal{F}, λ_{i} with $i=1,2,3,4$, is the same as the set of values $\sum_{j=1}^{3} \chi_{1 j} \sqrt{\mu_{j}}$, where $\mu_{j}, j=1,2,3$ are the
eigenvalues of $\mathcal{R} \mathcal{R}^{T}$. This is true because the characteristic polynomial of $\mathcal{R} \mathcal{R}^{T}, P_{3}(z):=$ $\sum_{0}^{3} b_{j} z^{j}$, must be the resolvent cubic of $P_{4}(\lambda):=\sum_{0}^{4} a_{j} \lambda^{j}$, the characteristic polynomial of \mathcal{F}. It is well known that the quartic equation in canonical form

$$
\begin{equation*}
\lambda^{4}+6 p \lambda^{2}+4 q \lambda+r=0 \tag{11}
\end{equation*}
$$

has roots $\lambda_{i}, i=1,2,3,4$, that can be expressed as

$$
\lambda_{i}=\sum_{k=1}^{3} \chi_{i k} \sqrt{z_{k}}
$$

with $\chi_{i k}= \pm 1$ and $\chi_{i 1} \chi_{i 2} \chi_{i 3}=\operatorname{sgn}(q)$, provided the $z_{k}, k=1,2,3$ are the roots of the resolvent cubic

$$
\begin{equation*}
z^{3}+3 p z^{2}+\frac{1}{4}\left(9 p^{2}-r\right) z-\frac{1}{4} q^{2}=0 . \tag{12}
\end{equation*}
$$

The characteristic polynomial of (6) clearly has the form (11) since the matrix \mathcal{F} is traceless. With the coefficients p, q, r of the quartic (11) defined in terms of the entries of (6), it is a simple but tedious task, best carried out using a computer algebra system, to verify that the characteristic polynomial of $\mathcal{R} \mathcal{R}^{T}$ will then have the form of the resolvent cubic (12). The verification of this fact, as well as detailed forms of the coefficients of the two characteristic polynomials, computed with the computer algebra system MAPLE, are given in ${ }^{1}$. As can be easily deduced

$$
\begin{gather*}
p:=\frac{a_{2}}{6}=-\frac{1}{3}\|\mathcal{R}\|_{F}^{2} \quad ; \quad q:=\frac{a_{1}}{4}=-2 \operatorname{det} \mathcal{R} \tag{13}\\
b_{2}=-\|\mathcal{R}\|_{F}^{2} \quad ; \quad b_{0}=-(\operatorname{det} \mathcal{R})^{2},
\end{gather*}
$$

while the forms of $r:=a_{0}$ and b_{1} are given in (19). $\|\mathcal{R}\|_{F}^{2}=\sum_{i j}\left|R_{i j}\right|^{2}$ denotes the Frobenius norm ${ }^{2}$.

Given the form of the quartic, it is important to note that the only term that is sensitive to a sign inversion of all the coordinates (i.e., a point-reflection through the origin) is the linear coefficient. Since that term is equal to $-8 \operatorname{det} \mathcal{R}$, we can relate the location of the eigenvalues of \mathcal{F} to the type of best fit and the sign of $\operatorname{det} \mathcal{R}$ to the eigenvalues of \mathcal{F}. The following formulas were derived in ${ }^{14}$ and are given here for easy reference. Throughout we assume $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \lambda_{4}$. Then, $\lambda_{1}>0$ and $\lambda_{4}<0$ unless $\lambda_{i}=0, i=1,2,3,4$. The following properties are easily deduced:

1. If $\left|\lambda_{1}\right|>\left|\lambda_{4}\right|$, then $\operatorname{det} \mathcal{R}>0$ and we have the cases:
(a) $\lambda_{2}, \lambda_{3}, \lambda_{4}<0$ while $\lambda_{1}>0$
(b) $\lambda_{4} \leq \lambda_{3}<0$ and $\lambda_{1} \geq \lambda_{2}>0$. In this case, $\lambda_{1}=\alpha+\rho, \lambda_{2}=\alpha-\rho$, while $\lambda_{4}=-\alpha-r, \lambda_{3}=-\alpha+r$, with $\alpha \geq \rho>r \geq 0$.
2. If $\left|\lambda_{1}\right|<\left|\lambda_{4}\right|$, then $\operatorname{det} \mathcal{R}<0$, and we have the cases:
(a) $\lambda_{1}, \lambda_{2}, \lambda_{3}>0$, while $\lambda_{4}<0$.
(b) $\lambda_{4} \leq \lambda_{3}<0$ and $\lambda_{1} \geq \lambda_{2}>0$. In this case, $\lambda_{1}=\alpha+\rho, \lambda_{2}=\alpha-\rho$, while $\lambda_{4}=-\alpha-r, \lambda_{3}=-\alpha+r$, with $\alpha \geq r>\rho \geq 0$.
3. If $\left|\lambda_{1}\right|=\left|\lambda_{4}\right|$, then also $\left|\lambda_{2}\right|=\left|\lambda_{3}\right|$, and $\operatorname{det} \mathcal{R}=0$.

In case (1), the best fit possible is given by the proper rotation corresponding to q_{1}, the quaternion-eigenvector of the leading positive eigenvalue. In case (2), q_{1} still gives the best fit by a proper rotation, but a reflection followed by a rotation by q_{4} would give a better fit. In case (3), either a proper rotation by q_{1} or a reflection followed by a rotation by q_{4} would produce equally good fits. The determinant of the product matrix vanishes in this case. However, the point sets are not necessarily planar or mirror-symmetric, so that if a chiral inversion is undesirable, such as in the case of L-amino acid based proteins, the chiral inversion associated with applying q_{4} together with a reflection about the origin is not allowed and the proper rotation associated with q_{1} is the only choice.

We examine now the various cases that arise when two eigenvalues of the matrix \mathcal{F} become equal. The only case of possible interest in applications is when the degeneracy occurs in the leading eigenvalue, λ_{1}, and we limit our attention to it. Comparing the conditions in cases $(1-3)$ we see that if the leading eigenvalue λ_{1} is degenerate, i.e., $\lambda_{1}=\lambda_{2}$, then either $-\lambda_{4}>\lambda_{1}$ and $\operatorname{det} \mathcal{R}<0$ (case 2) or $-\lambda_{4}=\lambda_{1}=-\lambda_{3}=\lambda_{2}$ and $\operatorname{det} \mathcal{R}=0$ (case 3). In case (2a), it is also possible to have triple degeneracy, i.e., $\lambda_{1}=\lambda_{2}=\lambda_{3}$. The corresponding classes of rotations are found by considering the unit sphere in the invariant subspace.

Near a double degeneracy in the leading eigenvalue (i.e., if $\lambda_{1} \approx \lambda_{2}>0$), the oneparameter family of rotations

$$
\mathcal{U}(q(t)):=\mathcal{U}\left(\cos t q_{1}+\sin t q_{2}\right), 0 \leq t<2 \pi
$$

produces near minimal residual for all values of the parameter t. Of course, at the point of degeneracy, all such rotations produce equal, and minimal, residuals since $q(t)$ is also a unit eigenvector of eigenvalue $\lambda_{\max }$. Similarly, the triple eigenvalue case would give a twoparameter family of identical superpositions: if, e.g., $\lambda_{1} \approx \lambda_{2} \approx \lambda_{3}>0$, then the optimal superposition is affected by the two-parameter family of unit quaternions

$$
\mathcal{U}(q(t)):=\mathcal{U}\left(\cos s\left(\cos t q_{1}+\sin t q_{2}\right)+\sin s q_{3}\right), 0 \leq s, t<2 \pi
$$

In such cases, the precise choice of optimal superposition needs to be made keeping in mind any additional requirements inherent in a given situation. For example, in the Nudged Elastic Band method ${ }^{15}$, the above form could serve as an optimal switching function between branches near a degeneracy that would avoid large force fluctuations while remaining close to optimal superposition at all times.

It is easy to translate these cases to the properties of the corresponding singular values. However, in the case of equal eigenvalues, the quaternion method has the advantage that it gives an invariant subspace that is generated by any linear combination of q_{1} and q_{2} (and q_{3}, in case of a triple degeneracy). In the SVD based method, the rotation matrices do not form a linear space and constructing a proper combination is not as readily accomplished.

Degenerate Superposition

The possibility of multiple leading eigenvalues in RMSD comparison has been mentioned in the literature ${ }^{16}$, but explicit examples are not mentioned. Here, we give a few simple examples exhibiting double and triple degeneracy. Besides offering insights into the implications of degeneracy, these also provide examples to demonstrate the performance of our algorithm under degeneracy.

Triple Degeneracy

Consider the two regular tetrahedra, $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with coordinates $A=(1,0,-1 / 2 \sqrt{2})$, $B=(-1 / 2, \sqrt{3} / 2,-1 / 2 \sqrt{2}), C=(-1 / 2,-\sqrt{3} / 2,-1 / 2 \sqrt{2}), D=(0,0,3 / 2 \sqrt{2})$ and $A^{\prime}=$ $(1,0,-1 / 2 \sqrt{2}), B^{\prime}=(-1 / 2,-\sqrt{3} / 2,-1 / 2 \sqrt{2}), C^{\prime}=(-1 / 2, \sqrt{3} / 2,-1 / 2 \sqrt{2}), D^{\prime}=(0,0,3 / 2 \sqrt{2})$,
which are mirror images of each other. The moment and quaternion matrices are

$$
\mathcal{R}=\left(\begin{array}{ccc}
3 / 2 & 0 & 0 \tag{14}\\
0 & -3 / 2 & 0 \\
0 & 0 & 3 / 2
\end{array}\right) \quad, \quad \mathcal{F}=\left(\begin{array}{cccc}
3 / 2 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 \\
0 & 0 & -9 / 2 & 0 \\
0 & 0 & 0 & 3 / 2
\end{array}\right)
$$

We see that the singular values of \mathcal{R} are $3 / 2,3 / 2,3 / 2$ giving the combinations (since the determinant is negative) $-9 / 2,3 / 2,3 / 2,3 / 2$, i.e., a triple degeneracy. We would like to understand the rotations encoded by the four unit quaternions. Examining the eigenvectors of eigenvalue $3 / 2$, we see that the unit-quaternion combinations span the space of all possible rotations about arbitrary axes through the origin on the plane of mirror-symmetry. On the other hand, the single, maximal rotation places all points at their origin-symmetric position. This rotation, followed by a reflection, would of course result in the minimal (0 RMSD) superposition. A similar result is found for all the other regular polyhedra. Double degeneracy on the other hand is more selective, with invariance only with respect to arbitrary rotation about a given axis.

A Bifurcation through Triple Degeneracy

Consider the family of octahedra with vertices $A B C D E F(t)$ where $A(t)=(1,0,0), B(t)=$ $(-1,0,0), C(t)=(0,1,0), D(t)=(1,-1,0), E(t)=(0,0,1+t), F(t)=(0,0,-1-t)$, and consider the RMSD problem to template $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ where $A^{\prime}=A, B^{\prime}=B, C^{\prime}=C$ and $D^{\prime}=D$ but $E^{\prime}=(0,0,-1)$ and $F^{\prime}=(0,0,1)$. For $t=0$, these structures are perfect mirror images of each other about the $x y$ plane. The \mathcal{R} and \mathcal{F} matrices have nonzero elements only along the main diagonal, which are given by $R_{11}=R_{22}=2, R_{33}=-2(1+t)$ for \mathcal{R} and by $F_{11}=2-2 t, F_{22}=F_{33}=2+2 t$ and $F_{44}=-6-2 t$. So as t crosses zero and the deformation turns from oblate $(t<0)$ to a regular octahedron $(t=0)$ to prolate $(t>0)$, the optimal right superposition transits from nondegenerate for $t<0$ (leading eigenvalue of \mathcal{F} is simple) to triply degenerate for $t=0$ with triple eigenvalue $\lambda_{1,2,3}=2$ and eigenvectors $(1,0,0,0)$, $(0,1,0,0)$ and $(0,0,1,0)$, and doubly degenerate for the prolate deformation $(t>0)$ with leading double eigenvalue $\lambda_{1,2}=2+2 t$ and eigenvectors ($0,1,0,0$) and ($0,0,1,0$). Thus, this
corresponds to any quaternion with components $(0, \cos \zeta, \sin \zeta, 0)$, i.e., a rotation by angle $\theta=\pi$ about the Cartesian unit vector $(\cos \zeta, \sin \zeta, 0)$ where ζ is an arbitrary parameter.

We see that for oblate deformation there is a unique preferred match which associates the four vertices in the $x y$-plane, while the (nearer-placed) vertices along the z-axis remain mismatched. For the triply degenerate case, the optimal match happens indifferently for any arbitrary rotation about an arbitrary axis on the $x y$-plane. For the doubly degenerate prolate case, the preferred match perfectly aligns the z-axis points while the four vertices on the $x y$-plane are antialigned, which is neutral as regards the actual net rotation about the z-axis.

More generally, given a set of points $p_{k}, k=1, \ldots, n+2$ where $p_{k}=\left(\cos \theta_{k}, \sin \theta_{k}, 0\right), k=$ $1, \ldots, n ; p_{n+1}=(0,0, d), p_{n+2}=(0,0,-d)$ and the mirror symmetric system $p_{k}^{\prime}=\left(\cos \theta_{k},-\sin \theta_{k}, 0\right), k=1, \ldots, n ; p_{n+1}^{\prime}=(0,0, d), p_{n+2}^{\prime}=(0,0,-d)$ where $\theta_{k}=2 k \pi / n$ we can show that

$$
n E\left(p, p^{\prime}\right)=\left\{\begin{array}{ll}
2 n, & d \geq \sqrt{n} / 2 \\
8 d^{2}, & d<\sqrt{n} / 2
\end{array} .\right.
$$

In fact, we have

$$
\sum_{k=1}^{n+2}\left|p_{k}-p_{k}^{\prime}(\phi)\right|^{2}=2 n
$$

where $p_{k}^{\prime}(\phi), k=1, \ldots, n$ are the p_{k}^{\prime} rotated by an arbitrary angle ϕ about the z-axis. This follows from the easily proved identity:

$$
\sum_{k=1}^{n}\left|z_{k}-e^{i \phi} \bar{z}_{k}\right|^{2}=2 n, z_{k}=e^{2 i k \pi / n}
$$

which shows that on the plane the RMSD between a regular polygon and its mirror image is independent of rotation of one of them about the common center. So, when the two antipodal atoms are far enough above and below the plane, the RMSD between the two sets becomes degenerate with optimal superposition found when these two atoms are exactly matched on the z axis, while the set of the other n atoms can be rotated arbitrarily about the z -axis without changing the RMSD. As the two points along the z axis get closer, the figure undergoes a bifurcation through triple degeneracy when $d=\sqrt{n} / 2$ and for lesser values of d the matching becomes nondegenerate with precise superposition of the polygonal part and anti-matching of the polar points.

The Coefficients of the Characteristic Polynomial and the Computation of the Leading Eigenvalue

If it is desired to find all the eigenvalues and eigenvectors of the RMSD matrix, then it appears that the method of choice would be to apply the QR iteration to the RMSD matrix \mathcal{F}, and the SVD method would be a close competitor. There is no clear conceptual advantage to either method if one pays attention to the chirality of the singular vector matrices as was pointed out in ${ }^{11}$. For most practical applications, we are chiefly interested in the optimal superposition residual and in some cases on the attendant rotation. As was pointed out by Theobald ${ }^{8}$, the leading eigenvalue computation may be performed efficiently by locating the maximal positive root of the characteristic polynomial of the quaternion matrix \mathcal{F}. Here, the quaternion method is clearly superior, since determining the minimal residual using the SVD method still requires finding all the singular values. However, it turns out that forming the characteristic polynomial of the normal equation matrix $\mathcal{R} \mathcal{R}^{T}$ does offer a substantial algorithmic advantage. In our approach, we use the relationship among the coefficients of the resolvent cubic

$$
\begin{equation*}
z^{3}-A_{2} z^{2}+A_{1} z-A_{0}^{2}:=z^{3}+3 p z^{2}+\frac{1}{4}\left(9 p^{2}-r\right) z-\frac{1}{4} q^{2}=0 \tag{15}
\end{equation*}
$$

and its quartic, written in the form

$$
\begin{equation*}
\lambda^{4}+K_{2} \lambda^{2}+K_{1} \lambda+K_{0}:=\lambda^{4}+6 p \lambda^{2}+4 q \lambda+r=0 . \tag{16}
\end{equation*}
$$

By Eq. (13), the coefficients $K_{i}, i=0,1,2$ of the quartic are found as

$$
\begin{equation*}
K_{0}=r=A_{2}^{2}-4 A_{1}, K_{1}=4 q=-8 \operatorname{det} \mathcal{R}=8 A_{0}, K_{2}=6 p=-2 A_{2} \tag{17}
\end{equation*}
$$

so that

$$
\begin{equation*}
K_{1}=-8\left[R_{11}\left(R_{22} R_{33}-R_{23} R_{32}\right)+R_{12}\left(R_{23} R_{31}-R_{21} R_{33}\right)+R_{13}\left(R_{21} R_{32}-R_{22} R_{31}\right)\right] \tag{18}
\end{equation*}
$$

For the other two coefficients, form the intermediate expressions (coefficients of the symmetric matrix $\mathcal{D}=\mathcal{R} \mathcal{R}^{T}$) so

$$
\begin{aligned}
D_{i j} & =\sum_{k=1}^{3} R_{i k} R_{j k}, i \leq j=1,2,3 \\
A_{2} & =\operatorname{tr} \mathcal{D} \\
A_{1} & =D_{11}\left(D_{22}+D_{33}\right)+D_{22} D_{33}-D_{12}^{2}-D_{13}^{2}-D_{23}^{2}
\end{aligned}
$$

Then

$$
\begin{equation*}
K_{2}=-2 A_{2}, \quad K_{0}=A_{2}^{2}-4 A_{1} \tag{19}
\end{equation*}
$$

comparing the formulas for the coefficients of the quartic with those resulting from direct evaluation of the characteristic polynomial of the matrix \mathcal{F} (as given, e.g., in ${ }^{9}$).

$$
\begin{gathered}
K_{2}=-2 \operatorname{tr} \mathcal{D}=-2\left(R_{11}^{2}+R_{12}^{2}+R_{13}^{2}+R_{21}^{2}+R_{22}^{2}+R_{23}^{2}+R_{31}^{2}+R_{32}^{2}+R_{33}^{2}\right) \\
K_{1}=-8 \operatorname{det} \mathcal{R}=8\left(R_{11} R_{23} R_{32}+R_{22} R_{31} R_{13}+R_{33} R_{12} R_{21}\right)-8\left(R_{11} R_{22} R_{33}+R_{23} R_{31} R_{12}+R_{32} R_{21} R_{13}\right) \\
K_{0}=C_{1}+C_{2}+C_{3}+C_{4}+C_{5}+C_{6}
\end{gathered}
$$

where

$$
\begin{aligned}
C_{1}= & \left(R_{12}^{2}+R_{13}^{2}-R_{21}^{2}-R_{31}^{2}\right)^{2} \\
C_{2}= & {\left[-R_{11}^{2}+R_{22}^{2}+R_{33}^{2}+R_{23}^{2}+R_{32}^{2}-2\left(R_{22} R_{33}-R_{23} R_{32}\right)\right] } \\
& \times\left[-R_{11}^{2}+R_{22}^{2}+R_{33}^{2}+R_{23}^{2}+R_{32}^{2}+2\left(R_{22} R_{33}-R_{23} R_{32}\right)\right] \\
C_{3}= & {\left[-\left(R_{13}+R_{31}\right)\left(R_{23}-R_{32}\right)+\left(R_{12}-R_{21}\right)\left(R_{11}-R_{22}-R_{33}\right)\right] } \\
& \times\left[-\left(R_{13}-R_{31}\right)\left(R_{23}+R_{32}\right)+\left(R_{12}-R_{21}\right)\left(R_{11}-R_{22}+R_{33}\right)\right] \\
C_{4}= & {\left[-\left(R_{13}+R_{31}\right)\left(R_{23}+R_{32}\right)-\left(R_{12}+R_{21}\right)\left(R_{11}+R_{22}-R_{33}\right)\right] } \\
& \times\left[-\left(R_{13}-R_{31}\right)\left(R_{23}-R_{32}\right)-\left(R_{12}+R_{21}\right)\left(R_{11}+R_{22}+R_{33}\right)\right] \\
C_{5}= & {\left[\left(R_{12}+R_{21}\right)\left(R_{23}+R_{32}\right)+\left(R_{13}+R_{31}\right)\left(R_{11}-R_{22}+R_{33}\right)\right] } \\
& \times\left[-\left(R_{12}-R_{21}\right)\left(R_{23}-R_{32}\right)+\left(R_{13}+R_{31}\right)\left(R_{11}+R_{22}+R_{33}\right)\right] \\
C_{6}= & {\left[\left(R_{12}+R_{21}\right)\left(R_{23}-R_{32}\right)+\left(R_{13}-R_{31}\right)\left(R_{11}-R_{22}-R_{33}\right)\right] } \\
& \times\left[-\left(R_{12}-R_{21}\right)\left(R_{23}+R_{32}\right)+\left(R_{13}-R_{31}\right)\left(R_{11}+R_{22}-R_{33}\right)\right]
\end{aligned}
$$

We see that the former involves 60 flops (24 additions and 36 multiplications), while the latter requires 89 flops (46 additions and 43 multiplications), i.e., the cubic based approach involves 33% fewer floating point operations than finding the coefficients from a straightforward expansion of the matrix \mathcal{F}. On the other hand, we do need to form the matrix \mathcal{F} explicitly when the computation of the eigenvectors is also desired, involving additional floating point operations (12 additions). We note that the purely $4^{\text {th }}$ order approach does evaluate all the matrix elements in the process of computing the polynomial coefficient, so this additional
overhead only affects the mixed approach. Nevertheless, even when eigenvectors are required, the mixed approach is 25% more efficient than the pure quartic approach. So hinging on the need to compute the optimal rotation matrix in addition to computing the RMSD, the mixed approach is more efficient in terms of flops required per matrix setup by $25-33 \%$. We have found that implementation details (discussed at length in Supporting Information A) are as important for performance.

Finally, we give a description of the Newton iteration for computing the maximum eigenvalue $\left(\lambda_{\max }\right)$, which is efficiently implemented in the form $x_{n+1}=\left(x_{n} f^{\prime}\left(x_{n}\right)-f\left(x_{n}\right)\right) / f^{\prime}\left(x_{n}\right)$:

Choose the initial iterate

$$
x_{0}=\frac{1}{2} \sum_{k=1}^{N}\left(\left|\mathbf{x}_{k}\right|^{2}+\left|\mathbf{y}_{k}\right|^{2}\right)
$$

which can be seen to be an upper bound for $\lambda_{\max }$ (since the RMSD is always non-negative). The Newton iteration is then
$k=0 ; \quad s=1$
while $s \geq \varepsilon_{\text {Newton }}\left|x_{k}\right|$ and $k<k_{\text {max }}$

$$
X_{2}=x_{k}^{2}
$$

$$
a=K_{2}+X_{2}
$$

$$
F=a X_{2}+K_{1} x_{k}+K_{0}
$$

$$
\Delta f=K_{1}+2 x_{k}\left(a+X_{2}\right)
$$

$$
\text { if }|\Delta f| \leq \varepsilon_{\Delta f} \text { and }|F| \leq \varepsilon_{\Delta f} \text { then }
$$

break (out of the while loop)
$s=F / \Delta f$
$x_{k+1}=x_{k}-s$
increment k
$e=\sqrt{\frac{2}{N}\left|x_{k}-x_{0}\right|}$
This implementation requires 5 additions, 1 subtraction, 6 multiplies, 1 division, 3 floating point comparisons and 3 absolute values per iteration. Typical conditions give convergence within a tolerance of 10^{-14} after roughly 5-10 iterations.

Computing the Optimal Rotation

Once the maximal eigenvalue λ_{1} is found, the computation of the corresponding rotation to bring the two structures to optimal superposition requires finding the corresponding eigenvector. A straightforward approach (employed, e.g., by Liu et al. ${ }^{9}$) is to look for the null vector of the matrix \mathcal{A} :

$$
\mathcal{A} q=\left(\mathcal{F}-\lambda_{1} \mathcal{I}\right) q=0, q^{T} q=1
$$

in the form of the minors $A_{i k}$ of the elements $a_{i k}$ of one of the rows, say the first. Indeed, given the matrix \mathcal{A},

$$
\sum_{i} a_{i j} A_{i k}=\delta_{j k} \operatorname{det} \mathcal{A}
$$

so that $v_{i k}=\left(A_{i k}\right), k=1,2,3,4$ gives a null vector in terms of the elements of the $i^{\text {th }}$ row.
Of course, there is no a priori guarantee that these will be nonsingular, so this procedure comes with the (admittedly small!) risk of needing to repeat the calculation for other rows until a nonvanishing eigenvector is found. If the leading eigenvalue is simple, then there is at least one nonvanishing 3×3 minor, and this procedure eventually will correctly calculate the null vector, while in the case of degeneracy (double or triple leading eigenvalue), this procedure will fail. However, even when it succeeds, this approach is rather costly, involving the computation of four 3×3 determinants at best, or $4 \times(5$ additions +9 multiplies $)=$ 56 flops. By taking advantage of the trace-free character of the matrix, we may proceed in two stages, performing first a step of symmetric Gauss elimination about the maximal diagonal element (one such non-zero element of maximal size is guaranteed to exist for \mathcal{A}) and then looking for a nontrivial set of 2×2 minors of the reduced matrix. This procedure can be designed so it efficiently tests for degeneracy at each step. It is also straightforward to produce a full basis of the invariant subspace of the leading eigenvalue. In our algorithm, as it is currently implemented, we limit the calculation to just one candidate eigenvector, although we do determine the order of degeneracy. We note that the convergence of Newton's method deteriorates at a degenerate eigenvalue, and so requires special treatment to achieve the necessary accuracy.

We give a brief description of the process; for simplicity, we assume $a_{11} \neq 0$ and that this first diagonal entry of the matrix \mathcal{A} is also the largest diagonal element in absolute value. If
the latter is not true, we perform a symmetric row-column permutation to make it so. We introduce the elimination matrix

$$
\mathcal{L}=\mathcal{I}-\ell \mathbf{e}_{1}^{T}
$$

where $\ell^{T}=\left(\begin{array}{llll}0 & l_{2} & l_{3} & l_{4}\end{array}\right)$ with $l_{i}=a_{i 1} / a_{11}$ and $\mathbf{e}_{1}^{T}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$. We perform one step of symmetric Gauss elimination on the symmetric matrix \mathcal{A} :

$$
\mathcal{L} \mathcal{A} \mathcal{L}^{T}\left(\mathcal{L}^{T}\right)^{-1} \mathbf{v}=0 \rightarrow \mathcal{S} \mathbf{y}=0
$$

where

$$
\mathcal{S}=\left(\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \tag{20}\\
0 & s_{22} & s_{23} & s_{24} \\
0 & s_{23} & s_{33} & s_{34} \\
0 & s_{24} & s_{34} & s_{44}
\end{array}\right), \quad \mathbf{v}=\mathcal{L}^{T} \mathbf{y}=\left(\begin{array}{c}
-l_{2} y_{2}-l_{3} y_{3}-l_{4} y_{4} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)
$$

with $s_{i j}=a_{i j}-a_{1 j} l_{i}=a_{i j}-a_{1 j} a_{i 1} / a_{11}, i, j=2,3,4$, and the symmetry of the $s_{i j}$ follows from the symmetry of the $a_{i j}$. In this way, we have reduced the problem to that of finding the null vector for a symmetric 3×3 matrix:

$$
\tilde{\mathcal{S}} \tilde{\mathbf{y}}=0 \rightarrow\left(\begin{array}{lll}
s_{22} & s_{23} & s_{24} \tag{21}\\
s_{23} & s_{33} & s_{34} \\
s_{24} & s_{34} & s_{44}
\end{array}\right)\left(\begin{array}{l}
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=0
$$

Now, if the leading eigenvalue is simple, at least one of the 2×2 minors of $\tilde{\mathcal{S}}$ will be nonzero. If all such minors vanish, then the eigenvalue is at least double. A triple degeneracy occurs if and only if $\tilde{\mathcal{S}}=0$. Consequently, to compute the null vector $\tilde{\mathbf{y}}$ we have:
$M_{22}=s_{33} s_{44}-s_{34}^{2}, \quad M_{23}=s_{34} s_{24}-s_{23} s_{44}, \quad M_{24}=s_{23} s_{34}-s_{33} s_{24}$
if $M_{22}^{2}+M_{23}^{2}+M_{24}^{2} \leq \varepsilon$ then

$$
\begin{aligned}
& \left(M_{32} \approx 0\right), \quad M_{33}=s_{22} s_{44}-s_{24}^{2}, \quad M_{34}=s_{22} s_{34}-s_{23} s_{24} \\
& \text { if } M_{33}^{2}+M_{34}^{2} \leq \varepsilon \text { then } \\
& \quad\left(M_{42} \approx 0\right), \quad\left(M_{43} \approx 0\right), \quad M_{44}=s_{22} s_{33}-s_{23}^{2} \\
& \text { if } M_{44}^{2} \leq \varepsilon \text { then }
\end{aligned}
$$

at least double degeneracy

else

$$
y_{2}=0, \quad y_{3}=0, \quad y_{4}=M_{44}
$$

else

$$
y_{2}=0, \quad y_{3}=M_{33}, \quad y_{4}=M_{34}
$$

else

$$
y_{2}=M_{22}, \quad y_{3}=M_{23}, \quad y_{4}=M_{24}
$$

We discuss now the handling of degeneracy. If all 2×2 minors of $\tilde{\mathcal{S}}$ vanish, then we may determine null vectors by detecting the presence of nonzero elements, while taking advantage of symmetry. The key idea is that if a 3×3 symmetric matrix of rank at most one has all its diagonal elements equal to zero, then it is the zero matrix. The logic, in the case where at least double degeneracy is present, is as follows:
if $\left|s_{22}\right|>\varepsilon$ then

$$
\tilde{\mathbf{y}}=\left(-s_{23}, s_{22}, 0\right) \quad \text { or } \quad \tilde{\mathbf{y}}=\left(-s_{24}, 0, s_{22}\right)
$$

else if $\left|s_{33}\right|>\varepsilon$ then

$$
\tilde{\mathbf{y}}=\left(s_{33},-s_{23}, 0\right) \quad \text { or } \quad \tilde{\mathbf{y}}=\left(0,-s_{34}, s_{33}\right)
$$

else if $\left|s_{44}\right|>\varepsilon$ then

$$
\tilde{\mathbf{y}}=\left(s_{44}, 0,-s_{24}\right) \quad \text { or } \quad \tilde{\mathbf{y}}=\left(0, s_{44},-s_{34}\right)
$$

else [triple degeneracy]

$$
\tilde{\mathbf{y}}=(1,0,0) \quad \text { or } \quad \tilde{\mathbf{y}}=(0,1,0) \quad \text { or } \quad \tilde{\mathbf{y}}=(0,0,1)
$$

In all cases, $v_{1}=-l_{2} y_{2}-l_{3} y_{3}-l_{4} y_{4}, v_{2}=y_{2}, v_{3}=y_{3}, v_{4}=y_{4}$.
The above algorithm detects degeneracy to within a tolerance ε. In our calculations we use $\varepsilon=10^{-6}$.

The cost of the eigenvector computation, assuming no test for degeneracy so we may compare directly with the Theobald/Liu et al. method, is:

One step of symmetric reduction:
Absolutely maximal diagonal element: $3(>)+4(| |)$
Computation of $l_{i}, i=2,3,4: \quad 3(\times)+1(\div)$
Computation of $s_{i j}, i, j=2,3,4: \quad 6(-)+6(\times)$
Total cost of symmetric reduction: $\quad 6(-)+9(\times)+1(\div)+3(>)+4(| |)$
≈ 19 flops

Computation of three 2×2 minors:	$3(-)+6(\times)$
Computation of $y_{1}:$	$2(+)+3(\times)$
Total cost of eigenvector computation:	$2(+)+9(-)+18(\times)+1(\div)+3(>)+4(\| \|)$
	≈ 33 flops

Cost of handling degenerate cases (rarely needed)

$$
4(+)+3(-)+13(\times)+1(\sqrt{ })+6(>)+3(\mid)(\text { worst case })
$$

If we add the cost of safeguarding for degeneracy, we arrive at a cost comparable to the algorithm based on 3×3 minors without checks. The cost of that algorithm is much higher if alternative rows must be tried in case of accidental vanishing of the chosen set, and it fails entirely if degeneracy is present.

Gradient of the RMSD

The gradient of the RMSD with respect to the model coordinates is required in several applications. For simplicity here we work with $E=e^{2}$. It is well known ${ }^{15}$ that the gradient is equal to the residual vector in the form,

$$
\begin{equation*}
\nabla_{X} E=\frac{2}{N} \sum_{k=1}^{N} \mathbf{x}_{k}-U^{T} \mathbf{y}_{k} \tag{22}
\end{equation*}
$$

RESULTS

Atom Symmetries

For many molecules, especially biomolecules, some atoms can be indistinguishable, which can critically impact the calculation of RMSD. For example, in a dehydrogenated arginine,
the NH1 and NH2 of the first molecule might better match (that is, have a lower RMSD with respect to) the NH2 and NH1, respectively of the second as the designation of which η nitrogen is 1 and which is 2 is arbitrary. frmsd can take advantage of user-specified atom symmetries in order to find the minimal RMSD between a pair of molecules. Two different methodologies are available, one for proteins (residue atom symmetries), and the other for more general molecules (general atom symmetries). ${ }^{1}$ There is also an option that allows the user to create files specifying how atoms are to be matched, which can be used for complex symmetry calculations involving large numbers of atoms. Determining indistinguishable atoms automatically is certainly feasible by performing a topological analysis of a molecule's structure (for example, see ${ }^{17,18}$), but we have not pursued this objective here. Note that other types of atom symmetries are also possible such as due to the arbitrary labeling of the starting point within simple cyclic molecules (e.g., cyclohexane), requiring cyclic symmetries to perform proper comparisons.

Once the minimal RMSD, $e_{\min }$, is calculated, the rotation matrix \mathcal{U} and gradient $\nabla_{X} e$ of the RMSD can be computed using the matrix \mathcal{R} associated with $e_{\text {min }}$. Any atom permutations that were required to find $e_{\min }$ are collected together into an indexing array. This array must now be explicitly applied to the gradient, while \mathcal{U} can be used directly.

Residue Atom Symmetries

When comparing two molecules, residue atom symmetries indicate sets of atoms on the same residue type that are equivalent for RMSD matching purposes. Figure 1 (middle) displays the residue_symmetries file which specifies these equivalences ${ }^{2}$ that we used to examine the effects of residue atom symmetries in the vhp_memd:1vii dataset (this dataset is described in detail in the timings section, SI A.1). The first column is a 3-letter residue abbreviation and the subsequent columns are a group of atoms for this residue that will be considered equivalent for RMSD matching. For PHE and TYR, the pairs CD1 plus CE1 and CD2

[^1]plus CE2 form the equivalent sets because they must be matched pairwise. In general, a residue atom symmetry group will contain $\nu_{i}(i=1, \ldots, g)$ atoms, where g is the number of symmetry groups and ν_{i} is a multiple of two, that is, only matching sets of pairs are allowed. All .pdb files to be compared are assumed to have the same atom topology with the atoms in the same order.

The vhp_memd:1vii dataset has 9 distinct residues with equivalent atoms or pairs of atoms, which we will denote as symmetry groups [see Figure 1 (left)]. A full combinatorial strategy to find the minimal RMSD between two molecules in this dataset would examine all possible permutations of these groups, requiring a total of $2^{9}=512$ RMSDs to be computed. ${ }^{3}$ This can be quite expensive for molecules with large numbers of symmetry groups. As an alternative, we have implemented a linear combinatorial algorithm, which performs the permutations of each symmetry group in turn, choosing the configuration that produces the minimum RMSD at each stage while leaving the results of previously determined symmetry group configurations unchanged. So, at stage 1, only permutations of symmetry group 1 are considered (for example, matching protein A:ARG 15 NH 1 , NH2 with protein B:ARG 15 NH1, NH2 versus B:ARG 15 NH 2 , NH1). The configuration that produces the minimal RMSD is chosen. At stage 2, using the best configuration from stage 1, the permutations of symmetry group 2 are considered (ASP 4 OD1, OD2). At stage 3, using the best configuration from stage 1 and 2, the permutations of symmetry group 3 are considered (ASP 6 OD1, OD2), etc. The number of RMSD calculations per pairwise comparison is much reduced over full combinatorics $(1+9=10$ for vhp_memd:1vii), while the results are very similar as discussed below.

Figure 2 presents the linear combinatoric algorithm in outline form. Given g symmetry groups (each containing some multiple of two atoms), there will be $g+1$ RMSD computations. Much work can be avoided by computing \mathcal{R} once initially per molecular pair, and then in the permutation loop indexed by p, subtracting the symmetry atom contributions to \mathcal{R} for the $p^{\text {th }}$ group followed by adding in the contributions for the swapped atoms. This is indicated by the notation $\sum_{(k, l) \in G_{p}} \ldots$ in the figure, where k and l represent corresponding atom pairs in the symmetry group G_{p}. The RMSD for the modified \mathcal{R} matrix is computed and compared

[^2]with the current minimum. If the new RMSD is smaller, the updated \mathcal{R} matrix is retained, otherwise the previous version is restored for the next iteration. Since all the permutations are binary, it is easy to keep track of exactly which swaps improved the result by introducing the g-bit binary number b, which has its $p^{\text {th }}$ bit, b_{p}, changed to 1 whenever a swap decreases the RMSD. Thus, the bit changes in b march left to right, while for the full combinatorial algorithm, all possible arrangements $\left(2^{g}\right)$ of 0 and 1 are produced.

Figure 3 examines the self-comparison performance of frmsd for a series of protein structures (PDB IDs: $1 \mathrm{JXT}, 193 \mathrm{~L}, 1 \mathrm{ABE}, 3 \mathrm{BA} 0,1 \mathrm{CTS}, 3 \mathrm{JUX})^{3}$ as a function of the number of atoms in each. The initial R-matrix setup time common to all versions of the algorithm is comparable to the time used when employing the linear combinatoric algorithm for the subsequent RMSD calculation. The latter is optimized for computations involving symmetry classes of indistinguishable atoms, which is dictated by the number of residue symmetry classes present (see inset). The total CPU time needed to find the correct RMSD, once barycenters have been computed, is the sum of these two quantities. Note that the time needed to recompute the R-matrix for each symmetry group, included in the RMSD calculation time, is a small, constant amount. The timing shown for the initial R-matrix setup does not include the time required to compute the barycenter for each structure. Although for a single comparison that time is comparable to the rest of the R-matrix setup time, barycenter computation is only performed once per structure and thus it scales linearly with the number of structures, while the rest of the computation grows quadratically, quickly dominating the overall cost.

In Figure 4, the differences in RMSD for no combinatorics and linear combinatorics versus full combinatorics are plotted for the vhp_memd:1vii dataset's roughly 20 million pairwise comparisons. The largest difference between doing no and full combinatorics, $\Delta \mathrm{RMSD}_{\text {no-full }}$, was $0.1606 \AA$. In general, performing no combinatorics almost always (99.794% of the time) produced a larger RMSD than the baseline case of full combinatorics. Table 1 shows how the $\triangle \mathrm{RMSD}_{\text {no-full }}$ for this dataset exceeded a series of values. For example, 29.163% of the differences exceeded $0.01 \AA$, while 0.408% exceeded $0.05 \AA$. It is clear that performing combinatorics on indistinguishable atoms nearly always makes a difference, often a significant one.

Examining Figure 4 once again, the differences in RMSD between doing linear and full combinatorics is seen to be small. Only 0.254% of the pairwise comparisons differ at all. The largest difference is $0.0026 \AA$, corresponding to two configurations that differ in 4 residue atom symmetry groups. However, the actual RMSD is quite large (10.979 Afor full combinatorics), so there is quite a bit of play in the atom orientations. For molecules whose RMSD $\leq 1.5 \AA$, the greatest difference is $5 \cdot 10^{-6} \AA$, corresponding to a difference of a single residue atom symmetry group. Only 0.022% of the pairwise comparisons of molecules with RMSD \leq 1.5 Ådiffer between the results produced by linear and full combinatorics.

General Atom Symmetries

In addition to residue atom symmetries, frmsd has the capability to deal with more general atom symmetries if the file atom_symmetries is present. Each line defines a set of equivalent atoms. ${ }^{4}$ See Figure 5 for an example of such a file. frmsd performs all possible permutations of the atoms in these sets, returning the permutation with the minimal RMSD. This is done via a recursive procedure, where each invocation cycles iteratively through all the permutations of one of the sets. The iterative permutation algorithm ${ }^{19}$ swaps two indices per permutation produced, making it possible to efficiently modify the \mathcal{R} matrix from its previous value and then compute a new RMSD. The permutation sets are ordered from smallest to largest in order to minimize the number of recursive calls.

Figure 6 provides a schematic of the recursive algorithm. RMSDs are only computed at the deepest recursion depth, that is, when $d=g$, where g is the number of general atom symmetry groups. At each level d, the iterative permutation algorithm is executed, allowing \mathcal{R} to be modified in the same manner as in the linear combinatorial residue symmetry algorithm except that now all possible permutations of the general atom symmetry group corresponding to this depth are performed. Upon completion of the level d permutation sequence, the procedure returns to the previous level and the \mathcal{R} matrix being used there is restored so that it can be properly updated on the next iteration at that level. As before, whenever an RMSD smaller than the current $e_{\min }$ is computed, it and the corresponding \mathcal{R} are saved as well as a record of the appropriate permutation. An example of this algorithm

[^3]in action is shown in Figure 7, which displays the permutations produced for the example atom_symmetries file of Figure 5.

An application where general atom symmetries are important is within a quantum mechanical (QM) chemical reaction system in which the RMSD is used as a metric for an interpolation scheme on a non-uniform multidimensional grid of QM potential energy and atomic force data. ${ }^{20,21}$ Here, the molecular configurations all have the same components (so many carbon atoms, so many hydrogens, etc.), but may be organized (bonded) in different ways, so it is necessary to group nuclei of the same type and permute them in order find the distance to the closest reference configuration on the grid.

Graph Symmetry in Polymers

When the molecule is composed of identical subunits in an arrangement with a symmetric graph, then alternative equivalent alignments may be possible, leading to potentially lower RMSD. The requirement for this to occur is that the reindexed molecular graph is equivalent to the original. We demonstrate this on a set of macrocyclic compounds 1P2, AAS, ACX, BIX, BPH, CD4, CRP, HAX, KCR, MST, RH9, SWI and TET (shown in Fig. SI1 colored to highlight identical building blocks for each). All the above compounds, listed alphabetically by short name, with source and full compound name are shown in Table SI7. Table SI8 displays each compound's number of possible alignments, symmetry type, and the minimum and maximum RMSD computed over all the alignments as well as the given value if no symmetries are taken into account.

Here, ACX, MST and TET are hexamers, while BIX, CD4, CRP and KCR are trimers, and 1P2, AAS, BPH, HAX, RH9 and SWI are dimers. Of these, MST, TET, BIX, CD4 and CRP are composed of subunits with palindromic symmetry. More precisely, the graphs of MST and TET have tetrahedral symmetry, so that 24 distinct alignments are possible, while ACX has cyclic symmetry of order 6 . All the dimers have cyclic symmetry of order two. Among the trimers, KCR has cyclic symmetry of order 3, while the others (BIX, CD4, CRP) have full dihedral symmetry of order 3, and may be aligned "upside-down", giving a total of 6 possible alignments. They are reproduced from Coutsias, Lexa et al. ${ }^{22}$. Invariably, we found that a lower RMSD was possible for some alignment other than the original, and
in a few cases a much lower RMSD was found. This is of course expected, as including all alternative alignments effectively multiplies the ensemble size by a factor equal to the order of symmetry of a given compound.

Finding equivalent re-indexings of a molecule as required for a symmetry-based matching can be tedious ${ }^{23,24}$. The SMARTS ${ }^{25}$ pattern-matching scheme can be useful here, but performance seems to vary across implementations ${ }^{26,27}$.

DISCUSSION

We have developed a fast, robust numerical algorithm to compute the RMSD between a pair of topologically similar molecular conformations, paying attention to the important role that various types of symmetry play. We have implemented our algorithm in C under the name frmsd (for fast RMSD), which we have made publicly available under an open source BSD license.
frmsd takes advantage of the algebraic equivalence between the characteristic polynomials of the matrices produced by the quaternion and SVD approaches for directly computing the RMSD, respectively: a 4×4 symmetric, traceless matrix versus a 3×3 symmetric matrix. The former quartic polynomial is used in the algorithm qrmsd 9, while the latter cubic, the resolvent cubic of the quartic polynomial, is used by frmsd. Using the SVD formulation produces very compact forms of the matrix coefficients, while the Newton iteration for computing the maximal eigenvalue is written in such a way so as to require a minimal number of operations. Symmetric maximal pivoting of the 3×3 matrix allows all structural degenerate conditions to be discovered, always producing a result no matter what geometric symmetries are possessed by the molecular configuration.

Along with algorithmic speedups in which the number of flops is minimized, frmsd has also been optimized in a number of ways (see Supporting Information A) to take advantage of modern computer CPU architecture. The most important of these optimizations has been to significantly reduce memory accesses as these operations, especially in deeply nested inner loops, can significantly affect the performance of a code. frmsd has also been streamlined to efficiently handle large numbers of RMSD comparisons at a time, such as comparing all
molecules defined in a set of PDB coordinate files with either each other or just the first. This begins by shifting all the molecules under consideration to barycentric coordinates before computing the optimal rotations.

In addition, atom alignment symmetry, in which the best match for atoms in the same symmetry class (defined by simple user supplied files) is considered. Atoms in the same equivalence class are generally numbered in an arbitrary manner (for example, OD1 and OD2, using PDB notation, in an aspartic acid residue), so simple RMSD matching may not produce the correct (minimal) RMSD (here, matching the two OD1s with each other and the two OD2s with each other; one needs to consider matching each OD1 with the other OD2 as well). This problem is very general and can involve more complicated symmetries, such as paired symmetries (matching CD1 plus CE1 versus CD2 plus CE2 in a phenylalanine or tyrosine) and cyclic symmetries (the carbon backbone in a cyclohexane ring in which the choice of the first carbon and the direction of ring traversal are completely arbitrary), etc. For protein comparisons, frmsd has the capability to deal with the combinatorial explosion associated with the presence of several symmetries, using an efficient linear combinatoric search, which is nearly as good as a full combinatoric examination, for the protein residues. For more general symmetries in which the user specifies sets of indistinguishable atoms, full combinatorics are applied. In either case, matrix recalculation only involves transposed atoms, thus minimizing the number of operations that need to be done or redone.
frmsd can compute RMSDs, and produce rotation quaternions and rotation matrices as well as RMSD gradients. It can also apply the rotations discovered and generate the best superpositions of one molecule onto a set of conformers, or a set of conformers onto one molecule. Finally, atoms can be filtered in various ways, so that RMSDs can be performed only on heavy atoms, protein backbone atoms ($\mathrm{N}, \mathrm{CA}[\mathrm{C} \alpha], \mathrm{C}$), and CA atoms alone, as well as all atoms with or without symmetries, or on an arbitrary sublist.

We therefore introduce a general purpose RMSD calculator that exploits symmetry in multiple ways. A typical application of such a tool is to use the computed RMSDs as a means of clustering conformers. Included in the distribution is a simple clustering program, based on frmsd, which performs the following algorithm on a list of structures. The first structure in the list is taken to be the center of a cluster. All structures whose mutual

RMSD with this structure is less than some user-defined threshold are taken to be members of the cluster, and so are removed from further consideration as possible cluster centers. The next available structure in the list is then taken to be the center of a new cluster and the mutual RMSDs with this structure are computed over all structures later in the list. This process repeats until no more unclustered structures are left. Note that structures may be members of more than one cluster, which allows the bias of the original ordering to be ameliorated. An additional criterion, such as energy, may be used to create a natural ordering before clustering begins.

CONCLUSIONS

We present a highly efficient and robust algorithm for calculating the RMSD that can handle degeneracy and is optimized for performing alternative comparisons to account for indistinguishable atom subgroups. We also give explicit examples of structures with degenerate superpositions. We exploit the equivalence ${ }^{1}$ of the quaternion-based formula to the widely used formula derived by Kabsch ${ }^{4}$ to elucidate issues related to chirality and degeneracy, and to arrive at a formulation with minimal algebraic operations as compared to previous implementations. Source code for the software, with tools to perform clustering and multiple comparisons, are provided.

ACKNOWLEDGMENTS

The authors thank the NIGMS for support (GM090205). Computations were performed at the Center for Advanced Research Computing, University of New Mexico. EAC acknowledges support from the Laufer Center for Physical and Quantitative Biology at Stony Brook University. The authors thank Dan Sindhikara for pointing out reference ${ }^{26}$.
((Additional Supporting Information may be found in the online version of this article.))

References

1. E. A. Coutsias, C. Seok, and K. A. Dill, Journal of Computational Chemistry 25, 1849 (2004).
2. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, 1985).
3. G. R. Kneller, J. Comput. Chem. 32, 183 (2011).
4. W. Kabsch, Acta Cryst. A32, 922 (1976).
5. J. L. Tietze, J Astronaut Sci 30, 171 (1982).
6. S. K. Kearsley, Acta Cryst. A45, 208 (1989).
7. G. R. Kneller, Mol Simulat 7, 113 (1991), ISSN 0892-7022.
8. D. L. Theobald, Acta Cryst. A61, 478 (2005).
9. P. Liu, D. K. Agrafiotis, and D. L. Theobald, Journal of Computational Chemistry 31, 1561 (2010).
10. P. Liu, D. K. Agrafiotis, and D. L. Theobald, Journal of Computational Chemistry 32, 185 (2011), ISSN 1096-987X, URL http://dx.doi.org/10.1002/jcc. 21606.
11. E. A. Coutsias, C. Seok, and K. A. Dill, Journal of Computational Chemistry 26, 1663 (2005).
12. W. Kabsch, Acta Cryst. A34, 827 (1978).
13. P. H. Schöneman, Psychometrika 31(1), 1 (1966).
14. E. A. Coutsias, C. Seok, M. P. Jacobson, and K. A. Dill, 25, 510 (2004).
15. J. W. Chu, B. L. Trout, and B. R. Brooks, J. Chem. Phys. 119, 12708 (2003).
16. R. Diamond, Acta Cryst. A46, 423 (1990).
17. S. N. Pollock, E. A. Coutsias, M. J. Wester, and T. I. Oprea, Journal of Chemical Information and Modeling 48, 1304 (2008).
18. M. J. Wester, S. N. Pollock, E. A. Coutsias, T. K. Allu, S. Muresan, and T. I. Oprea, Journal of Chemical Information and Modeling 48, 1311 (2008).
19. P. P. Fuchs, Scalable Permutations: A Permutation of Agreeable Ideas, http://www. quickperm.org/ (2013), [Online; accessed: January 22, 2013].
20. M. R. Salazar, private communication (2013).
21. M. R. Salazar, private communication (2013).
22. E. A. Coutsias, K. W. Lexa, M. J. Wester, S. N. Pollock, and M. P. Jacobson, Journal of Chemical Theory and Computation 12, 4674 (2016).
23. J. W. Raymond, E. J. Gardiner, and P. Willett, The Computer Journal 45, 631 (2002).
24. H.-C. Ehrlich and M. Rarey, WIREs Computational Molecular Science 1, 68 (2011).
25. SMARTS Theory Manual, Daylight Chemical Information Systems, Santa Fe, New Mexico (2008), http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.
26. P. P. Shenkin, S. Davies, and J. Shelley, MMSYM utility, Schrodinger, LLC Release 2018-3 (2018).
27. G. Landrum, Rdkit: Open-source cheminformatics, URL http://www.rdkit.org.

1	ARG	NH1	NH2		15
2	ASP	OD1	OD2		
2	GLU OE1	OE2			4,6
4	PHE	CD1	CE1	CD2	CE2
	5,32				
0	TYR	CD1	CE1	CD2	CE2

Figure 1 (middle) A residue_symmetries file for dehydrogenated proteins specifying indistinguishable pairs of atoms or atom sets (the latter for PHE and TYR) per residue type. Atom names are given as PDB identifiers. (left) The number of distinct residues in the vhp_memd:1vii dataset (see SI A.1) of the corresponding type, and (right) the actual residue numbers.

Initialize global constants
Convert to barycentric coordinates and compute $\|\mathcal{X}\|,\|\mathcal{Y}\|$
$\mathcal{R}^{\prime}=\mathcal{X} \mathcal{Y}^{T}$
$e_{\text {min }}=\infty ; \quad b=0$
for $p=0$ to g
$\mathcal{R}=\mathcal{R}^{\prime}$
if $p>0$ then

$$
r_{i j}=r_{i j}+\sum_{(k, l) \in G_{p}}\left(x_{i k}-x_{i l}\right)\left(y_{j l}-y_{j k}\right) \quad(i, j=1, \ldots, 3)
$$

Compute $e_{p}(\mathcal{R})$
if $e_{p}<e_{\text {min }}$ then

$$
e_{\min }=e_{p}
$$

$$
\text { if } p>0 \text { then } b_{p}=1
$$

$$
\mathcal{R}^{\prime}=\mathcal{R}
$$

Figure 2 Linear combinatorial algorithm for finding the minimal RMSD ($e_{\min }$) of the $3 \times n$ coordinate matrices \mathcal{X} and \mathcal{Y} when residue symmetries are present. g is the number of symmetry groups with G_{p} the $p^{\text {th }}$ group. b is a bit pattern recording which swaps improved the RMSD at each step p.

Figure 3 CPU time taken by frmsd to perform various calculations versus the number of atoms for a set of six protein structures (PDB IDs: 1JXT, 193L, 1ABE, 3BA0, 1CTS, 3JUX). The quantities are the pure R-matrix setup time needed by all algorithms, the time employed by the linear combinatoric algorithm while handling symmetries in the protein residues excluding the initial R-setup time, the portion of the previous that is due to manipulations of the R-matrix to prepare it for a particular symmetry group, and the time used when residue symmetries are ignored, again excluding R-setup. The total time taken to compute the RMSD by the two algorithms, once barycenters have been computed, is then the sum of the R-matrix setup time and either the full linear symmetries curve or the no symmetries curve. (The full combinatorial symmetry algorithm requires exponential time with respect to the number of atoms and was not computed.) All times are averages over 100 repeated calculations. Inset: The number of residue symmetry equivalence classes of indistinguishable atoms versus the number of atoms for the same compounds.

Figure 4 Differences in RMSD for the 19,559,385 vhp_memd:1vii pairwise comparisons under no, linear and full combinatorial strategies for residue atom symmetry permutations as detailed in the text.

12
456789

Figure 5 An atom_symmetries file for generic ethanol molecules, consisting of two carbon atoms (1 and 2), an oxygen (3), and six hydrogens (4-9). Atoms of the same type are considered equivalent.

Initialize global constants
Convert to barycentric coordinates and compute $\|\mathcal{X}\|,\|\mathcal{Y}\|$
$\mathcal{R}=\mathcal{X} \mathcal{Y}^{T}$
$e_{\text {min }}=$ frmsd $_(1, \mathcal{R}, \infty)$
frmsd_r $\left(d, \mathcal{R}, e_{\text {min }}\right)$:
if $d<g$ then

$$
\begin{aligned}
& \mathcal{R}^{\prime}=\mathcal{R} \\
& e_{\min }=\text { frmsd_r }\left(d+1, \mathcal{R}, e_{\min }\right) \\
& \mathcal{R}=\mathcal{R}^{\prime}
\end{aligned}
$$

else
Compute $e(\mathcal{R})$

$$
\text { if } e<e_{\min } \text { then }
$$

$e_{\text {min }}=e ; \quad$ Save \mathcal{R}
for $p=1$ to $2^{\nu_{d}}-1$
Find next permutation of G_{d}, yielding $k, l, k^{\prime}, l^{\prime}$

$$
\begin{aligned}
& r_{i j}=r_{i j}+\left(x_{i k^{\prime}}-x_{i l^{\prime}}\right)\left(y_{j l}-y_{j k}\right) \quad(i, j=1, \ldots, 3) \\
& \text { if } d<g \text { then } \\
& \quad \mathcal{R}^{\prime}=\mathcal{R} \\
& e_{\min }=\text { frmsd_r }\left(d+1, \mathcal{R}, e_{\min }\right) \\
& \mathcal{R}=\mathcal{R}^{\prime} \\
& \text { else } \\
& \quad \text { Compute } e(\mathcal{R}) \\
& \text { if } e<e_{\min } \text { then } \\
& \quad e_{\min }=e ; \quad \text { Save } \mathcal{R}
\end{aligned}
$$

Figure 6 Recursive combinatorial algorithm for finding the minimal RMSD ($e_{\min }$) of the $3 \times n$ coordinate matrices \mathcal{X} and \mathcal{Y} when general atom symmetries are present. g is the number of symmetry groups with the $i^{\text {th }}$ of size ν_{i}. d is the recursion depth.

$d=1$	12	21	
	456789	456789	
	446789	546789	
	645789	645789	
	\ldots	\ldots	

Figure 7 Permutations produced by frmsd for the atom_symmetries file given in Figure 5. d indicates the recursion depth.

| Δ RMSD $_{\text {no-full }}$ | number | percentage |
| :---: | ---: | ---: | ---: |
| $>0.000 \AA$ | 19519059 | 99.794% |
| $>0.010 \AA$ | 5704146 | 29.163% |
| $>0.020 \AA$ | 1361569 | 6.961% |
| $>0.030 \AA$ | 489525 | 2.503% |
| $>0.040 \AA$ | 195510 | 1.000% |
| $>0.050 \AA$ | 79803 | 0.408% |
| $>0.075 \AA$ | 8270 | 0.042% |
| $>0.100 \AA$ | 1153 | 0.006% |
| $>0.125 \AA$ | 137 | 0.001% |
| $>0.150 \AA$ | 4 | 0.000% |

Table 1 The numbers of pairwise RMSDs and percentages of the total pairwise comparisons satisfying the left-hand column inequalities for the results of the difference in RMSD of no versus full combinatorics for the vhp_memd:1vii dataset.

[^0]: *Department of Applied Mathematics and Statistics and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131

[^1]: ${ }^{1}$ The choice is determined by mutually exclusive files, residue_symmetries and atom_symmetries, respectively, one of which can be present in the directory where the .pdb files reside. If neither file is present, no atom symmetries are considered.
 ${ }^{2}$ In addition, frmsd must be invoked as frmsd -fx <dir> ..., where x is either s or a, and <dir> is the directory of .pdb files to compare.

[^2]: ${ }^{3}$ This strategy is set by compiling frmsd with the option -DFULL_COMBINATORICS.

[^3]: ${ }^{4}$ These are referred to by number, with the first atom listed in the .pdb file being number one.

