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From Local to Global Approximation

When seeking approximate solutions to partial di�erential equations, a

crucial operation is the approximation of spatial derivatives, e.g., classic

�nite di�erence methods are often designed to yield exact di�erentiation

if the solution is a low order polynomial. Indeed, let us consider the

smooth function, u(x), speci�ed atN+1 discrete grid points, x0; : : : ; xN .

Throughout the text we shall assume that N is even.

A 2m'th local interpolating polynomial to u(x) in the neighborhood

of xj is obtained as

u(x) =
X
jkj�m

uj+kLj+k(x) ;

where we have the grid function, uj+k = u(xj+k), and the Lagrange

interpolation polynomial, Lj+k(x), given as

Lj+k(x) =
Y
jlj�m
l 6=k

x� xj+l
xj+k � xj+l

: (2.1)

We shall seek a 2nd order polynomial representation of u(x), i.e., corre-

sponding to m = 1 in Eq.(2.1). Assuming, for simplicity, that the grid

is equidistant, we obtain

u(x) =
1

2�x2
(x� xj)(x � xj+1)uj�1 � (2.2)

1

�x2
(x � xj�1)(x� xj+1)uj +

1

2�x2
(x� xj�1)(x � xj)uj+1 ;

3



4 2. From Local to Global Approximation

where �x = xj�xj�1 represents the constant distance between the grid
points.

To approximate the derivative of u(x) at the grid point, xj , we utilize

the local polynomial approximation, Eq.(2.2), and recover

du

dx

����
xj

' uj+1 � uj�1
2�x

:

One can recognize this as the classic centered �nite di�erence formula

of 2nd order accuracy.

For problems processing a signi�cant spatial variation it is clear that

using a low order local approximation will require a very �ne grid to

ensure an acceptable accuracy. This translates to severe requirements

on the computational resources when addressing problems of interest to

science and engineering.

This naturally poses the question as to whether alternative schemes,

overcoming this need for a �ne grid, can be formulated. Indeed, as an ex-

treme alternative to the local approximation utilized in �nite di�erence

schemes, one can think of approximating functions and their derivatives

using a global method, i.e., an approach in which all available infor-

mation is utilized to construct the approximation and its derivatives In

between the local and the global approximation schemes reside a large

number of methods, generally known as high-order accurate methods,

i.e., methods for which the local solution is assumed to have a large de-

gree of smoothness and, thus, is well represented by a high-order local

polynomial.

Example 1. Consider the scalar hyperbolic equation

@u

@t
= �2�@u

@x
; (2.3)

u(0; t) = u(2�; t) ;

u(x; 0) = exp [sin(x)] ;

where the smooth function, u(x; t) 2 C1[0; 2�], is periodic and the

initial condition is periodically extended.

The exact solution to Eq.(2.3) is given as

u(x; t) = exp [sin(x� 2�t)] ;
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�gure 2.1. The maximum pointwise error, L1, measured at t=� obtained
using a 2nd order, a 4th order and global spectral scheme as a function of the
total number of points, N .

i.e., the initial condition is propagating towards increasing x at the speed

of the propagation, 2�.

We solve this equation at an equidistant grid

xj = j�x =
2�j

N + 1
; j 2 [0; : : : ; N ] :

In a method-of-lines approach we use a 4th order explicit Runge-Kutta

scheme to advance the solution in time with the time-step taken to be

well below the stability limit.

To approximate the spatial derivatives at the grid-points, xj , we shall

consider 3 di�erent schemes.

Local Finite Di�erence Scheme: The second order centered �nite dif-

ference approximation to the spatial derivative is

@u

@x

����
xj

' uj+1 � uj�1
2�x

;

as recovered from Eq.(2.1) with m = 1.

High-Order Finite Di�erence Scheme: A fourth order centered �nite

di�erence scheme on the form

@u

@x

����
xj

' 1

12�x
(uj�2 � 8uj�1 + 8uj+1 � uj+2) :
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This scheme appears from Eq.(2.1) with m = 2 and evaluating the

derivative of the interpolation polynomial at the grid point, xj .

Global Scheme: The �nal scheme appears, as we shall see shortly, by

taking m = 1 in Eq.(2.1). In this case, the approximation of the

derivative at the grid points is evaluated by a matrix-vector product

as

@u

@x

����
xj

'
NX
i=0

~Djiui ;

where the entries of the matrix operator is

~Dji =

(
(�1)j+i

2

h
sin
�
(j�i)�
N+1

�i�1
i 6= j

0 i = j
: (2.4)

Let us �rst consider the dependence of the maximum pointwise error,

L1, on the number of grid points, N . In Fig. 2.1 we plot this error

measured at t = � for an increasing number of grid points. It is clear

that increasing the order of the method used for approximating the

spatial derivative has a signi�cant e�ect on the error. Indeed, the error

obtained with N = 2048 using the 2nd order �nite di�erence scheme is

the same as that computed using the 4th order method with N = 128

and the global in�nite order method with only N = 12. Moreover, by

lowering �t for the latter method one can obtain even more accurate

results, i.e., the error in the global scheme is dominated by time-stepping

errors rather than the errors in the spatial derivative. To be fair, one

should keep in mind that the 4th order accurate method as well as the

global method require more work per grid point to compute the spatial

derivative. We shall return to a quantitative discussion of these aspects

shortly.

Let us now restrict the attention to a comparison between the popular

local 2nd order �nite di�erence scheme and the global method. In Fig.

2.2 we show the result obtained after long time integration. Again, we

clearly observe that the global scheme is superior in performance to the

local scheme, even though the latter scheme employs 20 times as many

grid points and is signi�cantly slower.
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2.1 Analysis of Finite Di�erence Schemes

The previous example illustrates that global methods appear to be su-

perior to local methods not only when very high spatial resolution is

needed but also when long time integration is required. While the for-

mer property can be attributed to the use of additional information in

the approximation of the derivative, the latter observation is perhaps

more surprising and illustrates why we need to look deeper into the

theory of global methods to appreciate their full potential.

In this section we utilize phase error analysis, introduced in [62], to

explain the observations made in the previous section. As we shall �nd,

the analysis con�rms that high-order/global methods is the appropriate,

and quite possibly the only, choice when very accurate solutions and/or

long time integration is required.

2.1.1 Phase Error Analysis.

To analyze the phase error associated with a spatial approximation

scheme, let us again consider the linear wave problem

@u

@t
= �c@u

@x
; (2.5)

u(0; t) = u(2�; t) ;

u(x; 0) = exp(ikx) ;

where i =
p�1, k = 2�=� is the wavenumber with � representing the

wavelength. The solution to Eq.(2.5) is a rightward traveling wave

u(x; t) = exp(ik(x� ct)) : (2.6)

Note that c has the dimension of velocity and is known as the phase

velocity of the wave.

We continue as in Ex. 1 and introduce an equidistant grid

xj =
2�j

N + 1
= j�x ; j 2 [0; : : : ; N ] ;

with the associated grid vector, u = (u0; : : : ; uN)
T , where uj = u(xj).

If we de�ne the central �nite di�erence operator

Dnu(xj) =
u(xj + n�x)� u(xj � n�x)

2n�x
=
uj+n � uj�n

2n�x
;
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then a general 2m'th order approximation to the spatial derivative of

u(x; t) at xj takes the form

@u

@x

����
xj

'
mX
n=1

�mn Dnuj ; (2.7)

where the weights, �mn , are given as

�mn = �2(�1)n (m!)2

(m� n)!(m+ n)!
: (2.8)

Suppose now that we consider the semi-discrete version of Eq.(2.5), i.e.,

keeping time as a continuous variable and using a 2m'th order approx-

imation to discretize the spatial dimension, we recover a scheme for

updating the grid vector, uj , as

duj
dt

= �c
mX
n=1

�mn Dnuj ; (2.9)

uj(0) = exp(ikxj) :

We can interpret the grid vector, u, as a vector of grid point values of

an interpolating trigonometric polynomial, v(x; t), i.e.,

v(x; t) =
X

jnj�N=2

~vn(t) exp(ikx) ;

where ~vn(t) are constrained such that v(xj ; t) = uj(t). Thus, solving

Eq.(2.9) amounts to

@v

@t
= �c

mX
n=1

�mn Dnv(x; t) ; (2.10)

v(x; 0) = exp(ikx) :

If v(x; t), which is a continuous function, satis�es Eq.(2.10), the solution

to Eq.(2.9) is given by v(xj ; t). However, the solution to Eq.(2.10) can

be obtained directly on the form

v(x; t) = exp(ik(x� cm(k)t)) : (2.11)
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We shall term cm(k) the numerical phase velocity. Note that contrary

to the solution, Eq.(2.6), of original problem, Eq.(2.5), the solution,

Eq.(2.11), to a discrete wave problem, Eq.(2.10) is dispersive, i.e., cm(k)

is a function of the wavenumber, k, as a consequence of the introduction

of the grid.

As there is no di�erence in the amplitude of the two solutions, u(x; t)

in Eq.(2.6) and v(x; t) in Eq.(2.11), the di�erent behavior illustrated in

Fig. 2.2 must be due to di�erences in the propagation, i.e., the phase

velocity.

Following [62] we measure the di�erence between the actual solution,

u(x; t), and the approximate solution, v(x; t), as the leading order term

of the relative error

����u(x; t)� v(x; t)

u(x; t)

���� = j1� exp(ik(c� cm(k))t)j
' jk(c� cm(k))tj = em(k) ;

which quite naturally is termed the phase error.

The computation of the phase error for various schemes allows us to

pose, and answer, important questions related to accuracy and eÆciency

of the various schemes. In particular, we can identify the most eÆcient

scheme guaranteeing a certain level of accuracy at a speci�c time.

For simplicity we shall mainly concern ourselves with the di�erent

schemes studied numerically in Ex. 1, although the validity of the tech-

niques extends this simple example.

2.1.2 Finite Order Finite Di�erence Schemes.

Let us apply these new concepts to the analysis of the two di�erent �nite

di�erence scheme discussed in Ex. 1. We begin by considering the 2nd

order �nite di�erence schemes for which Eq.(2.10) becomes

@v(x; t)

@t
= �cv(x+�x; t)� v(x��x; t)

2�x
v(x; 0) = exp(ikx) :

Seeking a solution of the form Eq.(2.11) yields the numerical phase ve-

locity
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c1(k) = c
sin(k�x)

k�x
:

If we continue by assuming that

k�x = 2�
�x

�
� 1 ;

,i.e., a highly resolved problem, a Taylor expansion yields

c1(k) = c

�
1� (k�x)2

6
+O((k�x)4)

�
;

con�rming the 2nd order spatial accuracy of the scheme.

For the high-order 4th order scheme considered in Ex. 1, the approx-

imation to Eq.(2.10) is

@v(x; t)

@t
= �cv(x� 2�x; t)� 8v(x��x; t) + 8v(x+�x; t)� v(x+ 2�x; t)

12�t
:

Seeking a solution of the form Eq.(2.11) results in a numerical phase

velocity on the form

c2(k) = c
8 sin(k�x) � sin(2k�x)

6k�x
:

Again considering the limit of k�x� 1 we recover

c2(k) = c

�
1� (k�x)4

30
+O((k�x)6)

�
;

illustrating the expected 4th order accuracy.

Using the numerical wave velocities, c1(k) and c2(k), for the 2nd and

4th order schemes, respectively, we have

e1(k; t) = kct

����1� sin(k�x)

k�x

���� ; (2.12)

e2(k; t) = kct

����1� 8 sin(k�x) � sin(2k�x)

6k�x

���� :

To measure the accuracy of a particular scheme the actual number of

grid points, N , is less important as the resolution of the scheme clearly

depends on the solution. To reect this, let us introduce
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p =
�

�x
=

2�

k�x
:

It is worth realizing that it takes a minimum of two points per wavelength

to uniquely specify a wave, i.e., p has a theoretical minimum of 2, while

p� 1 reects a highly resolved wave.

Let us also introduce the number, � = ct=�, as the number of times

the solution returns to itself under the assumption of periodicity. Intro-

ducing this notation into Eq.(2.12) yields

e1(p; �) = 2��

����1� sin(2�p�1)

2�p�1

���� ; (2.13)

e2(p; �) = 2��

����1� 8 sin(2�p�1)� sin(4�p�1)

12�p�1

���� :

A leading order approximation to Eq.(2.13) is

e1(p; �) ' ��

3

�
2�

p

�2

; (2.14)

e2(p; �) ' ��

15

�
2�

p

�4

:

Hence, the phase error is directly proportional to the number of periods

of time, �, i.e., the error grows linearly in time.

To arrive at a practical measure, assume that we can accept an error,

"p, after � periods of evolution and denote by pm("p; �) the number of

points per wavelength required to ensure that the phase error is bounded

by "p. From Eq.(2.14) we directly obtain such bounds on pm("p; �) as

p1("; �) � 2�

r
��

3"p
; (2.15)

p2("; �) � 2� 4

r
��

15"p
;

p3("; �) � 2� 6

r
��

70"p
:

To illustrate the general trend we have also included the result for a

6th order central �nite di�erence scheme discussed in more detail in the



2.1 Analysis of Finite Di�erence Schemes 13

exercises.

Example 2. Let us consider the implication of these estimates for a

few special cases.

"p = 0:1: For this relatively large error one obtains

p1 � 20
p
� ; p2 � 7 4

p
� ; p3 � 6 6

p
� :

We recall that the 4th order scheme is twice as expensive as the

2nd order scheme, so not much is gained for short time integration.

However, as � increases the 4th order scheme clearly becomes more

attractive. For this low accuracy there is little reason to use the 6'th

order scheme.

"p = 0:01: Requiring this error one obtains

p1 � 64
p
� ; p2 � 13 4

p
� ; p3 � 8 6

p
� ;

Here we expect a signi�cant advantage of using the 4th order scheme,

even for short time integration, while the advantage of the 6'th order

scheme remains marginal unless very long time integration is required.

"p = 10�5: This approximately corresponds to the minimum error of

the 2nd order scheme shown in Fig. 2.1. We obtain

p1 � 643
p
� ; p2 � 43 4

p
� ; p3 � 26 6

p
�

which corresponds reasonably with what is observed in Fig. 2.1 and

con�rms that high order methods are superior when high accuracy is

required, even for short time integration.

While it generally is accepted that high-order methods yield superior

accuracy, one often encounters doubts regarding the eÆciency of such

methods. To briey address this, let us de�ne a measure of work, Wm,

as

Wm = 2mpm
t

�t
= 2mpm

pm�

CFLm
;

where CFLm = c�t=�x refers to the maximum CFL number for stabil-
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ity, i.e., Wm represent a measure of the amount of work per wavelength

using a 2m'th order scheme during the required number of time-steps.

Assuming that a 4'th order explicit Runge-Kutta method is used for

the temporal integration, hence de�ning the values of CFLm, the es-

timated work for a 2nd, a 4th and a 6th order central �nite di�erence

scheme is given as

W1 ' 30�
�

"p
; W2 ' 35�

r
�

"p
; W3 ' 48� 3

r
�

"p
: (2.16)

In Fig. 2.3 we illustrate the approximate work associated with the di�er-

ent schemes as a function of accuracy and time. While we expected the

high-order methods to be the most appropriate choice when considering

only accuracy, this con�rms that also for problems exhibiting unsteady

behavior should one consider the use of high-order methods to minimize

the work required to solve the problem at a prescribed accuracy.

2.1.3 In�nite Order Finite Di�erence Schemes.

Taking the estimates, Eq.(2.15), to the limit of of m ! 1 suggests

that the required number of grid points, p1, approaches a constant

independent of � and "p. This is also reected in Eq.(2.16), which yields



2.1 Analysis of Finite Di�erence Schemes 15

W1 / �, indicating that the work depends only linearly on time. In

other words, the required number of points per wavelength, p1, should

be independent of � as well as "p.

To make this argument a bit more quantitative, let us �rst recall that

the 2m'th accurate scheme, Eq.(2.7), can also be expressed as

@u

@x

����
xj

' D1

m�1X
n=0

(�1)n�2n
�
�x2D+D�

�n
uj ;

where

D+uj =
uj+1 � uj

�x
; D�uj = uj � uj�1

�x
;

is the standard upwind and downwind di�erence operator, respectively.

The constants, �2m, are given explicitly by the series [62]

(arcsinx)2 = 2x2
1X
n=0

22n�2n
2n+ 2

x2n :

For this to hold at x = 1, it is clear that

22n�2n = (1 + �n)
2n ;

with �n vanishing as n approaches in�nity. In other words, 22n�2n,

approaches a constant for large values of n.

Proceeding as previously, we recover the expression for the phase error

em(p; �) = 2��

"
1� sin(2�p�1)

2�p�1

m�1X
n=0

4n�2n sin
2n

�
�

p

�#
:

To leading order, this yields a phase error as

em(p; �) ' 2��4m�2m sin2m
�
�

p

�
:

However, as 4m�2m is bounded for m approaching in�nity, we recover

that sin(�p�1) < 1 suÆces to guarantee that the phase error vanishes

for large m. In other words

lim
m!1

pm("p; �) = 2 ;

i.e., the in�nite accuracy �nite di�erence scheme achieves the minimal
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number of points regardless of the accuracy and time requirements.

Despite the asymptotic nature of these arguments it is noteworthy

that the results discussed in Ex. 1 conform very well with the above ob-

servations, i.e., the in�nite order �nite di�erence scheme and the global

scheme discussed in that example appear to be closely connected. To

further elaborate on this connection, let us rewrite the 2m'th order ap-

proximation as

@u

@x

����
xj

=

mX
n=1

�mn
uj+n � uj�n

2n�x

=
N + 1

4�

 
mX
n=1

�mn
n
uj+n +

�mX
n=�1

�m�n
n

uj+n

!

=
N + 1

4�

mX
n=�m

�mn
n
uj+n ;

where we have introduced the new weight

�mn =

�
�mn n 6= 0

0 n = 0
;

and used that �mn = �m�n.

Consider now the in�nite order �nite di�erence approximation, i.e.,

the case of m!1. Using Eq.(2.8) this implies

�1n =

��2(�1)n n 6= 0

0 n = 0
;

and the approximation becomes

@u

@x

����
xj

=
N + 1

4�

1X
n=�1

�1n
n
uj+n :

The 2�-periodicity of the solution u(x; t) to Eq.(2.3) is reected in the

grid function as

uj+n = uj+n+p(N+1) ; p = 0;�1;�2 : : : :

This yields the approximation
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@u

@x

����
xj

=
N + 1

4�

N�jX
n=�j

 
1X

p=�1

�1n+p(N+1)

n+ p(N + 1)

!
uj+n

=
1

2�

N�jX
n=�j

�(�1)n
 

1X
p=�1

(�1)p
p+ n=(N + 1)

!
uj+n

=
1

2�

N�jX
n=�j

�(�1)n �

sin(�n=(N + 1))
uj+n ;

where the last step assumes that n 6= 0. In the special case of n = 0 the

sum over p vanished identically. Introducing the substitution i = j + n,

we obtain

@u

@x

����
xj

=

NX
i=0

�1

2
(�1)i�j

�
sin

�
�

N + 1
(i� j)

���1
ui

=
NX
i=0

1

2
(�1)j+i

�
sin

�
�

N + 1
(j � i)

���1
ui ;

for i 6= j while the diagonal entry vanishes.

Hence, we obtain the remarkable result [23, 24] that the in�nite or-

der �nite di�erence approximation of the spatial derivative of a periodic

function can be implemented exactly through the use of the di�erentia-

tion matrix, ~D. We recall that this was exactly the approach exploited

in Ex. 1. While this certainly is an interesting observation, explaining

the good agreement with the phase error analysis, it is even more re-

markable that the exact same formulation can be interpreted as Fourier

spectral methods as we shall discuss in the following.

2.2 The Fourier Spectral Method

Rather than starting with the �nite di�erence formula, Eq.(2.9), and

identifying v(x; t) as a trigonometric polynomial, let us assume that

u(x; t) can be represented as

u(x; t) =
X

jnj�N=2

~un(t) exp(inx) ; (2.17)

where the expansion coeÆcients, ~un, must be determined such that
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u(xj ; t) =
X

jnj�N=2

~un(t) exp(inxj) ; (2.18)

is a solution to Eq.(2.5) at the grid points, xj . As usual, we assume that

N is even.

The �rst issue to address is how to obtain the expansion coeÆcients,

~un(t), such that Eq.(2.18) holds. For that we shall need the following

result

Lemma 1. Consider the equidistant grid given as

xj =
2�j

N + 1
; j 2 [0; : : : ; N ] :

The complex exponential function obeys the orthogonality relation

1

N + 1

NX
j=0

exp(ipxj) =

�
1 p = (N + 1)m; m = 0;�1;�2; : : :
0 otherwise

:

Proof: We rewrite the series as

1

N + 1

NX
j=0

exp(ipxj) =
1

N + 1

NX
j=0

exp(i2�mj)

=
1

N + 1

NX
j=0

[exp(i2�m)]
j
: (2.19)

Ifm is an integer, we immediately recover that exp(i2�m) = 1 and hence

the �rst part of the result.

For m being a non-integer, we have

1

N + 1

NX
j=0

[exp(i2�m)]
j
=

1

N + 1

1� rN+1

1� r
;

where r = exp(i2�m) 6= 1. We then utilize the geometric series as

1� rN+1

1� r
=

1� (exp(i2�m))N+1

1� exp(i2�m)
=

1� (exp(i2�(N + 1)))m

1� exp(i2�m)
= 0 ;

since N is an integer. QED

Using Lemma 1, we immediately obtain the expansion coeÆcients

through a discrete inner product as
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1

N + 1

NX
j=0

u(xj ; t) exp(�inxj) = 1

N + 1

NX
j=0

X
jkj�N=2

~uk(t) exp(i(k � n)xj)

=
X

jkj�N=2

~uk(t)

2
4 1

N + 1

NX
j=0

exp(i(k � n)xj)

3
5

= ~un(t) : (2.20)

To realize that Eq.(2.20) enforces Eq.(2.18), simply substitute the former

into the latter to obtain

u(x; t) =
X

jnj�N=2

~un(t) exp(inx)

=

NX
j=0

u(xj ; t)

2
4 1

N + 1

X
jnj�N=2

exp(in(x� xj))

3
5 =

NX
j=0

u(xj ; t)hj(x) ;

where

hj(x) =
1

N + 1

sin
�
1
2 (N + 1)(x� xj)

�
sin 1

2 (x � xj)
;

is obtained by summing the series directly. It is easily shown that hj(x)

indeed is the interpolation polynomial with hj(xk) = Æjk , hence yielding

Eq.(2.18).

Let us now return to the problem of computing the solution to Eq.(2.5)

using the trigonometric polynomials. The approximation to the deriva-

tive is obtained directly from Eq.(2.18) as

@u

@x
'

X
jnj�N=2

in~un exp(inx) : (2.21)

Assuming that the solution takes the form of a trigonometric polynomial,

Eq.(2.18), we have

X
jnj�N=2

�
d~un
dt

+ inc~un

�
exp(inx) = 0 ;

by inserting Eq.(2.18) into Eq.(2.5). This yields N +1 equations for the

N + 1 expansion coeÆcients, ~un(t), as
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~un(t) = exp(�inct)~un(0) ;

with the initial conditions being

~un(0) =
1

N + 1

NX
j=0

exp(ikxj) exp(�inxj) =
�
1 k � n = p(N + 1)

0 Otherwise
:

Thus, for jkj > N=2, the initial condition is completely misrepresented, a

phenomenon known as aliasing, and we get an order one error. However,

if jkj � N=2, we have

~un(0) =

�
1 k = n

0 k 6= n
;

such that the solution to Eq.(2.5) is

u(x; t) =
X

jnj�N=2

~un(t) exp(inx)

=
X

jnj�N=2

~un(0) exp(�inct) exp(inx)

= exp(ik(x� ct)) :

Consequently, we obtain the rather unusual, and perhaps surprising,

result that the error is either of order one or the solution is exact.

If we relate the performance of the global trigonometric method to

the number of points per wavelength, p, as done previously, we recover

the exact solution provided jkj � N=2. In other words we have

2 � N

k
=

N

2�=�
<

�

�x
= pN=2 :

This implies that pN=2 ! 2 as N approaches in�nity, i.e., the Fourier

spectral method recovers the optimal minimal value for pm for largeN as

was the case for the in�nite order �nite di�erence scheme considered in

Ex. 1. The natural question that arises is whether the two schemes are

indeed related or rather two separate roads to schemes both requiring

only two points per wavelength.

To investigate this issue further, let us express the temporal derivative

of u(x; t) at xj as
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duj
dt

=

NX
l=0

ul(t)
dhl
dx

����
xj

=

NX
l=0

~Djlul(t) ;

where the entries of the matrix ~D are

~Djl =

(
(�1)j+l

2

h
sin
�

�
N+1 (j � l)

�i�1
i 6= j

0 i = j
:

Hence, the Fourier spectral method is mathematically equivalent to the

in�nite order �nite di�erence scheme [23, 24], although they were derived

by very di�erent means.

Furthermore, one obtains the exact same result by summing

~Djl =
1

N + 1

X
jnj�N=2

in exp

�
i
2�n

N + 1
(j � l)

�
;

which appears directly by inserting the expression for ~un(t), Eq.(2.20),

into the Fourier approximation to the spatial derivative, Eq.(2.21).

This duality between point-space formulation, termed the nodal form,

and corresponding coeÆcient-space method, referred to as the modal

form, shall prove very fruitful in the subsequent chapters as it allows

for di�erent formulations and means of analysis of otherwise equivalent

schemes. Furthermore, it has dramatic implications for the implemen-

tation of such methods.

2.2.1 Success and Failure.

The remarkable resolution power of the Fourier spectral method dis-

cussed above is achievable only for certain special cases as we shall illus-

trate through a couple of examples prior to engaging in a more thorough

discussion.

Example 3. Consider the heat equation with constant coeÆcients

@u

@t
=
@2u

@x2
; (2.22)

u(0; t) = u(�; t) = 0 ;

u(x; 0) = f(x) :
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Since we have homogeneous boundary conditions, this problem can be

solved using standard Fourier techniques to recover

u(x; t) =

1X
n=1

exp(�n2t)f̂n sin(nx) ; (2.23)

where

f(x) =

1X
n=1

f̂n sin(nx) :

To solve this problem approximately, it seems reasonable to seek a solu-

tion of the form

uN(x; t) =
NX
n=1

ûn(t) sin(nx) :

Indeed, by following the exact same approach as for the in�nite series,

we obtain the approximate solution

uN (x; t) =

NX
n=1

exp(�n2t)f̂n sin(nx) :

We observe that the numerical approximation reproduces the �rst N

terms of the expansion exactly as was the case when solving the wave

equation. We recover the L2-error as

�
2

�

Z �

0

ju(x; t)� uN(x; t)j2 dx
�1=2

=

 
1X

n=N+1

f̂2n exp(�2n2t)
!1=2

:

The dominating error term yields

exp(�(N + 1)2t)

vuut 1X
n=N+1

f̂2n ;

which, even for slowly decaying f̂n, decays exponentially in time.

As for the wave equation we found that the solution to the heat

equation, subject to homogeneous boundary conditions, can be approx-

imated very well using expansions based on trigonometric polynomials.
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However, changing the problem slightly may result in a very di�erent

behavior.

Example 4. Consider again the heat equation, although slightly al-

tered compared to the previous example, as

@u

@t
=
@2u

@x2
+ 1 ; (2.24)

u(0; t) = u(�; t) = 0 ;

u(x; 0) = f(x) :

As before we look for a solution of the form

uN(x; t) =

NX
n=1

ûn(t) sin(nx) :

The equation for the expansion coeÆcients, ûn(t), is now given as

dûn
dt

= �n2ûn + ân :

Here ân represents the expansion coeÆcients of the constant function,

1, in terms of sin(nx) and are given as

ân =
2(1� (�1)n)

�n
:

Now solving for ûn(t) yields the result

ûn(t) = f̂n exp(�n2t) + 2(1� (�1)n)
�n3

�
1� exp(�n2t)� :

One easily shows that the L2 error in this case is

�
2

�

Z �

0

ju(x; t)� uN (x; t)j2 dx
�1=2

� C
1

N5=2
;

i.e., the scheme is only slightly better than a 2nd order �nite di�erence

scheme.

The source of this result is the constant function, 1, which does not

have a rapidly converging expansion in the function sin(nx), thus de-

stroying the rapid global convergence.
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As we have seen, global spectral methods, when properly constructed,

has remarkable numerical properties, unsurpassed by any other scheme

for solving general partial di�erential equations. However, the proper

construction of the schemes is nontrivial and greatly a�ect the overall

performance of the scheme. It is the study and understanding of the

criteria underlying these choices that we shall devote ourselves to in the

following chapters.
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Exercises

1. Consider the central �nite di�erence approximation to the spatial derivative
of u(x) at the grid point xj on the form

@u

@x

���
xj

'
mX
n=1

�mn Dnuj ;

where

Dnu(xj) =
u(xj + n�x)� u(xj � n�x)

2n�x
=

uj+n � uj�n
2n�x

;

and �x is the grid size of the equidistant grid.
Prove that for the approximation to be of order 2m, the weights, �mn , takes
the form

�mn = �2(�1)n (m!)2

(m� n)!(m+ n)!
:

2. Show that the 6th order accurate central �nite di�erence approximation is
given as

du

dx

���
xj

=
�uj�3 + 9uj�2 � 45uj�1 + 45uj+1 � 9uj+2 + uj+3

60�x
:

3. (Continued). Considering the 6th order approximation, show that the nu-
merical wave speed is given as

c3(k) = c
45 sin(k�x)� 9 sin(2k�x) + sin(3k�)

30k�
;

and that the leading order phase error is given as

e3(p; �) =
��

70

�
2�

p

�6

:

Based on this this, show that

p3("p; �) � 2� 6

r
��

70"p
;

and compute the number of points required to ensure "p = 0:1 and "p =
0:01.
Compare with Ex. 2. When is it advantageous to use a 6th order scheme.

4. Using von Neumann analysis, show that

�t � CRK�x ; �t � CRK�x

" 
1 +

r
1

6

!
sin

 
arccos

 
1�

r
3

2

!!#
;
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yields necessary and suÆcient conditions for stability of the 2nd and 4th
order central �nite di�erence approximation.
Here CRK depends on the choice of Runge-Kutta method only.

5. (Continued). For a 4th order Runge-Kutta scheme, CRK =
p
8. Use this

to derive the scalings in Eq.(2.8).

6. Show that the 2m'th order di�erence formula, Eq.(2.7), can also be written
on the from

@u

@x

���
xj

' D1

m�1X
n=0

(�1)n�2n
�
�x2D+D�

�n
uj ;

where

D+uj =
uj+1 � uj

�x
; D�uj = uj � uj�1

�x
:

You do not need to relate the coeÆcients, �mn and �2n, in the two formulas.

7. (Continued) Using the limiting expression

@

@x
= D1

1X
n=0

(�1)n�2n
�
�x2D+D�

�n
;

show by considering the testfunction, exp(ikx), that

(arcsinx)2 = 2x2
1X
n=0

22n�2n
2n+ 2

x2n :

8. Prove that hj(x) is

hj(x) =
1

N + 1

X
jnj�N=2

exp(in(x� xj)) =
1

N + 1

sin
�
1
2
(N + 1)(x� xj)

�
sin 1

2
(x� xj)

;

and that hj(xl) = Æjl.

9. Show that the entries of the Fourier di�erentiation matrix, ~D are given as

~Djl =
dhl
dx

���
xj

=

�
(�1)j+l

2

�
sin
�

�
N+1

(j � l)
���1

i 6= j
0 i = j

:

10. (Continued) Prove that the entries of the Fourier di�erentiation matrix, ~D,
can also be obtained by directly summing the series
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~Djl =
1

N + 1

X
jnj�N=2

in exp
�
i
2�n

N + 1
(j � l)

�
:

11. Using the Fourier di�erentiation matrix, compute the derivative of the
following functions

(a) f(x) = exp(cos(4x)).
(b) f(x) = cos(10x).
(c) f(x) = cos(x=2).
(d) f(x) = x.

All functions are de�ned on [0; 2�].
Compute the pointwise error (L1) and the global error (L2), for increasing
values of N and discuss the di�erent behaviors and convergence rates. Cam
you explain the di�erences.

12. Test the accuracy of the Fourier di�erentiation matrix on the function

u(x) = exp (k sinx) ;

in the interval x 2 [0; 2�].
Take

k = 2; 4; 6; 8; 10; 12 ;

and measure the relative pointwise error. Determine the minimum N for
all values of k that ensures a maximum error less than 10�5.

13. Use the Fourier di�erentiation matrix to approximate spatial derivatives at
an equidistant grid and use this to solve the problem considered in Ex. 1.
Use a 4th order Runge-Kutta scheme for the temporal integration.

Compare the computational results with those in Ex. 1.
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3

Elements of Convergence Theory

The single most important property of a numerical scheme, useful for

solving partial di�erential equations, is that the solution approximates

that of the continuous partial di�erential equation and that the level

of accuracy improves as we re�ne the grid in time and space. Such

behavior is known as convergence and is nothing short of the holy grail

of the analysis of numerical methods for partial di�erential equations.

Prior to engaging in a detailed discussion of the convergence of spec-

tral approximations to partial di�erential equations, we shall need to �x

the mathematical framework and introduce a number of key concepts,

central to the subsequent developments.

We will, with few exceptions, focus our attention on the development

and analysis of schemes for solving the general initial boundary value

problem (IBVP)

@u(x; t)

@t
= F(x; t; u(x; t)) + f(x; t) ; x 2 D ; t � 0 ; (3.1)

where u(x; t) : D�R+ ! R, D is the domain of interest con�ned by the

boundary ÆD and F represents an operator that may depend on space,

x, and time, t, as well as the solution, u(x; t), and derivatives thereof.

We have also introduced the forcing function, f(x; t) : D�R+ ! R. The

boundary conditions are given as

Bu(x; t) = h(x; t) ; x 2 ÆD ; t > 0 ; (3.2)

where B signi�es the boundary operator and the initial conditions are

speci�ed as

29
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u(x; 0) = g(x) ; x 2 D ; t = 0 : (3.3)

In much of what follows we shall refer to the boundary conditions, the

initial conditions and the force function as the data of the problem.

Attempting a direct convergence analysis of a particular scheme for

the numerical approximation of the general nonlinear IBVP is at best

very complicated and in most cases impossible. Thus, in the following

we shall discuss and motivate alternative avenues that, if not completely

resolving the question of convergence, at least can illuminate the key

problems and properties of the numerical approximation to the IBVP.

3.1 Wellposedness of the Initial Boundary Value

Problem

To come to an understanding of the wellposedness of the general IBVP,

it is natural to �rst consider the equivalent Cauchy problem, i.e., we dis-

regard the e�ect of the boundary conditions and assume the problem to

be embedded in an in�nite space. We furthermore assume that the solu-

tion, u(x; t), exists and is unique and require that it depends smoothly

on the data of the problem. In other words, small perturbations of the

initial data implies only small perturbations on the solution.

To make these statement more rigorous, assume that u(x; t) as well

as f(x; t) and g(x) all belong to a Hilbert space, H, endowed with the

norm, k � kL2w[D], for all t 2 [0; T ]. Consider a perturbed problem for

v(x; t) 2 H as

@v(x; t)

@t
= F(x; t; v(x; t)) + f(x; t) + Æf(x; t) ; x 2 D ; t � 0 ; (3.4)

with the initial conditions

v(x; 0) = g(x) + Æg(x) ; x 2 D ; t = 0 ; (3.5)

We shall use the following de�nition [61]

De�nition 1 (Wellposedness I). Assume that a unique solution ex-

ists to the Cauchy problem given by Eq.(3.1) for given initial data and

for all t 2 [0; T ]. Then the problem is wellposed if there exists a unique

solution to the perturbed problem, Eqs.(3.4)-(3.5), for which

sup
t2[0;T ]

kÆfkL2w[D] + kÆgkL2w[D] � " ;
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for any " > 0, such that

sup
t2[0;T ]

ku(t)� v(t)kL2w[D] � C(T )

(
sup

t2[0;T ]
kÆfkL2w[D] + kÆgkL2w[D]

)
;

where the constant, C(T ), can depend on T but not on the initial data.

Establishing wellposedness for the general nonlinear operator is tremen-

dously complicated and in many cases not currently possible. This is

further complicated by realizing that the choice of the norm in Def. 1

plays a crucial role, e.g., a problem being wellposed in one norm may well

be illposed in another norm, an example of which we shall see shortly.

To continue our discussion on wellposedness beyond this point, we

shall reduce the complexity of the general problem. Clearly, wellposed-

ness of the nonlinear problem is closely related to that of the linearized

problem as stated in [61]

Linearization Principle: A nonlinear problem is wellposed at u(x; t)

if the linear problems obtained by linearizing for all functions in the

neighborhood of u(x; t) are wellposed.

Hence, we can relate the issue of wellposedness of a set of variable coeÆ-

cient, linear problems to that of the original nonlinear problem with the

former providing necessary but not suÆcient conditions for wellposed-

ness of the latter. Let us furthermore assume that the solution, u(x; t),

has a minimum degree of smoothness, i.e., u(x; t) 2 C[D]. This allows

us to state the

Localization Principle: If all constant coeÆcient problems are wellposed

and the solution can be bounded solely by the initial data then the

corresponding variable coeÆcient problem is also wellposed.

While this result, motivating the analysis of frozen coeÆcient problems,

is invalid for the general variable coeÆcient problem it provides necessary

but not suÆcient conditions for strictly hyperbolic, parabolic and mixed

type operators[61], to which we shall devote most of our attention.

Motivated by the above line of arguments, although not very rigor-

ous in nature, we shall mainly focus on constant or variable coeÆcient

problems as they remain the only type of problems for which a some-

what general theory can be developed. While certainly not rigorous, the

two above principles suggests that results do carry over from the linear

case to the fully non-linear case or rather that the analysis of the former
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may shed some light on the properties of the latter, and much harder,

problem.

Let us therefore introduce the linear, constant coeÆcient form of the

original IBVP, Eqs.(3.1)-(3.3), as

@u(x; t)

@t
= Lu(x; t) + f(x; t) ; x 2 D ; t � 0 ; (3.6)

Bu(x; t) = h(x; t) ; x 2 ÆD ; t > 0 ;

u(x; 0) = g(x) ; x 2 D ; t = 0 ;

where L and B are independent of time and space and the data are

assume to be in C[D] at all times.

The complexity of this general problem can be reduced considerably

without sacri�cing the validity of the subsequent analysis. Let us �rst

consider the e�ect of the inhomogeneous boundary conditions, h(x; t),

and introduce the transformation

v(x; t) = u(x; t)� �(x; t)h(x; t) ;

where �(x; t) is chosen such that v(x; t) vanishes at the boundary at all

times. This yields the transformed problem

@v(x; t)

@t
= Lv(x; t) +

�
f(x; t) + h(x; t)L�(x; t)� @�(x; t)h(x; t)

@t

�
:

Provided only that �(x; t) and h(x; t) are functions of bounded variation

in t 2 [0; T ], wellposedness of the problem subject to general boundary

conditions follows directly from wellposedness of a homogeneous bound-

ary value problem, subject to a di�erent forcing function.

Through a similar line of arguments and the use of the transformation

v(x; t) = u(x; t)� e�tg(x) ;

we have

@v(x; t)

@t
= Lv(x; t) + �f(x; t) + e�t(g(x) + Lg(x))� ;

subject to homogeneous initial conditions. As for the boundary condi-

tions, the issue of wellposedness follows directly from the wellposedness

of a very similar problem, albeit subject to a di�erent forcing.

However, the impact of the general forcing, f(x; t), on the wellposed-
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ness of the problem can be understood by recalling that if the solution

to Eq.(3.6) with f(x; t) = 0 takes the form

u(x; t) = exp (Lt) g(x) ;

then the solution solution to the inhomogeneous problems is given as

u(x; t) = exp (Lt) g(x) +
Z t

0

exp (L�) f(x; �) d� :

This results is known as Duhamel's principle and remains valid also for

the general variable coeÆcient and nonlinear problems [?].

Hence, we can recast the general linear IBVP into one with homo-

geneous initial and boundary values, and neglect the forcing terms in

the analysis of wellposedness as it follows from that of the homogeneous

problem. It should be cautioned, however, that if the homogeneous

problem is illposed, this approach does not in general allow us to state

anything about the inhomogeneous problem.

Through this rather long line of arguments we have realized that

quite a lot can be said about the solution to general nonlinear IBVP by

studying the much simpler linear homogeneous IBVP on the form

@u(x; t)

@t
= Lu(x; t) ; x 2 D ; t � 0 ; (3.7)

Bu(x; t) = 0 ; x 2 ÆD ; t > 0 ;

u(x; 0) = g(x) ; x 2 D ; t = 0 ;

which shall be the main subject of our study. In much of what follows

we shall therefore consider the linear IBVP for which wellposedness is

de�ned as

De�nition 2 (Wellposedness II). Assume that a solution exists to

the problem, Eq.(3.7). Then the problem is wellposed for t 2 [0; T ] in

L2
w[D] provided only that

sup
t2[0;T ]

ku(t)kL2w[D] � C(T )kgkL2w[D] ;

where the constant, C(T ), can depend on T but not on the initial data.
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3.2 Consistency, Stability, and Convergence

We are now ready to return to the discussion of convergence of a numer-

ical scheme, serving as an approximation of a general initial boundary

value problem. Based on the discussion in the last section it seems rea-

sonable to focus the treatment to linear, variable coeÆcient problems.

One should be aware that such an analysis provides only necessary, but

not suÆcient, conditions for convergence of the approximation to the

general nonlinear IBVP.

Let us for simplicity begin by restricting the attention to the one-

dimensional linear, constant coeÆcient initial scalar boundary value

problem

@u(x; t)

@t
= Lu(x; t) ; x 2 D ; t � 0 ; (3.8)

Bu(x; t) = 0 ; x 2 ÆD ; t > 0 ;

u(x; 0) = g(x) ; x 2 D ; t = 0 ;

where L is independent of time as well as space. We shall also subse-

quently assume that the boundary operator, B, is included in the oper-

ator, L. The extension to the multi-dimensional scalar case is straight-

forward provided the domain of interest is simple, e.g., convex with a

Lipschitz boundary. The generalization to systems of equations is con-

siderably more complex and we refer to [?] for an detailed discussion of

these complications. In Chap. 8 we shall revisit this within the context

of spectral methods for conservation laws.

Let us here assume that the solution, u(x; t), belongs to a Hilbert

space, H, endowed with a norm, k � kL2w[D], in which the problem is

wellposed according to Def. 2. The boundary operator, B, restricts
the allowable solution space to B � H, where the Hilbert subspace,

B � H, is constructed from all u(x; t) 2 H for which Bu(x; t) = 0 on ÆD.

Wellposedness implies that the operator, L, is a bounded operator from

H into B, i.e., L[D] : H! B.

The formulation of any numerical schemes for the solution of partial

di�erential equations involves two essential steps

� Choosing a �nite dimensional space, BN , to approximate the continu-

ous space, B. BN is the space in which to seek approximate solutions

and this choice de�nes the method, e.g., �nite di�erence, �nite vol-

ume, spectral etc.
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� De�ning a projection operator, PN [D] : H! BN . This choice speci�es

the way in which the equation is satis�ed, e.g., Galerkin, collocation

etc.

Here N is a measure of the dimension of the dense subspace, BN 2 B,

and of the projection operator, PN .
The projection is often de�ned through the method of weighted resid-

uals (MWR), by enforcing that the numerical solution, uN (x; t) 2 BN ,

satis�es

@uN
@t

�LNuN = 0 ; (3.9)

uN(0)� gN = 0 ;

where we have introduced the approximated operator, LN [D] : B! BN ,

de�ned as LN = PNLPN , and gN = PNg.
The aim of the convergence analysis is to derive conditions for the

convergence of uN to u as N tends to in�nity for any t 2 [0; T ]. However,

a direct comparison between uN and u is diÆcult as they occupy di�erent

spaces, leaving ambiance as to how to measure the di�erence. It is more

natural to compare uN and the projection, PNu, as they belong to the

same space, BN , endowed with the norm k � kL2w[D]. It is important to

realize that any numerical scheme produces a projection of the solution,

PNu, rather than the solution, u, itself which is generally not available.

In what remains, we shall simply assume that

8t 2 [0; T ] : ku(t)�PNu(t)kL2w[D] ! 0 as N !1 : (3.10)

Estimating this generally involves knowledge about the regularity of the

solutions to the partial di�erential equation. While this topic is of great

importance in the theory of partial di�erential equations, it is also well

beyond the scope of this text. We shall simply assume that the solution

has suÆcient smoothness and remains bounded to ensure that Eq.(3.10)

holds.

The convergence rate, however, of this may well be di�erent from that

of

8t 2 [0; T ] : kuN(t)�PNu(t)kL2w[D] ! 0 as N !1 ;

which measures the di�erence between the projection of the exact solu-

tion and the numerical solution.
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The projection of Eq.(3.8) yields

@PNu
@t

= PNLu : (3.11)

Let us recall the identity

8uN 2 BN : PNuN = uN ;

i.e., the projection of a function in BN is the identity operation. Com-

bining Eq.(3.9) and Eq.(3.11) yields the error equation

@

@t
(PNu� uN) = LN (PNu� uN ) + PNL (I � PN )u : (3.12)

Hence, if PNu(0)� uN (0) = 0 and the truncation error,

PNL (I � PN )u ; (3.13)

vanishes, we recover that the error, PNu� uN , is zero for all t 2 [0; T ].

Let us now de�ne the concept of convergence as

De�nition 3 (Convergence). An approximation is convergent if

8t 2 [0; T ] : kPNu(t)� uN (t)kL2w[D] ! 0 as N !1 ;

for all u(0) 2 B and uN (0) 2 BN .

A direct approach to proving convergence of a speci�c scheme is, in

general, hard. However, there fortunately is an alternative avenue along

which to proceed.

We recall Eq.(3.12) and de�ne

De�nition 4 (Consistency). An approximation is consistent if

kPNL (I � PN )ukL2w[D] ! 0

kPNu(0)� uN(0)kL2w[D] ! 0
as N !1 ;

for all u 2 B and uN (0) 2 BN .

This essentially requires that the truncation error introduced by the

approximation vanishes as N approaches in�nity.

Let us also de�ne
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De�nition 5 (Stability). An approximation is stable if

8N : k exp(LN t)kL2w[D] � C(t) ;

with the associated operator norm

k exp(LN t)kL2w[D] = sup
u2B

k exp(LN t)ukL2w[D]
kukL2w[D]

;

and C(t) is independent of N and bounded for any t 2 [0; T ].

This guarantees that the solution remains bounded as N approaches

in�nity. Stability of the approximation is clearly closely related to the

question of wellposedness for the partial di�erential equation.

These concepts are connected through one of the principal results in

the convergence theory of the numerical approximation of linear partial

di�erential equations.

Theorem 1 (Lax-Richtmyer Equivalence Theorem). A consistent

approximation to a linear wellposed partial di�erential equation is con-

vergent if and only if it is stable.

Proof: We will just outline the proof of this important result. Let

us �rst establish that consistency and stability it suÆces to guarantee

convergence. Consider the error equation, Eq.(3.12),

@

@t
(PNu� uN) = LN (PNu� uN ) + PNL (I � PN )u :

Using Duhamel's principle yields

PNu(x; t)� uN (x; t) = exp [LN t] (PNu(x; 0)� uN(x; 0))

+

Z t

0

exp [LN (t� s)]PNL [I � PN ]u(s) ds ;

which is valid provided only that the truncation error has suÆcient

smoothness. Introducing the L2
w[D] norm and the triangle inequality

we recover

kPNu(t)� uN(t)kL2w[D] � C(t)kPNu(0)� uN(0)kL2w[D]
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+

Z t

0

C(t� s)kPNL [I � PN ]u(s)kL2w[D] ds :

Provided u is dense in B, uniformly bounded in t, and the approximation

is stable and consistent according to Def. 4 and Def. 5, the truncation

error vanishes as N approaches in�nity, thus establishing convergence.

Indeed, we observe that the rate of convergence is the same as that of

the truncation error.

Conversely, to prove that convergence implies stability, we recall that

convergence implies that

�� k exp(Lt)ukL2w[D] � k exp(LN t)ukL2w[D]
��

� k exp(Lt)u� exp(LN t)ukL2w[D] ! 0 ;

forN !1. Since k exp(Lt)ukL2w[D] is bounded due to wellposedness, see
Def. 2, this indicates that convergence indeed implies stability. However,

there are subtleties as k exp(LN t)ukL2w[D] may depend on u as well as t.

We shall not address this issue further but refer to [??] for a complete

proof of the equivalence theorem. QED

A few remarks regarding the use of the equivalence theorem is in place.

We have indicated the proof of the theorem in Hilbert spaces, utilizing

the inner product norms. The original result, on the other hand, is valid

for solutions in Banach spaces, i.e., the result remains valid in all of

the Lpw[D] spaces. It is crucial to appreciate, however, that the consis-

tency, stability and wellposedness of the problem has to be established

in equivalent spaces, i.e., using equivalent norms, for the theorem to re-

main valid. The problem is the issue of wellposedness which may well

be lost when changing norm. To appreciate this, consider the following

example [?].

Example 5. Consider the linear wave equation

@u

@t
= �@u

@x
; x 2 [�1; 1] ;

with u(�1; t) = 0 and the initial conditions being

u(x; 0) =

�
1� "�1jxj jxj � 1� "

0 jxj > "
;
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where " > 0.

Let us consider the norm

ku(t)k2� =

Z 1

�1

u2(t)(1� x2)� dx ;

with � > �1. Note that � = 0 reects the classical energy (L2) norm.

One can easily show that

ku(0)k2� / " :

The solution at t = 1 is

u(x; 1) =

�
0 x � 1� "

1� "�1 + "�1jxj 1� " < x < 1
:

Evaluating the norm shows

ku(1)k2� / "�+1 :

For wellposedness, we must require that

ku(t)k� = jj exp(Lt)u(0)k� � C(t)ku(0)k� ;

where C(t) can depend on the time but not on the initial conditions.

However, using the above results, we have

jj exp(Lt)k� � ku(1)k�
ku(0)k� / "�=2 :

Hence, for �1 � � � 0, one can not bound the operator by any �-

nite constant and the problem is illposed. For � � 0, the problem is

wellposed.

This partly explains why the application of the theorem traditionally has

been restricted to problems in Hilbert spaces, as wellposedness, including

uniqueness and existence, as well as stability and consistency in most

cases is harder to establish in the Lpw[D]-spaces.

The power of the Lax-Richtmyer equivalence theorem lies in the real-

ization of a natural splitting of the convergence analysis of a numerical

approximation scheme into the less diÆcult issues of consistency and

stability. In what follows we shall rely heavily on this result to facilitate

the analysis of spectral approximations to partial di�erential equations.
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3.3 The Spectral Approximation

What separate spectral methods from all other methods for solving par-

tial di�erential equations is the implicit assumption that the solution,

u(x; t) 2 B, can be expressed as a series expansion of global and smooth

polynomial trial functions, �n(x), de�ned on D as

u(x; t) =

1X
n=0

ûn(t)�n(x) ; (3.14)

with the truncated approximation

uN (x; t) =

NX
n=0

ûn(t)�n(x) : (3.15)

The conditions on u(x; t) ensuring that such an expansion exists remains

unknown for general �n(x). However, for special choices of the trial, or

basis, functions one can establish necessary conditions for the existence.

For now, we will simply assume that the series exists and later return

to the question of existence for speci�c examples of �n(x).

The choice of the trial functions is of great importance for the devel-

opment of a good method, e.g., recall Ex. 4 in Chapter 2, since they

also de�ne the subspace, BN , in which we seek the approximate solution,

uN . Clearly, if BN , is a poor approximation to B we can not expect uN
to be a good approximation to u.

In what remains we assume that �n(x) 2 H belongs to a polynomial

family, including the trigonometric polynomials, that is complete in H

and orthogonal under the associated inner product. In this setting the

�nite dimensional subspace, BN , is of dimension N + 1 and is spanned

by a subset of a polynomial family that is dense in BN .

In the particular case where

BN = spanf�n(x)gNn=0 ;

we realize

u� uN ? uN ; (3.16)

i.e., u� uN forms an orthogonal complement to the subspace, BN .

So far we have not concerned ourselves with the question of how to

recover the expansion coeÆcients, ûn(t), such that Eq.(3.14) remains

true. There are two essentially di�erent methods for doing so as we
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shall discuss in the following.

3.3.1 The Continuous Approximation

Consider the truncated expansion

PNu(x; t) =
NX
n=0

ûn(t)�n(x) :

Since we assume that the trial functions, �n(x), form a complete and

orthogonal system with respect to the weight, w(x), we have

(�n; �m)w = nÆnm ;

where n = (�n; �n)w, from which we recover the expansion coeÆcients

ûn(t) =
1

n

Z
D

u(x; t)�n(x)w(x) dx : (3.17)

Note that this formulation is grid free, i.e., we are working solely in a

continuous framework and, motivated by this observation, we shall term

ûn(t) the continuous expansion coeÆcients.

Completeness of the system, �n(x), in H is equivalent to the property

that for all u(x; t) 2 H we have

ku�PNukL2w[D] ! 0 as N !1 ;

i.e., PNu converges to u in the mean. While this ensures consistency it

expresses nothing about the quality of the approximation for �nite N ,

i.e., the convergence rate.

To understand this, we recall Bessel's inequality, which in the case of

an orthogonal basis becomes an equality, as

kukL2w[D] =
 

1X
n=0

nû
2
n

!1=2

:

Recalling that the truncation error is in the complement of the approx-

imation, Eq.(3.16) we recover

ku�PNukL2w[D] =
 

1X
n=N+1

nû
2
n

!1=2

:
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Hence, the approximation error depends solely on the decay of the ex-

pansion coeÆcients, which again depend on the actual orthogonal family

being applied, the regularity of u, and the weight function, w(x).

3.3.2 The Discrete Approximation

The computation of the continuous expansion coeÆcients involves, as

expressed in Eq.(3.17), the evaluation of a continuous inner product.

For general solutions, u(x; t), this is very hard or even impossible to

evaluate and certainly impractical for real problems.

To overcome this problem, let us introduce a set of distinct grid points,

xj , and search for a polynomial, INu(x; t) 2 BN , satisfying

8xj : INu(xj ; t) =
NX
n=0

~un�n(xj) ; (3.18)

i.e., we require the approximation to u(x; t) be an interpolation. The

remaining question is how to obtain the discrete expansion coeÆcients,

~un(t), such that Eq.(3.18) is satis�ed.

Let us de�ne the discrete weighted inner product

[u; v]w =

NX
j=0

u(xj)v(xj)wj ; (3.19)

and assume that u(x); v(x) 2 C[D]. We shall furthermore assume that

[u; v]w = (u; v)w ; u; v 2 BN ; (3.20)

i.e., the grid points, xj , and the discrete weights, wj , are chosen such

that the discrete inner product is identical to the usual continuous inner

product for all functions in BN . To thoroughly understand the impli-

cations of the assumptions expressed in Eqs.(3.19)-(3.20) we shall need

to develop the theory of Gauss integration, the discussion of which we

postpone to Chapter [?]. At this point the equality is simply a postulate

although we saw an example of such a summation rule in Lemma 1.

However, armed with this assumption we recover the discrete expan-

sion coeÆcients on the form

~un =
1

~n
[u(x); �n(x)]w =

1

~n

NX
j=0

u(xj)�n(xj)wj ; (3.21)
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where wj represents the discrete weights and we have ~n = [�n; �n]w.

3.3.3 A Comparison

Let us briey compare the two di�erent sets of expansion coeÆcients, ûn
and ~un. While the computation of the former requires the evaluation of

an integral, it introduces no grid points. Contrary to that, the evaluation

of ~un involves the de�nition of a grid and a quadrature to compute

the expansion coeÆcients through a summation. This later approach is

clearly better suited for a computer.

The use of a grid, however, introduces an additional source of er-

ror. To realize this, let us consider the relation between the two sets

of expansion coeÆcients, assuming that u(x; t) is at least continuous,

i.e., u(x; t) 2 C[D]. Then the discrete expansion coeÆcients, ~un, can be

expressed using the continuous expansion coeÆcients, ûn, as

~un =
1

~n

NX
j=0

 
1X
l=0

ûl�l(xj)

!
�n(xj)wj = ûn +

1

~n

1X
l=N+1

ûl[�l; �n]w :

The last term does not vanish as �l(x) is in the complement of BN for

l � N in which case Eq.(3.20) is no longer valid. Summing over all

modes we obtain

INu(x) =
NX
n=0

~un�n(x)

=

NX
n=0

ûn�n(x) +

1X
l=N+1

ûl

NX
n=0

1

~n
[�l; �n]w�n(x)

= PNu(x) +RNu(x) ;

where the last term, RNu(x), represents the di�erence between the two

approximations. This di�erence, known as the static aliasing error, is a

direct consequence of the introduction of a grid. Another interpretation

is that it is caused by the loss of accuracy in the evaluation of the

integral by a summation. This causes high frequency variations in the

function to appear as low frequency variations in the approximation due

to insuÆcient resolution. Since the aliasing error is in the complement

of the continuous approximation, PNu, we recover the following error

estimate
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ku� INukL2w[D] = ku�PNukL2w[D] + kRNukL2w[D] :

Hence, to establish convergence of the discrete expansion we need to

understand the impact of the aliasing error in addition to the behavior

of the continuous approximation.

3.3.4 Revisiting the Discrete Approximation

It is worth while returning to the discrete approximation as it allows for

an alternative, yet equivalent, formulation. To appreciate this, let us

recall that the discrete expansion coeÆcients, ~un, are de�ned to ensure

that the approximation is an interpolation, i.e., INu(xj) = u(xj) as

discussed in Sec. 3.3.2. In other words, INu(x) represents an Nth order

polynomial, speci�ed at N+1 grid points, xj . As this polynomial clearly

is unique we may equally well express the interpolation on the form

INu(x) =
NX
j=0

u(xj)Lj(x) ;

where the Lagrange interpolation polynomial, Lj(x), based on the grid

points, xj , is given as

Lj(x) =
Q(x)

(x � xj)Q0(xj)
; Q(x) =

NY
j=0

(x� xj) : (3.22)

We recall that Lj(xk) = Æjk , ensuring the interpolation property of INu
which is now nothing else than a global polynomial on which we can

perform any operation much in the spirit of the �nite di�erence schemes

discussed in Chapter ??. Indeed, we may di�erentiate the interpolating

polynomial to obtain an approximation to the spatial derivative of u(x)

at the grid points, xj , as

du

dx

����
xj

' d(INu)
dx

����
xj

=

NX
k=0

u(xk)
dLk(x)

dx

����
xj

;

with the derivative of the Lagrange polynomial at the collocation points

being given as
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dLk(x)

dx

����
xj

=

(
Q0(xj)

(xj�xk)Q0(xk)
k 6= j

1
2
Q00(xk)
Q0(xk)

k = j
:

An alternative way of expressing the interpolation polynomial is by in-

serting Eq.(3.21) into Eq.(3.18) to obtain

INu(x) =
NX
j=0

u(xj)Lj(x) =
NX
j=0

u(xj)

 
wj

NX
n=0

1

n
�n(xj)�n(x)

!
:

Due to the uniqueness of the interpolation polynomial we recover

Lj(x) = wj

NX
n=0

1

n
�n(xj)�n(x) : (3.23)

While the construction of Lj(x) from Eq.(3.22) is possible for any set

of N + 1 distinct grid points, the formulation in Eq.(3.23) is clearly

more restrictive in that it involves a sum over a particular orthogonal

basis. Hence, one can certainly �nd examples of Lj(x) that can not be

expressed in the form of Eq.(3.23).

However, as we shall concern ourselves with approximations originat-

ing from orthogonal expansions with associated quadrature nodes and

weights, both formulations are of relevance. Indeed, we shall see that the

duality in expressing the discrete approximation in terms of expansion

coeÆcients or in terms of Lagrange interpolation polynomials shall be

of very signi�cant use for the analysis of spectral methods as well as the

more practical aspects.

3.4 Method of Weighted Residuals

So far we have focused the discussion on the construction of the �nite

dimensional subspace, BN , and how to recover the approximations to

u(x; t) in the �nite dimensional space. However, to complete the speci�-

cation of the numerical scheme we need to discuss the equally important

question of how to satisfy the partial di�erential equation.

Consider again the linear scalar problem

@u

@t
= Lu ; (3.24)
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with appropriate initial conditions and assume that the boundary oper-

ator, B, is included in L and that u 2 B.
To recover a semi-discrete approximation we use the method of weighted

residuals (MWR) to require that the residual, RN (x; t), is orthogonal in

an inner product to a set of test functions,  n(x), as

8n 2 [0; N ] : (RN ;  n)w =

Z
D

RN
� n w dx = 0 ;

where the residual

RN (x; t) =
@uN
@t

�LuN ;

reects the error introduced by approximating u(x; t) by uN(x; t).

The choice of the test-functions de�nes the way in which we satisfy

the equation, i.e., the projection operator PN , and names the overall

scheme. In the following we briey discuss the three essentially di�er-

ent choices of test functions that lead to the standard formulations of

spectral approximation schemes for solving partial di�erential equations.

3.4.1 Galerkin Approximation

In this classical approach to the construction of a semi-discrete approx-

imation to a partial di�erential equation, we assume that the solution,

u(x; t), can be approximated by a truncated expansion as

uN (x; t) =

NX
n=0

ûn(t)�n(x) :

The test-function,  k(x), is de�ned by

(�n;  l)w = Ænl ;

i.e., they are essentially the orthogonal basis functions subject only to a

slightly di�erent normalization as

 n(x) =
1

n
�n(x) :

This speci�c approach is known as the Galerkin approximation. The

MWR argument leads to the following set of equations
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�
@uN
@t

�LuN ; �n
n

�
w

= 0 ; n = 0; : : : ; N ;

which, using the orthonormality of the trial and test functions, yields

dûn
dt

= (LuN ;  n)w ; n = 0; : : : ; N :

Hence, the semi-discrete approximation consists of N + 1 coupled ordi-

nary di�erential equations, which determine the temporal evolution of

the expansion coeÆcients, ûn(t), subject to the initial conditions on the

form

ûn(0) = (g;  n)w ; n = 0; : : : ; N :

The formulation of the Galerkin approximation may be viewed in a dif-

ferent way. Assume that at each given time, t, the expansion coeÆcients,

ûn, are known. Then seek values of the N + 1 independent quantities,

(ûn)t, that minimize @uN@t �LuN

L2w[D]

;

i.e., it is the solution that minimizes the residual in a weighted least

square sense.

The main diÆculty associated with a Galerkin formulation emerges

when one considers boundary conditions. Since the projection leaves no

degrees of freedom through which to impose the boundary conditions,

these conditions have to be a part of the basis itself. Moreover, due to

the implicit orthogonality of the basis and the test-functions, we need

to require that the basis functions obey the boundary conditions indi-

vidually, i.e., �n(x) all have to satisfy the boundary conditions. This

essentially restricts the practical use of the Galerkin approximation to

problems with simple boundary conditions, e.g. periodic or homoge-

neous boundary conditions.

Example 6. Consider the constant coeÆcient linear problem

@u

@t
= a

@u

@x
+ b

@2u

dx2
;
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u(0; t) = u(2�; t) ;

u(x; 0) = g(x) ;

in the domain D = [0; 2�]. We will discretize the problem using a

Fourier-Galerkin method and assume a polynomial solution of the form

uN(x; t) =

N=2X
n=�N=2

ûn(t) exp(inx) ;

where the continuous expansion coeÆcients, ûn, are found as

ûn(t) =
1

2�

Z 2�

0

u(x; t) exp(�inx)dx :

To construct the scheme we require that the residual

RN (x; t) =

N=2X
n=�N=2

�
dûn
dt

� inaûn + n2bûn

�
exp(inx) ;

is orthogonal to BN = spanf�ngNn=0, i.e.,

RN ? BN , 8n : (RN ; �n)w = 0 :

In this special case, we have that RN (x; t) 2 BN and we immediately

recover the N + 1 equations to be solved as

8n 2 [�N=2; : : : ; N=2] : dûn
dt

� inaûn + n2bûn = 0 ;

and the initial conditions as

ûn(0) =
1

2�

Z 2�

0

g(x) exp(�inx)dx :

The simplicity of this scheme is caused by the fact that

L = a
@

@x
+ b

@2

@x2
;

commutes with the projection, LPN = PNL, i.e., the truncation error,

Eq.(3.13), vanishes and we recover the projection of the exact solution,

uN = PNu.
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A main drawback of the Galerkin method is that we have to derive the

system of ordinary di�erential equations separately for each individual

problem. While this is possible for constant coeÆcient problems, it may

prove hard or even impossible when considering more general variable

coeÆcient or nonlinear problems. Moreover, the Galerkin approach re-

quires that the trial functions obey the boundary conditions individually

which may well complicate matters considerably.

3.4.2 Tau Approximation

For many problems, the boundary conditions are suÆciently complicated

to make the Galerkin approximation impractical. Let us in the follow-

ing assume that the boundary operator, Bu = 0, require us to enforce

Nb boundary conditions, and assume that the solution to the partial

di�erential equation, u(x; t), is approximated as

uN(x; t) =

N+NbX
n=0

ûn�n(x) :

In contrast to the Galerkin approximation, we shall choose test func-

tions,  n(x), that do not satisfy the boundary conditions individually.

However, in applying the MWR argument we shall leave enough degrees

of freedom to enforce the boundary conditions. The consequence of this

procedure is that we need to specify two sets of test functions.

For the partial di�erential equation itself we choose the test functions

as for the Galerkin approach

 n(x) =
1

n
�n(x) ; n = 0; : : : ; N ;

and require orthogonality between the residual and the space of test

functions as �
@uN
@t

�LuN ;  n
�
w

= 0 ; n = 0; : : : ; N :

This results in N + 1 coupled ordinary di�erential equations as

dûn
dt

= (LuN ;  n)w ;

to describe the evolution of the �rst N + 1 expansion coeÆcients.

The Nb remaining coeÆcients shall be speci�ed to enforce the bound-
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ary conditions. For this we de�ne a set of Nb test-functions on the form

 BC
n (x) =

1

n
�n(x)ÆÆD :

Here deltaÆD reects a function that vanishes everywhere except at ÆD

where it becomes unity.

Applying the MWR condition on the boundary equation, yields

(BuN ;  BC
n )w = 0 ; n = 0; : : : ; N +Nb ;

which results in Nb conditions on the form

N+NbX
n=0

ûn(t) B�njÆD = 0 ;

to close the set of N +1+Nb equations for N +1+Nb unknowns. This

constraint is natural as it simply reects that one requires BuN = 0.

The name of the method, which was originally proposed by Lanczos

[64, 25] originates in the observation that the approximate solution, uN ,

is an exact solution to the modi�ed problem

@uN
@t

= LuN +
1X
p=1

�p�N+p(x) ;

Following the approach outlined above yields the same N +1 equations

for the expansion coeÆcients. However, we also obtain the equations for

�p as

�p = � (LuN ; �N+p)w
N+p

; p = 1; 2; : : : :

Consequently, calculating �p one obtains an error estimate which indicate

how accurately the posed IBVP is being solved.

Let us �nally note that in the trivial case where the trial functions

satisfy the boundary conditions individually, the tau method and the

Galerkin method are equivalent.

Example 7. Consider the elliptic problem

d2u(x)

dx2
= f(x) ;
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u(0) = u(�) = 0 ;

in the domain D = [0; �]. We will also assume that f(x) is even, i.e.,

f(x) = f(�x), and �-periodic, i.e., f(x) = f(x+ �).

We chose to discretize the problem using a Cosine-tau method and

seek a polynomial solution on the form

uN (x) =

N+2X
n=0

ûn cos(nx) :

The expansion coeÆcients, ûn, can be found using the orthogonality of

the cosine basis as Z �

0

cos(nx) cos(lx)dx =
�

2
Ænl ;

such that

ûn =
2

�

Z �

0

u(x) cos(nx)dx :

The expansion of f(x) is found in a similar way.

We observe that since cos(0) = 1 and cos(n�) = (�1)n, none of the
basis functions satisfy the boundary conditions.

To construct the approximation we require that the residual

RN (x) =

NX
n=0

�
�n2ûn � f̂n

�
cos(nx) ;

is orthogonal to BN as for the Galerkin approximation. This yields the

�rst N + 1 equations as

8n 2 [0::N ] : �n2ûn = f̂n :

The additional equations required to enforce the boundary conditions

yield

uN(0) =

N+2X
n=0

ûn = 0 ;

uN(�) =

N+2X
n=0

ûn(�1)n = 0 ;
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providing the 2 equations required to solve for the N + 3 unknown.

For this problem we obtain the measures of error as

�N+1 = �(N + 1)2ûN+1 � f̂N+1 ; �N+2 = �(N + 2)2ûN+2 � f̂N+2 ;

while �p = 0 otherwise.

As for the Galerkin method, a drawback of the tau-method is the need

to derive the equations separately for each separate problem. For linear

problems, the tau-method yields a very eÆcient and accurate method

for the solution of ordinary di�erential equations. However, as for the

Galerkin approximation, dealing with variable coeÆcient or non-linear

problems is in most cases very hard and often even impossible.

3.4.3 Collocation Approximation

As we have seen, the Galerkin method and the tau method have the

distinct disadvantage that one needs to explicitly derive the governing

equations separately for each case.

Let us therefore consider an alternative approach known as the col-

location method in which we assume that the solution to the partial

di�erential equation, u(x; t), is well approximated by the interpolation

polynomial

uN(x; t) =
NX
n=0

~un(t)�n(x) =
NX
j=0

u(xj ; t)Lj(x) ;

where the interpolation is based on some given set of grid points, xj , as

discussed in Sec. 3.3.4.

What separates the collocation approximation from the two previous

techniques to satisfy the equation is the introduction of a grid which

we de�ne by N + 1 distinct grid points, yj , in D. It is important to

appreciate that this set of grid points, yj , may well be di�erent from the

set of grid points, xj , on which the interpolation polynomial is based.

The reality is, however, that they very often are chosen to coincide.

We require that the partial di�erential equation is satis�ed exactly at

yj by choosing the test functions as shifted Dirac delta functions

 n(x) = Æ(x� yn) ; n = 0; : : : ; N :
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Applying the MWR argument yields the equations

RN (yn; t) =

�
@uN
@t

�LuN
�����
yn

= 0 ; n = 0; : : : ; N :

In case the grid points include the boundary, ÆD, we obtain those equa-

tions through the boundary operator which has to be obeyed exactly at

the boundary point(s).

One may also understand the collocation method by assuming that

at each given time, t, the expansion coeÆcients, ~un, are known. Then

we seek values of the N+1 independent quantities, (~un)t, that minimize�
@uN
@t

�LuN ; @uN
@t

�LuN
�
w

;

i.e., it is the solution that minimizes the residual in the discrete inner

product in a least square sense.

Example 8. Let us consider the following variable coeÆcient problem

@u

@t
= sinx

@u

@x
;

u(0; t) = u(2�; t) ;

u(x; 0) = g(x) ;

in the domain D 2 [0; 2�]. To discretize the problem using a Fourier-

Collocation method we introduce the grid

xj =
2�

N + 1
j ; j 2 [0; : : : ; N ] ;

on which we will base the interpolation and satisfy the equation.

We seek a polynomial solution of the form

uN (x; t) =

NX
j=0

uN (xj ; t)hj(x) ;

where hj(xi) = Æij represents the interpolation Lagrange polynomial

given as
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hj(x) =
1

N + 1

sin
�
N+1
2 (x � xj)

�
sin
h
x�xj
2

i :

as discussed in Chap. 2. We shall also approximate the spatial derivative

of u(x; t) as

@u

@x
' IN @uN

@x
;

which yields the spatial derivative at the grid points as

@uN
@x

����
xj

=

NX
l=0

~DjluN (xl; t) ;

where the entries of the di�erentiation matrix, ~Djl, are given as

dhj
dx

����
xl

= ~Djl =

(
(�1)j+l

2

h
sin
�

�
N+1(j � l)

�i�1
l 6= j

0 l = j
;

Since

IN
�
sin(x)

@uN
@x

�����
xj

= sin(xj)
@uN
@x

����
xj

;

recover the Fourier-Collocation approximation on the form

duN
dt

����
xj

= sin(xj)

NX
l=0

~DjluN (xl) ;

at all the collocation points, xj .

Contrary to the Galerkin and tau method, we are not required to ob-

tain the equations governing the expansion coeÆcients. The collocation

scheme is di�erent and it is straightforward to deal with variable coef-

�cient or nonlinear problems. This simply reects that while it is easy

to interpolate such terms it may well be hard to project them onto a

particular orthogonal space as required to obtain the equations for the

expansion coeÆcients. The key disadvantage of the collocation method

is the need for a grid and the associated introduction of the aliasing

error.
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Exercises

1. Consider the following functions

� u(x) = 3
5�4 cos(x)

.

� u(x) = sin(x=2).

� u(x) = x.

with x 2 [0; 2�].
Derive the continuous Fourier expansion coeÆcients, i.e.,

ûn =
1

2�

Z 2�

0

u(x) exp(�inx)dx ;

and compare them to the discrete expansion coeÆcients

~un =
1

N + 1

NX
j=0

u(xj) exp(�inxj) ; xj =
2�

N + 1
;

for several di�erent values of N . The latter summation should be evalu-
ated computationally.

Discuss the di�erences and similarities and how it relates to the di�erent
functions.

2. Consider the linear constant coeÆcient problem

@u

@t
= a

@u

@x
+ b

@2u

@x2
; x 2 [0; 2�] ;

subject to periodic boundary conditions.

Show that for a Fourier-Galerkin approximation, the residual is

RN (x; t) =

N=2X
n=�N=2

�
dûn
dt

� inaûn + n2bûn

�
exp(inx) :

3. Consider the variable coeÆcient problem

@u

@t
+ sin(x)

@u

@x
= 0 ; x 2 [0; 2�] ;

subject to periodic boundary conditions.
Derive a Fourier-Galerkin approximation. Is PNu = uN ?.

4. Consider Burgers equation

@u

@t
+

1

2

@u2

@x
= "

@2u

@x2
; x 2 [0; 2�] ;
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subject to periodic boundary conditions.
Derive a Fourier-Galerkin approximation.

5. Consider the variable coeÆcient problem

@u

@t
+ sin(x)

@u

@x
= 0 ; x 2 [0; 2�] ;

subject to the boundary conditions

u(0; t) = u(�; t) = 0 :

Derive a Fourier-Galerkin approximation.

6. (Continued) Assume that the solution is expressed as

uN (x; t) =

NX
n=0

ûn(t) cos(nx) :

Derive a tau approximation.

7. Consider Burgers equation

@u

@t
+

1

2

@u2

@x
= "

@2u

@x2
; x 2 [0; 2�] ;

subject to periodic boundary conditions.
Derive a Fourier-Collocation approximation.

8. (Continued) Consider Burgers equation on the equivalent form

@u

@t
+ u

@u

@x
= "

@2u

@x2
; x 2 [0; 2�] ;

subject to periodic boundary conditions.
Derive a Fourier-Collocation approximation.
Will the two approximations yield the same results ? Why/why not ?
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Trigonometric Polynomials

As discussed in the previous chapter, the choice of the appropriating

basis function, i.e., the speci�cation of the �nite dimensional subspace,

BN , lies at the heart of the design of the spectral method. Indeed, as we

learned through an example in Chapter 2, this choice greatly inuences

the overall performance of the scheme.

If we restrict the attention to problems possessing some degree of

periodicity, it seems natural to consider the use of trigonometric poly-

nomials, also known as Fourier series, for the purpose of representing

the unknown solutions. However, as we experienced in Chapter 2, even

for problems involving some degree of periodicity may result in a disap-

pointing performance of schemes based on trigonometric polynomials.

In this Chapter we shall come to an understanding of exactly what

determines the behavior of the approximating series. We will, for the

sake of simplicity, consider functions, u(x), of only one variable and

de�ned on [0; 2�]. We shall also restrict ourselves to functions having

a continuous periodic extension, i.e., u(x) 2 C0
p [0; 2�]. The behavior

of trigonometric series for the approximation of piecewise smooth func-

tions, u(x) 2 L2[0; 2�] shall be revisited in Chapter 8.

4.1 Continuous Trigonometric Polynomials

The classic continuous series of trigonometric polynomials, also recog-

nized as the Fourier series F [u], for the approximation of a function,

u(x) 2 L2[0; 2�], is given as

F [u] = â0 +
1X
n=1

ân cos(nx) +
1X
n=1

b̂n sin(nx) ; (4.1)

57
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where the expansion coeÆcients are

ân =
1

n
(u(x); cos(nx))L2[0;2�] =

1

cn�

Z 2�

0

u(x) cos(nx) dx ;

with

cn =

�
2 n = 0

1 n > 0
;

and

b̂n =
1

n
(u(x); sin(nx))L2 [0;2�] =

1

�

Z 2�

0

u(x) sin(nx) dx ; n > 0 :

This follows immediately from the orthogonality of the trigonometric

functions in the unweighted inner product

(u; v)L2[0;2�] =

Z 2�

0

u(x)v(x) dx ;

with the associated norm

kukL2[0;2�] =
�Z 2�

0

ju(x)j2 dx
�1=2

:

While orthogonality of the polynomials is advantageous, an essential

property is L2[0; 2�]-completeness. Establishing this for the trigono-

metric basis is, however, a classical, albeit somewhat complex, result,

the proof of which is beyond the scope of the present text. We shall

henceforth simply assume the validity of this result and refer to [??]

where a complete proof of L2[0; 2�]-completeness of the Fourier basis

can be found.

Before we move on to study the properties of the approximating se-

ries, let us recall that the Fourier series can be expressed di�erently by

introducing the Fourier basis functions

�n(x) = exp(inx) :

Clearly, this set of functions is an orthogonal system over the interval

[0; 2�] with respect to a unity weight-function. By introducing the com-

plex coeÆcients,
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ûn =

8><
>:
â0 n = 0

(ân � ib̂n)=2 n > 0

(â�n + ib̂�n)=2 n < 0

(4.2)

the trigonometric series, Eq.(4.1), is seen to be equivalent to

F [u] =
X
jnj�1

ûn�n(x) : (4.3)

The expansion coeÆcients, ûn, are obtained directly as

ûn =
1

n
(u; exp(inx))L2[0;2�] =

1

2�

Z 2�

0

u(x) exp(�inx)dx :

A few notes concerning the Fourier series are in place. In the important

special case where u(x) is a real function, we recover that ân as well as

b̂n are real numbers and, consequently, û�n = ûn (see Eq.(4.2)), i.e.,

we only need half the coeÆcients to describe the function. Similar re-

ductions are important when the function being approximated possesses

certain symmetries. In case the function is even, i.e., u(x) = u(�x), we
have b̂n = 0 for all values of n. Consequently, one needs only consider

the cosine series. Similarly, if the function is odd, i.e., u(x) = �u(�x),
we obtain ân = 0 for all n, recovering the sine series.

Let us now return to the convergence behavior of the truncated Fourier

series

PNu(x) =
X

jnj�N=2

ûn exp(inx) : (4.4)

The central issue is how well does this truncated series approximate the

function, u(x) 2 L2[0; 2�], and in what sense can we talk about con-

vergence of the series. Moreover, we need to come to an understanding

of the convergence rate and how this depends on the properties of the

function, u(x), being approximated.

We seek an approximation to u(x) in the �nite dimensional subspace,

B̂N , de�ned as

B̂N = spanfexp(inx)jjnj � N=2g ; dim(B̂N ) = N + 1 :

Recall that PNu is the orthogonal projection of u(x) onto B̂N or, equiva-

lently, PNu is the closest element to u(x) in B̂N with respect to L2[0; 2�].

Let us de�ne the notion of periodicity.
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De�nition 6 (Periodicity). A function, u(x); x 2 [0; 2�], is periodic

if u(0) and u(2�) exist and u(0) = u(2�).

Since PNu is periodic, a suÆcient condition for uniform convergence is

that u(x) 2 L2[0; 2�] itself is periodic and possesses a minimum amount

of smoothness as stated in

Theorem 2. Every function, u(x) 2 C1
p [0; 2�], has a uniformly conver-

gent Fourier series

ku�PNukL1[0;2�] ! 0 as N !1 :

The condition on smoothness is needed to ensure thatX
jnj�1

jûnj <1 :

as we shall discuss in relation with a direct proof given in Sec. 4.3.1.

A more general, but weaker, result is related to convergence in the

mean as

Theorem 3. Every piecewise continuous function, u(x) 2 L2[0; 2�], can

be expanded in a Fourier series, which is convergent in the mean

ku�PNukL2[0;2�] ! 0 as N !1 :

This is equivalent to the statement of L2[0; 2�]-completeness of the

Fourier basis and implies the existence of Parseval's identity as

kuk2L2[0;2�] = 2�
X
jnj�1

jûnj2 : (4.5)

We note in particular that for u(x) 2 L2[0; 2�], the sum on the right

hand side is guaranteed to converge.

Utilizing Eq.(4.5) and orthogonality we �nd the truncation error in-

troduced by the �nite expansion as

ku�PNuk2L2[0;2�] = 2�
X

jnj>N=2

jûnj2 :
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Moreover, provided u(x) 2 C1
p [0; 2�], Theorem 2 and the triangle in-

equality implies

ku�PNukL1[0;2�] �
X

jnj>N=2

jûnj ;

i.e., the error committed by replacing u(x) with its N 'th order Fourier

series depends solely on how fast the expansion coeÆcients of u(x) de-

cay. This, in turn, depends on the regularity of u(x) in [0; 2�] and the

periodicity of the function and its derivatives.

To appreciate this, let us assume that u(x) 2 C0[0; 2�]. Provided

n 6= 0, integration by parts implies

2�ûn =

Z 2�

0

u(x) exp(�inx) dx

=
�1
in

(u(2�)� u(0)) +
1

in

Z 2�

0

u0(x) exp(�inx) dx :

Clearly, if case u0(x) 2 L2[0; 2�], the integral exists and we recover

ûn / 1

n
:

Moreover, if the function, u(x) 2 C0
p [0; 2�], we recover

ûn / 1

n2
;

since û0n must at least decay as n�1 if u0(x) 2 L2[0; 2�]. Repeating this

line of argument we have

Theorem 4. If a function, u(x) 2 Cm�2
p [0; 2�], then then the continu-

ous Fourier expansion coeÆcients, ûn, of u(x) decay as

8n 6= 0 : ûn / 1

nm
:

A Lemma of this yields

Lemma 2. If u(x) 2 C1p [0; 2�] then the continuous Fourier expansion

coeÆcients, ûn, of u(x) decay faster than any negative power of N .
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�gure 4.1. a) Continuous Fourier series approximation of Example 9 for
increasing resolution. b) Pointwise error of the approximation for increasing
resolution

A few notes are in place here. First of all, one should realize that the

rapid decay of the expansion coeÆcients, and thus the quickly vanishing

truncation error, requires that both smoothness and periodicity of higher

derivatives of the function. Furthermore, the asymptotic decay rate of

the expansion coeÆcients is only observed for some n > n0. In case

the expansion is truncated below n0 the approximation may be quite

bad. This is true even for a C1p -function. Such behavior is consistent

with the results arrived at in Chapter 2 where we realized that the

Fourier spectral method is useless if a minimum of two grid points per

wavelength is used.

Let us consider a few examples.

Example 9. Consider the function, u(x) 2 C1p [0; 2�], de�ned as

u(x) =
3

5� 4 cos(x)
:

The expansion coeÆcients can be recovered as

ûn = 2�jnj :

As expected, the expansion coeÆcients decay faster than any algebraic

order of n. In Fig. 4.1 we plot the continuous Fourier series approxima-

tion of u(x) and the pointwise error for increasing N .

This example clearly illustrates the fast convergence of the Fourier series
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�gure 4.2. a) Continuous Fourier series approximation of Example 10 for
increasing resolution. b) Pointwise error of approximation for increasing res-
olution

and also that the convergence of the approximation is very close to being

uniform. Note that only for N > N0 � 16 do we observe the very fast

convergence.

Example 10. Consider now the function

u(x) = sin
�x
2

�
:

Note that u(x) 2 C0
p [0; 2�] only. The expansion coeÆcients are given as

ûn =
2

�

1

1� 4n2
;

and we recover quadratic decay in n. In Fig. 4.2 we plot the continuous

Fourier series approximation and the pointwise error for increasing N .

As expected, we �nd quadratic convergence except near the endpoints

where it is only linear.

Example 10 con�rms convergence in the mean. However, we also ob-

serve a non-uniform pointwise convergence rate. This is a signature of

using Fourier series, indeed of using most global expansions, for the ap-

proximation of functions that are not suÆciently smooth. We return to

a discussion of this phenomenon, known as the Gibbs phenomenon, in

Chapter 8.
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4.1.1 Di�erentiation of the Continuous Expansion.

Representing the unknown function by a series of smooth basis functions

imply that the expansion coeÆcients, ûn, decay rapidly provided only

that the function is suÆciently smooth. However, if the function itself

is smooth, so is its derivatives. Thus, one should expect that also the

expansion coeÆcients of the derivatives decay fast. This suggests that

we, in contrast to conventional �nite di�erence methods, may evaluate

pointwise values of the derivatives with very high accuracy. This aspect

is one of the main motivations for the use of spectral methods for solving

partial di�erential equations.

The question is now the following. Given the expansion

u(x) =
X
jnj�1

ûn exp(inx) ;

is it possible to obtain the expansion coeÆcients, û
(q)
n , such that

dq

dxq
u(x) =

X
jnj�1

û(q)n exp(inx) :

The answer is, however, recovered directly from Eq.(4.3) as

u(q)(x) =
X
jnj�1

ûn
dq

dxq
exp(inx) =

X
jnj�1

(in)qûn exp(inx)

=
X
jnj�1

û(q)n exp(inx) ;

provided u(q)(x) 2 C1
p [0; 2�] to allow the interchange of the operators.

As the basis functions are mutually orthogonal we have

û(q)n = (in)qûn : (4.6)

Clearly, if ûn decays exponentially, so does û
(q)
n . Further insight into the

convergence rate may be gained by realizing that if u(x) 2 Cm
p [0; 2�]

and periodic we have

ûn / 1

nm+2
) û(q)n / 1

nm+2�q
: (4.7)

It is worth while observing that
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PN dq

dxq
u =

dq

dxq
PNu ;

i.e., truncation and di�erentiation commutes for the continuous Fourier

series. This implies that the truncation error, Eq.(3.13),

PNL (I � PN )u ;

vanishes, explaining that the exact solution of certain types of equations

is possible. Note, however, that this is a special result for L being the

constant coeÆcient di�erential operator and does not carry over to other

problems or methods.

4.2 Discrete Trigonometric Polynomials

The Achilles Heel of the continuous Fourier series method is the need to

compute the continuous expansion coeÆcients through the inner prod-

uct. In most situations it is indeed neither practical nor possible to

evaluate this integral and it is certainly not practical in regards to com-

putational implementations of the Fourier method.

The answer to this problem lies in the approximation of the Fourier

integrals by using quadrature formulas, yielding the discrete Fourier co-

eÆcients.

Let us recall the de�nition of the continuous Fourier series

PNu(x) =
X

jnj�N=2

ûn exp(inx) ; ûn =
1

2�

Z 2�

0

u(x) exp(�inx) dx (4.8)

In general, the integral can not be computed analytically and we resort

to an approximating formula involving a set of grid points. However,

the exact position of these grid points plays a crucial role and we shall

subsequently split the analysis into a discussion of methods with an

even number of grid points and methods with an odd number of grid

points. As we shall learn shortly, the two schemes are clearly related

but certainly also di�erent in some important ways.
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4.2.1 The Even Expansion.

Let us �rst consider an equidistant grid, consisting of N grid points,

xj 2 [0; 2�[, de�ned as

xj =
2�j

N
j 2 [0; : : : ; N � 1] :

As always we assume that N is even.

One way to approximate the continuous integral is to apply the trape-

zoidal rule. Thus, we use the values of u(x) at theN grid points to obtain

an approximation, ~un, to ûn as

ûn ' ~un =
1

N

N�1X
j=0

u(xj) exp(�inxj) : (4.9)

While the use of this approximation indeed looks innocent, it leads, as

we shall realize shortly, to a di�erent numerical scheme when compared

to the continuous scheme.

Theorem 5. The quadrature formula

1

2�

Z 2�

0

u(x) dx =
1

N

N�1X
j=0

u(xj) ;

is exact for any u(x) 2 B̂2N�1.

Proof: Assume that u(x) 2 C1
p [0; 2�]. Then u(x) has a unique repre-

sentation as

u(x) =

1X
n=�1

ûn exp(inx) :

Let us now �rst consider the integral in Theorem 5.

1

2�

Z 2�

0

u(x) dx =
X
jnj�1

ûn
1

2�

Z 2�

0

exp(inx) dx = û0 ;

due to orthogonality of exp(inx). Since u(x) 2 C1
p [0; 2�] suÆces to guar-

antee that the in�nite sum is bounded, this allows for the interchange

between integration and the in�nite summation.

Considering the other part of the theorem we have
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1

N

N�1X
j=0

u(xj) =
1

N

N�1X
j=0

0
@ X
jnj�1

ûn exp

�
in
2�j

N

�1A

=
X
jnj�1

ûn

0
@ 1

N

N�1X
j=0

exp

�
in
2�j

N

�1A
= û0 +

X
jmj�1
m 6=0

ûNm = û0 ;

due to Lemma 1. The last reduction is valid provided only that ûNm � 0

for m 6= 0, i.e., u(x) 2 B̂2N�1. QED

Consequently, the trapezoidal rule yields a very good approximation

to the inner product. One should note that the quadrature formula

remains valid also for

u(x) = sin(Nx) ;

but not for u(x) = cos(Nx).

In what remains we use a slightly di�erent de�nition of the discrete

Fourier transform than appearing directly from the trapezoidal rule for

reasons that will become apparent shortly. However, the methods are

equivalent in terms of accuracy.

Let us de�ne the complex discrete Fourier transform in [0; 2�] as

~un =
1

N~cn

N�1X
j=0

u(xj) exp(�inxj) ; (4.10)

with the inversion formula

INu(x) =
X

jnj�N=2

~un exp(inx) ; (4.11)

where

~cn =

�
2 jnj = N=2

1 jnj < N=2
:

The need to introduce ~cn can be realized by observing that while we have

N independent collocation points, we have N +1 expansion coeÆcients.
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To resolve this indeterminacy we adopt the convention

~u�N=2 = ~uN=2 :

Adopting this notion has consequences for the dimension of the �nite

dimensional space, ~BN . Indeed, we �nd that

~BN = spanf(cos(nx); 0 � n � N=2) [ (sin(nx); 1 � n � N=2� 1)g ;

with the dimension dim(~BN ) = N . We note the di�erence from the pro-

jection operator, PN , which projects onto B̂N 6= ~BN . The implications

of this is seen by observing that

IN cos

�
N

2
x

�
= cos

�
N

2
x

�
; IN sin

�
N

2
x

�
= 0 ;

since sin(Nx=2) is not a member of ~BN .

The particular de�nition of the discrete expansion coeÆcients intro-

duced in Eq.(4.10) has the consequence that the trigonometric polyno-

mial, INu, interpolates the function, u(x), at the quadrature nodes of

the trapezoidal formula, i.e., IN is the interpolation operator.

Theorem 6. Let the discrete Fourier transform be de�ned as in Eqs.

(4.10)-(4.11). For any periodic function, u(x) 2 C0
p [0; 2�], we have

8xj = 2�

N
j : INu(xj) = u(xj) :

Proof: Substituting Eq.(4.10) into Eq.(4.11) we obtain

INu(x) =
X

jnj�N=2

0
@ 1

N~cn

N�1X
j=0

u(xj) exp(�inxj)
1
A exp(inx) :

Exchanging the order of the summations yields

INu(x) =
N�1X
j=0

u(xj)gj(x) ;

where
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�gure 4.3. The interpolation polynomial, gj(x), for N = 8 for various values
of j.

gj(x) =
X

jnj�N=2

1

N~cn
exp [in(x� xj)]

=
1

N
sin

�
N
x� xj

2

�
cot

�
x� xj

2

�
: (4.12)

It is easily veri�ed that gj(xi) = Æij as is also evident from the examples

of gj(x) for N = 8 shown in Fig. 4.3.

We still need to show that gj(x) 2 ~BN . Clearly, gj(x) 2 B̂N as gj(x)

is a polynomial of degree � N=2. However, since

1

2
exp

�
�iN

2
xj

�
=

1

2
exp

�
i
N

2
xj

�
=

(�1)j
2

;

and, by convention ~u�N=2 = ~uN=2, we do not get any contribution from

the term sin(N=2x), hence gj(x) 2 ~BN . QED

The discrete Fourier series of a function has convergence properties

very similar to those discussed for the continuous Fourier series approx-

imation. In particular, the discrete approximation is pointwise conver-

gent for C1
p [0; 2�] functions and convergent in the mean provided only

that u(x) 2 L2[0; 2�]. Moreover, the continuous and discrete approxi-

mations share the same asymptotic behavior, in particular having a con-

vergence rate faster than any algebraic order of N�1 if u(x) 2 C1p [0; 2�].
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�gure 4.4. a) Discrete Fourier series approximation of Ex. 11 for increasing
resolution. b) Pointwise error of approximation for increasing resolution

We shall return to the proof of these results in Sec. 4.3.2.

Let us at this point illustrate the behavior of the discrete Fourier se-

ries by applying it to the examples considered previously.

Example 11. Consider the function, u(x) 2 C1p [0; 2�], de�ned as

u(x) =
3

5� 4 cos(x)
:

In Fig. 4.3 we plot the discrete Fourier series approximation of u and

the pointwise error for increasing N .

This example con�rms the spectral convergence of the discrete Fourier

series. We note in particular that the approximation error is of the same

order as observed for the continuous Fourier series in Ex. 9. The 'spikes'

in the pointwise error approaching zero in Fig. 4.4 illustrates the inter-

polating nature of INu(x), i.e., INu(xj) = u(xj) as expected.

Example 12. Consider again the function

u(x) = sin
�x
2

�
;

and recall that u(x) 2 C0
p [0; 2�]. In Fig. 4.5 we show the discrete Fourier

series approximation and the pointwise error for increasing N . As for

the continuous Fourier series approximation we recover a quadratic con-

vergence rate away from the boundary points at which it is only linear.
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�gure 4.5. a) Discrete Fourier series approximation of Ex. 12 for increasing
resolution. b) Pointwise error of approximation for increasing resolution

4.2.2 The Odd Expansion.

Let us now briey return to the situation where an odd number of grid

points is used. As we saw in the previous section, using an even number

of grid points implies that ~BN 6= B̂N , as we only have N distinct points

to determine the N+1 expansion coeÆcients. To construct a collocation

method for which ~BN = B̂N , let us de�ne the grid as

xj =
2�

N + 1
j ; j 2 [0; : : : ; N ] ; (4.13)

in which case the interpolation operator becomes

JNu(x) =
X

jnj�N=2

~un exp(inx) ;

and the expansion coeÆcients are given as

~un =
1

N + 1

NX
j=0

u(xj) exp(�inxj) : (4.14)

Having N + 1 distinct grid points to determine the N + 1 expansion

coeÆcients there is no need to impose additional restrictions on ~un
We recognize the de�nition of the expansion coeÆcients, Eq.(4.14),

from the analysis of the in�nite accuracy �nite di�erence scheme dis-
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�gure 4.6. The interpolation polynomial, hj(x), for N = 8 for various values
of j.

cussed in Chapter 2. However, the summation of the series also provides

an approximation to the continuous integral with an accuracy as

Theorem 7. The quadrature formula

1

2�

Z 2�

0

u(x) dx =
1

N + 1

NX
j=0

u(xj) ;

is exact for any u(x) 2 B̂2N+1.

The scheme may also, as we have seen previously in Chapter 2, be

expressed through the use of an Lagrange interpolation polynomial as

JNu(x) =
NX
j=0

u(xj)hj(x) ;

where

hj(x) =
1

N + 1

sin
�
N+1
2 (x� xj)

�
sin
�
x�xj
2

� : (4.15)

One easily shows that hj(xl) = Æjl and that hj(x) 2 B̂N . Examples of

hj(x) are shown in Fig. 4.6 for N = 8.
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It may, at �rst, seem more natural to use this latter method rather

than the previous approach utilizing an even number of points, since

he former is equivalent to the continuous Fourier method. Historically,

however, the even method has received much more interest due to the

early availability of fast summation schemes, known as the Fast Fourier

Transform, for the number of points being a power of two. However, as

we shall discuss in Chapter 9, such fast methods are now available for

an even as well as an odd number of grid points provided only that the

total number of grid points has a prime-factorization using only small

primes.

4.2.3 A First Look at the Aliasing Error.

Let us briey consider the connection between the continuous Fourier

series and the discrete Fourier series based on an even number of grid

points. The conclusions of the discussion are, however, equally valid for

the case of an odd number of points.

Assuming that the Fourier series converges pointwise, e.g., u(x) 2
C1
p [0; 2�], a relation between the two sets of expansion coeÆcients is

given as

~cn~un = ûn +
X

jmj�1
m 6=0

ûn+Nm ; (4.16)

where the second term is a consequence of the discrete orthogonality of

the Fourier basis, Lemma 1.

We observe that the n'th discrete Fourier mode depends not only

on the n'th continuous mode of u(x) but also on all higher frequencies.

These are indistinguishable at the grid since

exp [i(n+Nm)xj ] = exp [inxj ] exp [i2�mj] = exp [inxj ] :

The phenomenon that the (n +Nm)'th frequency is misinterpreted as

the n'th frequency is termed static aliasing and appears as a result of

the introduction of the grid. Another interpretation is that is introduced

by the inaccuracy of the integration scheme.

In Fig. 4.7 we illustrate this phenomenon for N = 8 and we observe

that the n = �10 wave as well as n = 6 wave can be interpreted as the

n = �2 wave at the grid.
This aliasing introduces an error since high frequency components of
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k=6

k=-2

k=10

�gure 4.7. Illustration of aliasing. The three waves, n = 6, n = �2 and n =
�10 are all interpreted as a n = �2 wave on an 8-point grid. Consequently,
the n = �2 appears as more energetic after the discrete Fourier transform
than in the original signal.

u(x) are misinterpreted as an additional and arti�cial contribution to

the lower frequency components. The crucial question to ask is how

important this e�ect is, i.e., how does the aliasing error

kRNuk2L2[0;2�] =


N=2X

n=�N=2

0
B@ m=1X

m=�1
m6=0

ûn+Nm

1
CA exp(inx)


2

L2[0;2�]

;

behave as N approaches in�nity. As proven in Sec. 4.3.2, the aliasing

error is of the same order as the truncation error, ku� PNukL2[0;2�] in
the limit of large N . Hence, if the function is well approximated the

aliasing error is generally negligible and the continuous Fourier series

and the discrete Fourier series share similar approximation properties.

For poorly resolved or nonsmooth problems, the situation is much more

delicate ad we shall return to this concern later.

4.2.4 Di�erentiation of the Discrete Expansions.

As for the continuous series expansions, we shall need to address the

question of how to recover derivatives of the approximated functions
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themselves. As we have two computationally di�erent, but mathemati-

cally equivalent, methods for expressing the interpolant we also obtain

two computationally di�erent ways by which to recover the approximate

derivative of the function.

4.2.4.1 Using Expansion CoeÆcients.

Let us �rst consider the case where u(q) 2 C1
p [0; 2�] and the interpolant

is given as

IN ( d
q

dxq
u(x)) =

X
jnj�N=2

~u(q)n exp(inxj) :

Following the approach as for the continuous expansion yields

INu(q)(x) =
X

jnj�N=2

~u(q)n exp(inx)

'
X

jnj�N=2

~un
dq

dxq
exp(inx) =

X
jnj�N=2

(in)q~un exp(inx)

=
dq

dxq
INu :

Since the discrete exponential functions are mutually orthogonal up to

the aliasing error, we recover

~u(q)n ' (in)q~un : (4.17)

The results related to the continuous Fourier series carry over to the

discrete Fourier series with the exception of the commutation of di�er-

entiation and interpolation, since in general

IN du
dx

6= IN d

dx
INu ; (4.18)

unless u(x) 2 ~BN . Consider the case where

u(x) = sin

�
N

2
x

�
:

Clearly, INu � 0 since u(x) is outside ~BN , i.e., d(INu)=dx = 0. On

the other hand, u0(x) = N=2 cos(Nx=2), and INu0(x) = N=2 cos(Nx=2),

illustrating Eq. (4.18). Consequently, di�erentiation can take a function



76 4. Trigonometric Polynomials

u(x), originally outside of ~BN , into ~BN contrary to the continuous case

for which also u(x) 2 B̂N
Likewise, if we consider the scheme based on an odd number of modes,

we have

JN du
dx

6= JN d

dx
JNu ;

except if u 2 B̂N . The source of this discrepancy is not the construction
of the �nite dimensional space but the aliasing error that appears for u

not being in the space.

4.2.4.2 The Matrix Method.

Let us consider the approach for computing derivatives utilizing the al-

ternative formulation, i.e., through the use of the Lagrange interpolation

polynomials. If we consider the even method we have

INu(x) =
N�1X
j=0

u(xj)gj(x) ;

where

gj(x) =
1

N
sin

�
N
x� xj

2

�
cot

�
x� xj

2

�
;

as shown in Theorem 6. An approximation to the derivative at the col-

location points, xi, is then obtained by di�erentiating the interpolation

directly

d

dx
INu(x)

����
xl

=

N�1X
j=0

u(xj)
d

dx
gj(x)

����
xl

:

The entries of the di�erential operator are given as

Dij =
d

dx
gj(x)

����
xi

=

(
(�1)i+j

2 cot
h
xi�xj

2

i
i 6= j

0 i = j
: (4.19)

Important properties of D are

Lemma 3. The Fourier di�erentiation matrix, D, is skew-symmetric.

Lemma 4. The di�erentiation matrix, D, is a circulant matrix.
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The approximation of higher derivatives follows the exact same route

as taken for the �rst order derivative. The entries of the second order

di�erentiation matrix, D(2), based on an even number of grid points, are

d2

dx2
gj(x)

����
xi

= D
(2)
ij =

8<
:�

(�1)i+j

2

h
sin
�
xi�xj

2

�i�2
i 6= j

�N2+2
12 i = j

: (4.20)

There is, however, a small complication to the computation of higher

spatial derivatives in the case of the even approximation. To see this,

consider the second order di�erentiation operator which allows for two

di�erent implementations. The �rst way is straightforward as

L1N = IN d2

dx2
IN = D(2) ;

corresponding to the di�erentiation matrix given in Eq. (4.20). Alter-

natively, we could compute the second order derivative as

L2N = IN d

dx
IN d

dx
IN = DD ;

which corresponds to de�ning D(2) = DD, where the entries of D are

given in Theorem ??.

Let us now consider the action of these two operators on the function

u(x) = cos(N=2x) 2 ~BN . Using L1N we obtain

L1Nu(x) = IN
"
�
�
N

2

�2

cos

�
N

2
x

�#
= �

�
N

2

�2

cos

�
N

2
x

�
;

i.e., the operator preserves the order of the polynomial. The action of

L2N , however, is

L2Nu(x) = IN
d

dx
IN
�
�N
2
sin

�
N

2
x

��
= 0 ;

since sin(N=2x) is outside of ~BN and we �nd that L2N reduces the order

of the polynomial. Thus we have that

D(2) 6= DD :

It is natural to ask which of the two approximations one should use

and the general answer is the former, i.e., L1N , is the correct choice for
reasons of accuracy. However, as we shall �nd in Chapter 5, there are
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cases for which only the use of the L2N allows one to establish stability

of the approximation. Note that this discrepancy is a property of the

even order di�erentiations only.

In general, the q'th order di�erentiation matrix is obtained as

D(q) = IN dq

dxq
IN
�
= (D)q for q odd

' (D)q for q even
:

We note that for q being odd, the matrices are all skew-symmetric, while

for q being even the matrices are symmetric. Independent of q they are

circulant.

Let us, for completeness, also give the di�erentiation matrix for the

interpolation based on an odd number of collocation points

xj =
2�

N + 1
j ; j 2 [0; : : : ; N ] :

We recall that the interpolation operator is expressed in

JNu(x) =
NX
j=0

u(yj)hj(x) ;

where the interpolation polynomial, hj(x), is given in Eq. (4.15). From

this we obtain the entries of di�erentiation matrix, ~D, as

~Dij =

(
(�1)i+j

2

h
sin
�
xi�xj

2

�i�1
i 6= j

0 i = j
;

which we recognize as the di�erentiation matrix studied in Chapter 2.

The properties of ~D are similar to those of D, i.e. it is a skew-symmetric

and circulant. It should be noted that for the method based on an odd

number of points, we have the identity

~D(q) = JN dq

dxq
JN = (~D)q ;

for all values of q.

4.2.4.3 A Comparison.

Let us �nally compare the two mathematically equivalent, but compu-

tationally very di�erent methods by which to recover approximations

to the derivatives. The �rst method involves the computation of the



4.2 Discrete Trigonometric Polynomials 79

expansion coeÆcients through a summation of the series, obtaining the

approximate expansion coeÆcients for the derivative and then summing

once again to obtain the value of the derivative at the collocation points,

or any point where the value of the derivative is required. In its most

simple implementation this process required O(N2) operations. How-

ever, the series appearing for some special values of N can be summed

faster using the Fast Fourier Transforms which requires only O(N logN)

operations, making a signi�cant di�erence for large values of N .

Let us illustrate this �rst approach by introducing

u = [u(x0); : : : ; u(xN�1)]
T ; ~u = [~u�N=2; : : : ; ~uN=2]

T ;

being simply the vectors of the grid points values and the discrete ex-

pansion coeÆcients with a connection between the two vectors as

u = F~u ; ~u = F�1u ;

The entries of the orthogonal, circulant matrices, F and F�1, are ob-

tained directly from Eqs.(4.10)-(4.11) as

Fkl = exp

�
i

�
l � N

2

�
xk

�
; F�1kl =

1

N~ck�N=2
exp

�
�i
�
k � N

2

�
xl

�
:

If we now introduce the diagonal matrix

Dc;(q) = diag[(�iN=2)q; : : : ; (�i)q; 0; iq; (iN=2)q] ;

corresponding to the continuous di�erentiation matrix, di�erentiation at

the grid points using the expansion coeÆcients amounts to

d

dx
u = FDc;(q)F�1u :

What makes this approach attractive is the sparsity of Dc;(q) and the

observation that multiplication with F or its inverse can be accomplished

in less that O(N2) operations.

On the other hand, computing the derivatives at the collocation points

using D(q) involves a matrix-vector product

d

dx
u = D(q)u :

which is an O(N2) operation. One should observe that in this latter
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case will we never actually use the expansion coeÆcients. It seems that

the �rst method is the fastest and should always be used. However, the

eÆciency of the Fast Fourier Transform is machine dependent and for

small values of N is it may be faster to perform the matrix-vector prod-

uct. Also, since the di�erentiation matrices are all circulant one need

only store one column of the operator, thereby reducing the memory

usage to that of the Fast Fourier Transform.

While the computational work associated with the two schemes may

be di�erent, the results are equivalent (up to �nite precision e�ects)

since

D(q) = FDc;(q)F�1 :

4.3 Approximation Theory for Smooth Functions

So far we have focused our attention on the general properties of the

Fourier expansions, be they based on continuous or discrete expansion

coeÆcients, and paid less attention to a more accurate understanding of

the properties of the approximations. It is the purpose of the present

section to remedy this negligence.

As we discussed in Chapter 3, the actual rate of convergence of a

stable and consistent scheme depends on the truncation error, Eq.(3.13),

PNL (I � PN )u ;

which again depends on the particular projection operator, PN , and
the operator, L, being considered. Hence, to establish consistency we

need to consider not only the di�erence between u and PNu, but also
the distance between Lu and LuN where the this is measured in some

appropriate norm.

Suppose that the operator, L, is linear and of the form

L = a0(x) + a1(x)
d

dx
+ a2(x)

d2

dx2
+ : : :+ aq(x)

dq

dxq
;

where aq(x) 2 C0
p [0; 2�]. Provided u(x) is suÆciently smooth, e.g.,

u(x) 2 Cq�1
p [0; 2�], we have

kLuk2L2[0;2�] =
Z 2�

0

�����
qX

m=0

am(x)u
(m)(x)

�����
2

dx
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�
Z 2�

0

qX
m=0

jam(x)j2
���u(m)(x)

���2 dx ;

using the triangle inequality. Since am(x) 2 C0
p [0; 2�] it must be uni-

formly bounded by

A = max
m2[0;q]

kam(x)kL1[0;2�] :

This implies the bound

kLuk2L2[0;2�] � A2

Z 2�

0

qX
m=0

���u(m)(x)
���2 dx = A2kuk2Hq

p [0;2�]
:

Hence, if we identify u with u � PNu, we can get an estimate of the

truncation error by estimating the Sobolev norm on the right hand side

of this last expression.

For a periodic function, u(x) 2 L2[0; 2�], we know that the continuous

Fourier expansion

u(x) =
X
jnj�1

ûn exp(inx) ;

exists and the expansion coeÆcients, ûn, are given as

ûn =
1

2�

Z 2�

0

u(x) exp(�inx) dx :

This implies

u(m)(x) =
X
jnj�1

(in)mûn exp(inx) ;

and enables an alternative expression of the Sobolev q-norm as

kuk2Hq
p [0;2�]

=

qX
m=0

Z 2�

0

���u(m)(x)
���2 dx

= 2�

qX
m=0

X
jnj�1

jnj2mjûnj2 = 2�
X
jnj�1

 
qX

m=0

jnj2m
!
jûnj2 ;

where the interchange of the summation is allowed provided u(x) has
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suÆcient smoothness, e.g., u(x) 2 Cq
p [0; 2�].

It will prove useful to introduce a new norm, k � kW q
p [0;2�], equivalent

to k � kHq
p [0;2�], as

kukW q
p [0;2�] =

0
@ X
jnj�1

(1 + jnj)2q jûnj2
1
A

1=2

;

with the associated Sobolev space, W q
p [0; 2�] of functions for which

W q
p [0; 2�] = fu(x) 2 L2[0; 2�]jkukW q

p [0;2�] <1g :

The equivalence is realized since

1

22q
(1 + jnj)2q �

qX
m=0

n2m � q(1 + jnj)2q :

It is possible to extend the de�nition of W q
p [0; 2�] to include real values

of q as it appears as a power in the norm only.

4.3.1 Results for the Continuous Expansion.

Let us return to the estimation of the approximation error associated

with the continuous Fourier series and seek an understanding of the

accuracy of the truncated expansion.

We wish to estimate the di�erence between Lu and LPNu in some

appropriate norm, with the projection operator is given as

PNu(x) =
X
jnj�N

ûn exp(inx) :

Note that we, to simplify the notation, have changed the summation

slightly compared to the previously used notation, i.e., we have jnj � N

instead of jnj � N=2.

Let us begin by discussing the approximation in the familiar L2-norm

for which we have the following result

Theorem 8. For any for u(x) 2 Hr
p [0; 2�], there exists a positive con-

stant C, independent of N , such that

ku�PNukL2[0;2�] � CN�qku(q)kL2[0;2�] ;
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provided 0 � q � r.

Proof: The proof is easily established since

ku�PNuk2L2[0;2�] = 2�
X
jnj>N

jûnj2 ;

by Parseval's identity. Furthermore we have

X
jnj>N

jûnj2 =
X
jnj>N

1

n2q
n2qjûnj2 � N�2q

X
jnj>N

n2qjûnj2 ;

and the last bracket can be bounded by ku(q)kL2[0;2�]. QED

This result substantiates the claim put forward in Theorem 4. More-

over, assuming that u(x) 2 C1p [0; 2�] is analytic we have

ku(q)kL2[0;2�] � Cq! kukL2[0;2�] ;

such that

ku�PNukL2[0;2�] � CN�qku(q)kL2[0;2�] � C
q!

Nq
kukL2[0;2�]

� C
� q
N

�q
e�qkukL2[0;2�] � Ce�cNkukL2[0;2�] ;

assuming that q / N . This con�rms the potential for exponentially

fast convergence and provides a motivation for the title of exponentially

accurate schemes often put on spectral methods.

A more general result is

Theorem 9. For any real r and any real q where 0 � q � r, with

u(x) 2 W r
p [0; 2�], there exists a positive constant C, independent of N ,

such that

ku�PNukW q
p [0;2�] � C

kukW r
p [0;2�]

Nr�q
:

Proof: Using Parseval's identity we have

ku�PNuk2W q
p [0;2�]

=
X
jnj>N

(1 + jnj)2q jûnj2 :
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Since jnj+ 1 � N , we obtain

(1 + jnj)2q = (1 + jnj)2r
(1 + jnj)2(r�q) �

(1 + jnj)2r
N2(r�q)

;

for any q � r. This immediately yields

ku�PNuk2W q
p [0;2�]

� C
X
jnj>N

(1 + jnj)2r
N2(r�q)

jûnj2 � C
kuk2W r

q [0;2�]

N2(r�q)
;

and, thus, the result. QED

A bound on the pointwise error di�erence between u(x) 2 Cq
p [0; 2�]

and its projection, PNu, is given as

Theorem 10. For any q > 0 and u(x) 2 Cq
p [0; 2�], there exists a posi-

tive constant C, independent of N , such that

ju�PNuj � C
1

Nq�1=2

u(q)
L2[0;2�]

:

Proof: Provided u(x) 2 Cq
p [0; 2�], q > 0, we have for any x 2 [0; 2�]

that

ju�PNuj = j
X
jnj>N

ûn exp(inx)j �
X
jnj>N

jûnj ;

by the triangle inequality.

Using the Cauchy-Schwarz inequality, we recover

X
jnj>N

jûnj =
X
jnj>N

1

nq
nq jûnj

�
0
@ X
jnj>N

1

n2q

1
A

1=20
@ X
jnj>N

n2q jûnj2
1
A

1=2

� 1

N q�1=2

u(q)
L2[0;2�]

;

which completes the proof. QED

We observe that the leading error source in Theorem 10 is determined
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solely by the regularity of the function being approximated. As the

upper bound is independent of x we recover that for u(x) being analytic,

i.e., u(x) 2 C1p [0; 2�], the rate of pointwise convergence is faster than

any algebraic power of 1=N . This result is equivalent to that stated in

Theorem 8, although here obtained in a stronger norm than L2[0; 2�],

ensuring pointwise convergence.

4.3.2 Results for the Discrete Expansion.

For the discrete Fourier method we seek to estimate the di�erence be-

tween Lu and LINu in some norm. Let us begin by considering the

interpolation operator

INu =
NX

n=�N

~un exp(inx) ;

associated with an even number of grid points for which the the expan-

sion coeÆcients given as

~un =
1

2N~cn

2N�1X
j=0

u(xj) exp(�inxj) ; xj =
2�

2N
j :

Rather than deriving the estimates of the approximation error directly,

we shall use the results obtained in the previous section and then esti-

mate the di�erence between the two di�erent expansions, recognized as

the aliasing error.

The two sets of expansion coeÆcients are connected as

Lemma 5. Consider u(x) 2 W r
p [0; 2�], where r > 1=2. For jnj � N we

have

~cn~un = ûn +
X

jmj�1
m6=0

ûn+2Nm :

Proof: Substituting the continuous Fourier expansion into the discrete

expansion yields

~cn~un =
1

2N

2N�1X
j=0

X
jlj�1

ûl exp(i(l � n)xj) :
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To interchange the two summations we must ensure thatX
jlj�1

jûlj <1 :

Convergence of this series is established using

X
jlj�1

jûlj =
X
jlj�1

(1 + jlj)r jûlj
(1 + jlj)r

�
0
@ X
jlj�1

(1 + jlj)2rjûlj2
1
A

1=20
@ X
jlj�1

(1 + jlj)�2r
1
A

1=2

;

where the last expression follows from the Cauchy-Schwarz inequality.

As u(x) 2W r
p [0; 2�] the �rst part is clearly bounded. Furthermore, pro-

vided r > 1=2 the second term converges, hence ensuring boundedness.

Interchanging the order of summation and using orthogonality of the

exponential function at the grid yields the result. QED

Let us �rst consider the behavior of the approximation in the familiar

L2[0; 2�]-space. We have

Theorem 11. For any u(x) 2 W q
p [0; 2�] with q > 1=2, there exists a

positive constant C, independent of N , such that

ku� INukL2[0;2�] � CN�qku(q)kL2[0;2�] :

Proof: We begin by expanding the function, u(x), in the continuous

Fourier series and use Parseval's identity to obtain

ku� INuk2L2[0;2�] =
X
jnj�N

jûn � ~unj2 +
X
jnj>N

jûnj2 :

Consider �rst the case where jnj < N such that ~cn = 1. Theorem 5

implies

X
jnj<N

jûn � ~unj2 =
X
jnj<N

��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

:
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For the case of jnj = N , where ~cN = 2, we have

X
jnj=N

jûn � ~unj2 �

X
jnj=N

����12 ûn
����
2

+
X
jnj=N

��������
1

2

X
jmj�1
m6=0

ûn+2Nm

��������

2

�

X
jnj=N

jûnj2 +
X
jnj=N

��������
X

jmj�1
m 6=0

ûn+2Nm

��������

2

:

This yields

ku� INuk2L2[0;2�] �
X
jnj�N

jûnj2 +
X
jnj�N

��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

:

The �rst term is bounded by the result of Theorem 8, representing the

truncation error, while the second term measures the aliasing error.

To estimate this, we �rst note that��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

=

��������
X

jmj�1
m 6=0

jn+ 2Nmjqûn+2Nm
1

jn+ 2Nmjq

��������

2

:

Using the Cauchy-Schwarz inequality yields

��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

�

0
BB@ X
jmj�1
m 6=0

jn+ 2Nmj2q jûn+2Nmj2
1
CCA

0
BB@ X
jmj�1
m 6=0

1

jn+ 2Nmj2q

1
CCA :
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Since jnj � N , bounding the second term is ensured by

X
jmj�1
m6=0

1

jn+ 2Nmj2q �
2

N2q

1X
m=1

1

(2m� 1)2q
= C1N

�2q ;

provided q > 1=2. Here, the constant, C1, is independent of N .

Utilizing that, we have

X
jnj�N

��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

�

X
jnj�N

C1N
�2q

X
jmj�1
m6=0

jn+ 2mN j2q jûn+2Nmj2 �

C2N
�2qku(q)k2L2[0;2�] :

The total error is thus bounded as

ku� INuk2L2[0;2�] � CN�2qku(q)k2L2[0;2�] + C2N
�2qku(q)k2L2[0;2�] ;

establishing the theorem. QED

Theorem 11 con�rms that for u(x) having only half a derivative, e.g.,

u(x) 2 C0
p [0; 2�], the approximation error of the continuous expansion

and the discrete expansion are of the same order. Furthermore, the rate

of convergence depends, in both cases, only on the smoothness of the

function being approximated.

A similar result can be obtained in the Sobolev spaces as

Theorem 12. Let u(x) 2 W r
p [0; 2�] where r > 1=2. Then for any real

q for which 0 � q � r, there exists a positive constant, C, independent

of N such that

ku� INukW q
p [0;2�] � CN�(r�q)kukW r

p [0;2�]
:

Proof: The proof follows that of Theorem 11. Using Parseval's theorem

and considering jnj = N and jnj 6= N separately we recover
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ku� INuk2W q
p [0;2�]

=
X
jnj�N

(1 + jnj)2q jûn � ~unj2 +
X
jnj>N

(1 + jnj)2q jûnj2

�
X
jnj�N

(1 + jnj)2q jûnj2 +
X
jnj�N

(1 + jnj)2q

��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

:

The �rst term is bounded by Theorem 9.

The e�ect of the aliasing error can be estimated using��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

=

��������
X

jmj�1
m 6=0

(1 + jn+ 2Nmj)rûn+2Nm
1

(1 + jn+ 2Nmj)r

��������

2

;

such that

��������
X

jmj�1
m6=0

ûn+2Nm

��������

2

�

0
BB@ X
jmj�1
m6=0

(1 + jn+ 2Nmj)2r jûn+2Nmj2
1
CCA

0
BB@ X
jmj�1
m6=0

1

(1 + jn+ 2Nmj)2r

1
CCA :

The second factor is again bounded as

X
jmj�1
m6=0

1

(1 + jn+ 2Nmj)2r �
2

N2r

1X
m=1

1

(2m� 1)2r
= C1N

�2r ;

provided r > 1=2 and jnj � N .

Also, since (1 + jnj)2q � C2N
2q for jnj � N we recover

X
jnj�N

(1 + jnj)2q

��������
X

jmj�1
m 6=0

ûn+2Nm

��������

2

�
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X
jnj�N

C1C2N
�2(r�q)

X
jmj�1
m6=0

(1 + jn+ 2mN j)2r jûn+2Nmj2 �

C3N
�2(r�q)kuk2W r

p [0;2�]
:

This yields the bound

ku� INuk2W q
p [0;2�]

� CN�2(r�q)kuk2W r
p [0;2�]

+ C3N
�2(r�q)kuk2W r

p [0;2�]
;

and, thus, the result. QED

The results on the behavior of the aliasing error carries directly over

to the estimates of errors lost due to lack commutation of interpolation

and di�erentiation.

Lemma 6. Let u(x) 2 W r
p [0; 2�] where r > 1. Then there exists a

positive constant, C, independent of N such that

ku0 � (INu)0kL2[0;2�] � CN�(r�1)kukW r
p [0;2�]

:

This result con�rms that for smooth problems, this error vanishes at

approximately the same rate as the truncation error itself.

The results on the errors associated with the interpolation operator,

JN , based on the odd number of grid points, are identical to those given

above for IN and can be obtained in a similar, albeit simpler, way.

The estimate put forward in Theorem 12 measures the truncation er-

ror in terms of the L2-error of the function and its derivatives. However,

the discrete Fourier expansions are constructed by means of interpola-

tion of the function given at the grid points, xj . It is may therefore

seem more natural to measure the truncation error of the function and

its derivatives at the grid points. To this end we introduce the grid based

version of the Sobolev norms as

jku� INujkq =
2
4 qX
m=0

1

2N

2N�1X
j=0

���u(m)(xj)� I(m)
N u(xj)

���2
3
5
1=2

; (4.21)

for any integer q.

The connection between this norm and the Sobolev q-norm, k�kHq
p [0;2�],

is given through the trapezoidal rule, Theorem 5, since
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1

2�

Z 2�

0

u(x) dx � 1

2N

2N�1X
j=0

u(xj) = �
X

jmj�1
m6=0

ûm2N ;

i.e., the di�erence is due solely to the aliasing error.

Consequently, we have the relation

jku� INujkq ' ku� INukHq
p [0;2�] ' ku� INukW q

p [0;2�] ;

leading to

Theorem 13. Let u(x) 2W r
p [0; 2�] where r > 1=2. Then for any real q

where 0 � q � r, there exists a positive constant, C, independent of N

such that

jku� INujkq � CN�(r�q)kukW r
p [0;2�]

:

Proof: The proof follows that of Theorem 12 for estimating the alias-

ing error and using Theorem 5 to establish the connection between the

norm introduced in Eq.(4.21) and the W q
p [0; 2�]-norm. QED

Hence, the properties of the approximation carries over to the norms

based on the discrete measures. A similar result can be derived for the

interpolation operator, JN .
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Exercises

1. Assume that u(x) 2 L2[0; 2�], and that

PNu(x) =
X

jnj�N=2

ûn exp(inx) ; ûn =
1

2�

Z 2�

0

u(x) exp(�inx) dx :

Prove that convergence in the mean, Theorem 3, implies that Parseval's
identity

kuk2L2[0;2�] = 2�
X
jnj�1

jûnj2 ;

is true.

2. (Continued) Prove the reverse, i.e., that Parseval's identity implies conver-
gence in the mean.

3. Consider the sequence of functions

uq+1(x) =

Z 2�

0

uq(x)dx ;

for q = 0; 1; 2::: and u0(x) = x. Note that while u0(x) 2 L2[0; 2�], one has
uq 2 Cq�1

p [0; 2�] for q > 0.
According to Theorem 4, this means that the continuous expansion coeÆ-
cients

ûqn ' 1

nq+1
;

for large values of n.
Con�rm that result by computing the expressions for ûqn for a few values
of q.

4. (Continued) Evaluate (using a computer) the L2 and L1 error of the ex-
pansions, PN , and use that to con�rm Theorems 2 and 3.

5. Assume that u(x) 2 L2[0; 2�], and that

INu(x) =
X

jnj�N=2

~un exp(inx) ; ~un =
1

N~cn

N�1X
j=0

u(xj) exp(�inxj) dx :

Here

xj =
2�

N
j ; cn = 1 + ÆN=2;jnj :

Compute the L2 and L1 errors of the expansion, IN , of uq (see Problem 3)
and compared with the behavior of the continuous expansion (by solving
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Problems 3/4 or referring to Theorems 2 and 3).

6. (Continued) Compute the continuous expansion coeÆcients also and use
those to evaluate the aliasing error directly. Can you con�rm that

kINuk = kPNuk + kRNuk :

7. (Continued) Repeat the comparison, using the expansion based on an odd
number of points. Does using JNu make any signi�cant di�erence ?

8. Prove that

INu(x) =
N�1X
j=0

u(xj)gj(x) ;

where

gj(x) =
1

N
sin
h
N
x� xj

2

i
cot
h
x� xj

2

i
:

Prove also that gj(xi) = Æij .

9. (Continued) Plot gj(x) for N = 6 to con�rm the Lagrange property.

10. Prove Theorem 7.

11. Show that the entries of di�erentiation matrix, D, are given as in Eq. 4.19.

12. (Continued) Show that the entries of di�erentiation matrix, D, can likewise
be derived by directly summing the series

Djl =
1

N

N=2X
n=�N=2

in

~cn
exp
h
in
2�

N
(j � l)

i
:

13. Show that D is skew-symmetric, i.e., D = �DT .

14. Show that D is circulant, i.e., that it is a Toeplitz matrix (Di;j = Di+1;j+1)
and that it rows/columns wraps around (Di;N�1 = Di+1;0).

15. Show that the entries of D(2) are as given in Eq.(4.20).

16. Show directly that DD 6= D(2) as discussed in the text.

17. Prove that the di�erentiation matrix, ~D, associated with the odd expansion
has the entries
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~Dij =

(
(�1)i+j

2

h
sin
�
xi�xj

2

�i�1

i 6= j

0 i = j
:

18. (Continued) Derive the entries for ~D(2) and show that ~D~D = ~D(2).

19. Consider the 4 functions de�ned on x 2 [0; 2�].

(a) u(x) = jsin(x)j.
(b) u(x) = exp

�
� 1

sin(x)

�
.

(c) u(x) = (1 + sin2(x))�1.
(d) u(x) = sin(e�x).

Compute the derivative of the u(x) using the even method and evaluate
the L2 and the L1 error for increasing values of N . Explain the di�erences
in the convergence behavior.

20. (Continued). Plot the distribution of the pointwise error and relate that to
the features of the functions. Do you see uniform convergence ? { if not,
why not ?.

21. Prove that

1

22q
(1 + jnj)2q �

qX
m=0

n2m � q(1 + jnj)2q ;

to establish that W q
p [0; 2�] and Hq

p [0; 2�] are equivalent spaces.

22. Prove the equivalent of Theorem 5 for the odd expansion, JNu.

23. Prove the equivalent of Theorem 11 for the odd expansion, JNu.

24. Prove the equivalent of Theorem 12 for the odd expansion, JNu.



5

Fourier Spectral Methods

Understanding the properties of the Fourier series, we are now equipped

to consider the formulation of Fourier spectral methods for the solution

of partial di�erential equations. As in the previous chapter we restrict

ourselves to problems stated on [0; 2�] and assume that the solutions,

u(x), can be periodically extended. The assumption of periodicity sug-

gests that we may disregard the � -method introduced in Chap. 3.4 and

focus the attention on Galerkin and Collocation methods. While these

methods are equivalent for problems involving only linear, constant co-

eÆcient operators and bandlimited initial conditions, the discrepancy

is signi�cant in more general cases of variable coeÆcients or nonlinear

problems. As we shall see, these di�erences are not restricted to issues of

implementation only but appear already at the level of the formulation

of the schemes.

The second part of this chapter is devoted to an analysis of the sta-

bility of some of the semi-discrete schemes discussed in the �rst part.

While the stability of the Galerkin methods is closely related to proper-

ties of the partial di�erential equation itself, the analysis of stability for

the collocation method turns out to be considerably more involved.

5.1 The Construction of Fourier Spectral Methods

As the construction of the Galerkin and Collocation schemes is based

on fundamentally di�erent principles of satisfying the partial di�erential

equation we discuss the two approaches separately. However, much of

the following is centered around examples and we shall strive to directly

compare the two approaches.

95
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5.1.1 Fourier-Galerkin Methods

Let us assume that the solution, u(x; t) 2 L2[0; 2�], is periodic and that

we have

u(x; t) =
X
jnj�1

ûn(t) exp(inx) :

In the Fourier-Galerkin method, we seek solutions, uN (x; t) 2 B̂N with

B̂N 2 span fexp(inx)gjnj�N=2 to the partial di�erential equation of the

form

uN (x; t) =
X

jnj�N=2

ûn(t) exp(inx) :

We recall that the continuous expansion coeÆcients, ûn(t), are given as

ûn(t) =
1

2�

Z 2�

0

u(x; t) exp(�inx) dx :

Consider the problem

@u(x; t)

@t
= Lu(x; t) ; x 2 [0; 2�] ; t � 0 ;

u(x; 0) = g(x) ; x 2 [0; 2�] ; t = 0 ;

and let us seek solutions, uN (x; t), such that the residual

RN (x; t) =
@uN(x; t)

@t
�LuN (x; t) ;

is orthogonal to B̂N , i.e.,

8 jnj � N

2
:

1

2�
(RN ; exp(inx))L2[0;2�] = 0 :

The initial conditions are

uN (x; 0) =
X

jnj�N=2

ĝn ; ĝn =
1

2�
(g; exp(inx))L2[0;2�] :

In other words, if we express the residual as

RN (x; t) =
X
jnj�1

R̂n(t) exp(inx) ;
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we recover N + 1 equations to determine the N + 1 unknowns, ûn,

representing the solution, un(x; t), by requiring that

8 jnj � N

2
: R̂n(t) =

1

2�

Z 2�

0

RN (x; t) exp(�inx) dx = 0 :

The crucial point here is the projection of the residual onto B̂N , a process

that can be very diÆcult and even impossible depending on the equation.

Let us discuss a number of examples of increasing complexity to come

to an understanding of the strength and the limitations of the Fourier-

Galerkin method. As we shall see, there are indeed classes of problems

where the Fourier-Galerkin approach is superior and solves the problem

exactly as there are cases where it escapes formulation entirely.

Example 13. Consider the linear constant coeÆcient problem

@u(x; t)

@t
= a

@q

@xq
u(x; t) ;

with the assumption that u(x; t) 2 C1p [0; 2�], a is a constant, and q � 0

signi�es the order of di�erentiation.

To recover the approximate solution we seek a trigonometric polyno-

mial,

uN (x; t) =
X

jnj�N=2

ûn(t) exp(inx) ;

such that the residual

RN (x; t) =
@uN(x; t)

@t
� a

@q

@xq
uN (x; t) ;

is orthogonal to B̂N .

From Chap. 4.1.1 we recall

@q

@xq
uN(x; t) =

X
jnj�N=2

(in)qûn(t) exp(inx) ;

and recover the residual directly

RN (x; t) =
X

jnj�N=2

�
dûn(t)

dt
� a(in)qûn(t)

�
exp(inx) :
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We observe that RN (x; t) 2 B̂N , i.e., the �rst N=2 terms of the equations
can be solved exactly as discussed in Chapter 2.

The N+1 ordinary di�erential equations (ODE) describing the evolu-

tion of the continuous expansion coeÆcients, ûn(t), are obtained directly

by requiring that

8 jnj � N

2
: R̂n(t) = 0 ) dûn(t)

dt
= a(in)qûn(t) :

In this particular case we recover that PNu(x; t) = uN(x; t) as the trun-

cation error, Eq.(3.13), vanishes identically.

The vanishing truncation error is, as we have discussed earlier, a par-

ticular result that does not extend beyond the case of linear, constant

coeÆcient periodic problems.

Example 14. Consider the linear, variable coeÆcient problem

@u(x; t)

@t
= sin(x)

@u(x; t)

@x
;

where the initial conditions are given through g(x) and the solution,

u(x; t) 2 C1p [0; 2�].

We seek solutions in the form of a trigonometric polynomial

uN(x; t) =
X

jnj�N=2

ûn(t) exp(inx) ; (5.1)

and require that the residual

RN (x; t) =
@uN(x; t)

@t
� sin(x)

@

@x
uN(x; t) ;

is orthogonal to B̂N .

The residual is given as

RN (x; t) =
X

jnj�N=2

�
dûn(t)

dt
� 1

2i
(exp(ix)� exp(�ix)) (in)ûn(t)

�
exp(inx) :

If we assume that û�(N=2+1)(t) = ûN=2+1(t) = 0 in accordance with the

basis assumption on uN(x; t), Eq.(5.1), the residual becomes
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RN (x; t) =
X

jnj�N=2

dûn(t)

dt
exp(inx)� 1

2

X
jnj�N=2

n exp[i(n+ 1)x]ûn(t)

+
1

2

X
jnj�N=2

n exp[i(n� 1)x]ûn(t)

=
X

jnj�N=2

dûn(t)

dt
exp(inx)� 1

2

X
jnj�N=2

(n� 1) exp(inx)ûn�1(t)

+
1

2

X
jnj�N=2

(n+ 1) exp(inx)ûn+1(t)

�N
4

�
exp

�
i
N + 2

2
x

�
ûN=2(t) + exp

�
�iN + 2

2
x

�
û�N=2(t)

�

=
X

jnj�N=2

�
dûn(t)

dt
� n� 1

2
ûn�1(t) +

n+ 1

2
ûn+1(t)

�
exp(inx)

�N
4

�
exp

�
i
N + 2

2
x

�
ûN=2(t) + exp

�
�iN + 2

2
x

�
û�N=2(t)

�
:

We note that, contrary to the situation in the previous example, RN (x; t)

is not solely in the space of B̂N due to the two extra terms, i.e., RN (x; t) 2
B̂N+1. Hence, requiring that the residual is orthogonal to B̂N results in

N + 1 coupled ODE's

dûn(t)

dt
� n� 1

2
ûn�1(t) +

n+ 1

2
ûn+1(t) = 0 ;

with û�(N=2+1)(t) = ûN=2+1(t) = 0 and introduces a truncation error.

In the above variable coeÆcient problem we �nd that the projection of

the residual vanishes rather than the residual itself as it not contained

entirely within B̂N . However, one should note that since u(x; t) is as-

sumed smooth we know that for large values of N , the expansion coeÆ-

cients, ûn(t), decay exponentially fast in N , and the part of the residual

being outside B̂N can thus be assumed to be very small provided N is

suÆciently large.

As always, the formulation of the Fourier-Galerkin method involves

the derivation of the equations for the expansion coeÆcients of the un-

known solution. While this was relatively easy for the particular variable

coeÆcient case considered in the previous example this is not always the
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case. Moreover, the resulting equations may be somewhat complicated

as we shall �nd in the next example.

Example 15. Consider the nonlinear problem

@u(x; t)

@t
= u(x; t)

@u(x; t)

@x
;

where the initial conditions are given through g(x) and the solution,

u(x; t) 2 C1p [0; 2�], local in time.

We seek a solution on the form of a trigonometric polynomial

uN (x; t) =
X

jnj�N=2

ûn(t) exp(inx) ;

and require that the residual

RN (x; t) =
@uN(x; t)

@t
� uN (x; t)

@

@x
uN(x; t) ;

be orthogonal to B̂N .

Consider �rst the quadratic nonlinearity

uN(x; t)
@

@x
uN (x; t) =

X
jlj�N=2

X
jkj�N=2

ûl(t)(ik)ûk(t) exp [i(l + k)x]

=
X

jkj�N=2

N=2+kX
n=�N=2+k

(ik)ûn�k(t)ûk(t) exp(inx) :

This shows that the residual, RN (x; t) 2 B̂2N , as a consequence of the

quadratic nonlinearity and the associated three-wave mixing. Hence, we

have 2N + 1 equations but can recover N + 1 conditions by requiring

that PNRN = 0. Satisfying the �rst N + 1 conditions, which results in

a set of ODE's of the form

dûn(t)

dt
=

X
jkj�N=2

(ik)ûn�k(t)ûk(t) ;

representing the �rst N + 1 Fourier coeÆcients of the solution.

Although we could only derive an approximate scheme for the quadratic
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non-linearity, it was nevertheless possible to arrive at the Fourier-Galerkin

scheme suitable for solving the problem. This is, in fact, a strike of good

fortune caused by the special nonlinearity we considered. If the nonlin-

earity is stronger, we may well be unable to derive the Fourier-Galerkin

equations as illustrated in the last example.

Example 16. Consider the strongly nonlinear problem

@u(x; t)

@t
= exp [u(x; t)]

@u(x; t)

@x
;

where the initial conditions are given through g(x) and the solution,

u(x; t) is assumed to be smooth and periodic, at least local in time.

As usual, we seek a trigonometric polynomial

uN (x; t) =
X

jnj�N=2

ûn(t) exp(inx) ;

and require that the residual

RN (x; t) =
@uN(x; t)

@t
� exp [uN (x; t)]

@

@x
uN(x; t) ;

is orthogonal to B̂N .

This results in the constraints

dûn(t)

dt
� 1

2�

X
jkj�N=2

ikûk(t) �
0
@exp

2
4 X
jlj�N=2

ûl(t) exp(ilx)

3
5 ; exp[i(n� k)x]

1
A
L2[0;2�]

= 0 :

However, we are unable to evaluate the inner product and, hence, unable

to even formulate the Fourier-Galerkin scheme.

To summarize, the grid free Fourier-Galerkin method is very eÆcient

for linear, constant coeÆcient problems, but tends to become complex

even for simple variable coeÆcient problems and nonlinear problem. The

main drawback of the method is the need to derive the system of govern-

ing ordinary di�erential equations, which results from requesting that

the residual be orthogonal to B̂N . Every partial di�erential equation
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will result in a di�erent set of ordinary di�erential equations and, as

experienced through the examples, the evaluation of the inner products

is by no means a straightforward task.

5.1.2 Fourier-Collocation Methods

Even if one can derive the Fourier-Galerkin scheme for a particular prob-

lem, one often needs to approximate the inner products by sums to

evaluate the initial conditions. This will generally introduce an aliasing

error which would otherwise be absent from the Galerkin formulation.

Given that some aliasing error will be present even in a Fourier-Galerkin

scheme, one may as well utilize the introduction of grids to ones advan-

tage. This is exactly what is happening in the collocation methods.

To de�ne a Fourier-Collocation method we must introduce a grid, yj ,

at which to require that the residual vanishes identically. It is important

to appreciate that this grid need not be the same as the grid, termed

xj , on which the interpolation itself is based.

For the latter we restrict the attention to approximations based on

the grid

xj =
2�

N
j ; j 2 [0; : : : ; N � 1] ;

where N is assumed even. Keep in mind, however, that everything said

about this speci�c choice holds for schemes based on the odd method

also.

We assume that the solution, u(x; t) 2 L2[0; 2�], is periodic and con-

sider again the general problem

@u(x; t)

@t
= Lu(x; t) ; x 2 [0; 2�] ; t � 0 ;

u(x; 0) = g(x) ; x 2 [0; 2�] ; t = 0 :

In the Fourier-Collocation method we seek solutions, uN 2 ~BN , of the

form

uN (x; t) =
X

jnj�N=2

~un(t) exp(inx) ;

with the discrete expansion coeÆcients, ~un(t), being
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~un(t) =
1

~cnN

N�1X
j=0

u(xj ; t) exp(�inx) ;

and we recall that ~c�N=2 = ~cN=2 = 2 and ~cn = 1 otherwise.

As discussed in Sec. 4.2 the discrete polynomial has a dual expression

on the form

uN(x; t) =

N�1X
j=0

u(xj ; t)gj(x) ;

where gj(x) represents the Lagrange interpolation polynomial, Eq.(4.12).

We require the residual

RN (x; t) =
@uN(x; t)

@t
�LuN (x; t) ;

to vanish at the grid points, yj , i.e.,

8yj : RN (yj ; t) = 0 ; j 2 [0; : : : ; N � 1] : (5.2)

Note in particular that we do not require the residual to be orthogonal

to the subspace, ~BN , as was the case in the Fourier-Galerkin method.

The requirement, Eq.(5.2), yields N equations to determine the N point

values, uN(xj ; t), of the solution.

Let us now, as we did for the Fourier-Galerkin method, consider a

number of examples of increasing complexity. For the purpose of com-

parison, we will discuss the same problems as for the Fourier-Galerkin

methods with the exception of the Ex. 14 which we considered already

in Chapter 3. Moreover, except stated explicitly, we shall restrict the

discussion to the situation where yj = xj , i.e., the equations are required

to be satis�ed at the same set of nodes as those on which the approxi-

mation is based.

Example 17. Consider �rst the linear constant coeÆcient problem

@u(x; t)

@t
= a

@q

@xq
u(x; t) ;

assuming that u(x; t) 2 C1p [0; 2�], a is a constant and q � 0 signi�es

the order of di�erentiation.
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We seek solutions on the form

uN (x; t) =
X

jnj�N=2

~un(t) exp(inx) =

N�1X
j=0

uN(xj ; t)gj(x) ; (5.3)

such that the residual

RN (x; t) =
@uN(x; t)

@t
� a

@q

@xq
uN (x; t) ;

vanishes at a speci�ed set of grid points, yj .

Let us �rst assume that yj = xj , i.e., the residual is required to vanish

at the same grid points as the ones on which the approximation is based.

Hence, we seek an N 'th order polynomial, uN , such that

INRN jxj = IN
�
@uN(x; t)

@t
� a

@q

@xq
uN(x; t)

�����
xj

=

�
@uN(x; t)

@t
� aIN @q

@xq
INuN (x; t)

�����
xj

= 0 :

This results inN ordinary di�erential equations, describing the evolution

of uN(xj ; t), to be solved at the grid points, xj , on the form

duN(xj ; t)

dt
= aIN @q

@xq
INuN(xj ; t)

= a
X

jnj�N=2

(in)q~un(t) exp(inxj)

= a

N�1X
i=0

D
(q)
ij uN(xi; t) ;

where D(q) represents the di�erentiation matrix discussed in Sec. 4.2.

Consequently, the scheme consists of solving the ODE's at the grid points

only. Note that two di�erent formulations of the ODE's have been given,

emphasizing the two computational di�erent, but mathematically equiv-

alent, methods of approximating the derivatives at the grid points.

Let us briey also consider the case where we require that the residual

vanishes at a set of grid points, yj , which is di�erent from xj . In this

case we recover N equations on the form



5.1 The Construction of Fourier Spectral Methods 105

duN (yj ; t)

dt
= a

N�1X
i=0

uN (xi; t)
dqgi
dxq

����
yj

;

describing the evolution of the unknowns uN(yj ; t) from which the un-

knowns, uN (xj ; t), in the original assumption ,Eq.(5.3), can be obtained

by interpolation as

uN (xj ; t) =

N�1X
i=0

uN(yi; t)~gi(xj) :

Here ~gi(x) represents the Lagrange interpolation polynomial based on

the grid points yj .

While the formulation of the collocation method for linear problems is

straightforward, it is by turning our attention to nonlinear problems that

their advantages shine more brightly.

Example 18. Consider the nonlinear problem

@u(x; t)

@t
= u(x; t)

@u(x; t)

@x
;

where the initial conditions are given through g(x) and the solution is

smooth and periodic in all derivatives, local in time.

Again, we seek a solution on the form

uN(x; t) =
X

jnj�N=2

~un(t) exp(inx) =

N�1X
j=0

uN (xj ; t)gj(x) ;

with the condition that the residual

RN (x; t) =
@uN(x; t)

@t
� uN(x; t)

@uN (x; t)

@x
;

vanishes at the grid points, xj , as

INRN jxj = IN
�
@uN(x; t)

@t
� uN(x; t)

@uN (x; t)

@x

�����
xj
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=

�
@uN(x; t)

@t
� IN

�
uN(x; t)

@uN (x; t)

@x

������
xj

= 0 :

From this we recover N coupled ODE's

duN (xj ; t)

dt
= uN (xj ; t)

X
jnj�N=2

in~un(t) exp(inxj)

= uN (xj ; t)

N�1X
i=0

DjiuN(xi; t) ;

which express the global solution to the Burgers equation through the

grid point values, uN (xj ; t).

If we return to Ex. 15 for comparison, it is clear that whereas the Fourier-

Galerkin method required the derivation of the complicated equations,

there is little di�erence between formulating a Fourier-Collocationmethod

for the solution of a linear problem or a scheme for a non-linear problem.

Let us �nally consider a problem with a nonlinearity so strong that

we found ourselves unable to formulate a Fourier-Galerkin method.

Example 19. Consider the strongly nonlinear problem

@u(x; t)

@t
= exp[u(x; t)]

@u(x; t)

@x
;

where the initial conditions are given through g(x) and the solution,

u(x; t), is assumed periodic and smooth, local in time.

We seek solutions on the form

uN(x; t) =
X

jnj�N=2

~un(t) exp(inx) =

N�1X
j=0

uN (xj ; t)gj(x) ;

and require that the residual

RN (x; t) =
@uN(x; t)

@t
� exp [uN (x; t)]

@uN (x; t)

@x
;

vanishes at the grid points, xj , on which the approximation is based.

Thus, we constrain the solution such that
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INRN jxj = IN
�
@uN(x; t)

@t
� exp [uN (x; t)]

@uN (x; t)

@x

�����
xj

=

�
@uN(x; t)

@t
� IN

�
exp [uN (x; t)]

@uN (x; t)

@x

������
xj

= 0 ;

yielding N coupled ODE's to describe the evolution of the approximate

solution as

duN(xj ; t)

dt
= exp [uN (xj ; t)]

X
jnj�N=2

in~un(t) exp(inxj)

= exp [uN (xj ; t)]

N�1X
i=0

DjiuN (xi; t) ;

to be solved at the grid points, xj .

Again, we �nd that the application of the Fourier-Collocation method

is easy even for problems where the Fourier-Galerkin method fails. This

is due to the fact that we can easily interpolate the nonlinear function,

F (u), in terms of the point values of u(x), while it may be very hard,

and in some cases impossible, to express the Fourier coeÆcients of F (u)

in terms of the expansion coeÆcients of u(x).

One should keep in mind, however, that the ease of the formulation of

the collocation method is obtained at the expense of the introduction of

additional sources of error through aliasing and the approximation of the

spatial derivatives. While the results of Sec. 4.3.2 suggests that this may

be less of a concern in terms of the accuracy of the computed solution,

these e�ects turn out to have a dramatic impact on the stability of the

semi-discrete approximation and ultimately the fully discrete scheme

when solving the partial di�erential equation.

5.2 Stability of Fourier Spectral Methods

Understanding the construction of Fourier spectral methods for various

partial di�erential equations we are now ready to undertake the �nal

part of the analysis of the schemes. We have previously convinced our-

selves of the superior properties of the Fourier approximations, leaving

us con�dent about the consistency of the schemes. However, the ques-
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tion of stability of the schemes formulated in the last sections remains

open.

To address this we shall split the analysis into two stages. On one

hand, we shall discuss the stability of the semi-discrete approximation

in which time, t, is kept as a continuous variable. This analysis relates

directly to the stability discussed in the Equivalence Theorem in Sec. 3.2

and is based solely on an understanding of the properties of the spatial

approximation of the operators. It is this analysis we shall undertake in

this chapter.

The analysis of the fully discrete approximation, including also partic-

ular choices for the approximation of the temporal integration, is more

involved and we postpone this discussion to Chapter 10.

5.2.1 Stability of the Fourier-Galerkin Method

The stability of the Fourier-Galerkin method is closely related to the

wellposedness of the partial di�erential equation. Let us therefore �rst

discuss some conditions ensuring wellposedness in the spirit of Sec. 3.1,

i.e., in an energy sense.

We consider the one-dimensional initial boundary value problem

@u

@t
= Lu ; (5.4)

where u(x; t) 2 H is assumed periodic at all times and proper initial data

is supplied. We recall that H is a Hilbert space endowed with the inner

product (�; �)L2[0;2�] and the associated norm, k � kL2[0;2�].
A condition on wellposedness in the spirit of Def. 2 in Chap. ?? is

Theorem 14. If the operator L is semi-bounded then the initial bound-

ary value problem, Eq.(5.4), is wellposed in an energy sense as

d

dt
kuk2L2[0;2�] � �kuk2L2[0;2�] :

Proof: Multiply Eq.(5.4) with u to obtain

u
@u

@t
= uLu :

Likewise, consider the complex conjugate of Eq.(5.4) and multiply with

u to obtain
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u
@u

@t
= uLu :

Adding the two expressions and integrating over [0; 2�] yields

d

dt
kuk2L2[0;2�] = (Lu; u)L2[0;2�] + (u;Lu)L2[0;2�]

= (u;L�u)L2[0;2�] + (u;Lu)L2[0;2�]
� �kuk2L2[0;2�] ;

where the last results follows from semi-boundedness. QED

Example 20. Consider the operator

L = a(x)
@

@x
;

where a(x) 2 C1
p [0; 2�] is real. In this case we derive the condition for

semi-boundedness directly by computing the adjoint operator

(Lu; v)L2[0;2�] =
Z 2�

0

a(x)
@u

@x
v dx

= �
Z 2�

0

u
@

@x

�
a(x)v

�
dx =

�
u;

�
�a(x) @

@x
� da(x)

dx

�
v

�
L2[0;2�]

;

by periodicity and integration by parts. Thus,

L� = �a(x) @
@x

� da(x)

dx
:

The condition on semi-boundedness is

L+ L� = �da(x)
dx

� � )
����da(x)dx

���� � A :

This result establishes wellposedness of the problems considered in Ex.

13 for q = 1 and Ex. 14.

The direct computation of the adjoint operator is in general quite

complicated. However, it is often possible to establish conditions for en-
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ergy boundedness directly and hence wellposedness in the sense of Def.

2 as illustrated in the following.

Example 21. Consider the operator

L =
@

@x
b(x)

@

@x
;

where b(x) 2 C1
p [0; 2�].

Proceeding as in the proof of Theorem 14, we recover

d

dt
kuk2L2[0;2�] = �

�
@u

@x
; (b+ b)

@u

@x

�
L2[0;2�]

:

If we require that�
@u

@x
; (b+ b)

@u

@x

�
L2[0;2�]

� �

@u@x

2

L2[0;2�]

;

with � > 0, then the problem is clearly wellposed in an energy sense.

A problem obeying such a condition is termed strongly parabolic and,

by inspection, we see that a necessary condition for strong parabolicity

and, hence, wellposedness is that the real part of b(x) is strictly positive.

Returning to the relation between wellposedness of the partial di�er-

ential equation and the stability of the Fourier-Galerkin method, we can

now state the result.

Theorem 15. If the operator is semi-bounded, the Fourier-Galerkin

scheme is stable.

Proof: In the Fourier-Galerkin method we employ the expansion

uN (x; t) =
X

jnj�N=2

ûn(t) exp(inx) ;

such that uN(x; t) 2 B̂N and we de�ne the residual, RN (x; t), as

RN (x; t) =
@uN
@t

�LuN :
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In general, we recall that

RN (x; t) =
X
jnj�1

R̂n exp(inx) ;

and RN (x; t) is generally not contained completely in B̂N , i.e., R̂n 6= 0

for jnj > N=2.

The Fourier-Galerkin scheme is obtained by requiring

PNRN (x; t) = 0 ) 8 jnj � N

2
: R̂n(t) = 0 ;

which yields

Z 2�

0

PNRN (x; t)uN (x; t) dx

=

Z 2�

0

X
jnj>N=2

R̂n(t) exp(inx)
X

jlj�N=2

ûl(t) exp(�ilx) dx = 0 :

Thus, we have the identityZ 2�

0

PN
�
@uN
@t

�LuN
�
uN dx = 0 ;

since PNRN (x; t) is orthogonal to uN(x; t). Following the proof of The-

orem 14 we recover

d

dt
kuNk2L2[0;2�] = (uN ;PNLuN )L2[0;2�] + (PNLuN ; uN)L2[0;2�]

= (uN ;PN [L+ L�]uN)L2[0;2�]
� �kuNk2L2[0;2�] ;

provided the operator is semi-bounded.

Stability follows immediately as

k exp (LN t) kL2[0;2�] � exp
�
1
2�t
�
:

where LN = PNLPN . QED

A necessary and suÆcient condition, providing a generalization of

Theorem 14, for wellposedness can be stated on the following form [?]
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Theorem 16. Assume that there exists a self-adjoint operator, H, and
a constant, K > 0, such that

K�1kuk2L2[0;2�] � (u;Hu)L2[0;2�] � Kkuk2L2[0;2�] :

Then the initial value problem, Eq.(5.4), is wellposed if and only if there

exists a constant, �, such that

(u; [HL+ L�H]u)L2[0;2�] � � (u;Hu)L2[0;2�] :

This allows for a generalization of the Theorem 15 as

Theorem 17. If the operator is wellposed in the generalized sense of

Theorem 16, then the Fourier-Galerkin scheme is stable.

In the case of the Fourier-Galerkin methods it thus suÆces to consider

the issue of wellposedness as stability follows directly.

5.2.2 Stability of the Fourier-Collocation Method

While the issue of stability for the Fourier-Galerkin is determined en-

tirely by the wellposedness of the partial di�erential equation this does

not carry over to the Fourier-Collocation method.

For the stability theory, a key di�erence between the two methods is

the requirement in the Galerkin method that the residual be orthogonal

to the basis in which the approximate solution, uN(x; t) itself is ex-

pressed, while it is only required to vanish pointwise in the collocation

scheme. This di�erence implies that wellposedness is reduced from be-

ing a suÆcient to being a necessary condition for stability as there is no

direct connection between the residual and space in which the solution

lives.

Establishing stability of the pseudospectral basically proceeds along

two di�erent avenues, both centered around the use of energy meth-

ods. Thus, one strives to recover results on energy boundedness of the

semi-discrete approximation, much as when wellposedness is considered.

However, as we can not rely on the properties of the projection, we shall

need to consider di�erent techniques.

Let us begin by briey discussing the discrete inner products and

norms needed in the following as well as their relationship to the contin-

uous inner products and norms. Consider �rst the discrete inner product
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and the associated energy norm

[fN ; gN ]N =
2�

N + 1

NX
j=0

fN(xj)gN (xj) ; kfNk2N = [fN ; fN ]N

where fN ; gN 2 B̂N and xj represents the odd grid points. As a conse-

quence of the accuracy of the quadrature, Theorem 7, we have

(fN ; gN)L2[0;2�] = [fN ; gN ]N ; kfNkL2[0;2�] = kfNkN :

Hence, when basing the approximation on the odd number of grid points,

the continuous and the discrete inner products and norms can be inter-

changed.

Returning to the case where the discrete inner product and the asso-

ciated energy norm is

[fN ; gN ]N =
2�

N

N�1X
j=0

fN (xj)gN (xj) ; kfNkN = [fN ; fN ]N

where fN ; gN 2 ~BN and xj signi�es the even grid points the situation

is a bit more complex. This is a consequence of the quadrature rule,

Theorem 5, being unable to exactly integrate polynomials of degree 2N .

Nevertheless, using the fact that fN 2 L2[0; 2�] one easily proves that

there exists a K > 0 such that

K�1kfNk2L2[0;2�] � kfNk2N � KkfNk2L2[0;2�] : (5.5)

Hence, the continuous and discrete norms are uniformly equivalent. To

prove L2-stability is it therefore suÆces to prove stability in the discrete

norms.

With this in mind, let us now attempt to derive bounds on the energy.

As a �rst approach, we shall use the properties of the di�erentiation oper-

ators, i.e., they are all symmetric or skew-symmetric as discussed in Sec.

4.2.4. Alternatively, the quadrature rules introduced in Sec. 4.2 may,

under certain circumstances, allow us to pass from the semi-discrete case

with summations to the continuous case with integrals and, thus, sim-

plify the subsequent analysis. Which one of these two techniques is most

appropriate is problem dependent as we shall see in the following dis-

cussion. Unless otherwise stated we focus the attention on the Fourier-

Collocation methods based on an even number of grid points, discussed
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in detail in Sec. 4.2. For the collocation formulation we also generally

take the grid points on which collocation scheme is based to similar to

those on which the interpolating approximate solution is sought, i.e.,

yj = xj in the context of Sec. 5.1.2.

5.2.2.1 Stability for Hyperbolic Problems

Let of consider the stability of the pseudospectral Fourier approximation

to the hyperbolic problem

@u

@t
+ a(x)

@u

@x
= 0 ; (5.6)

u(x; 0) = g(x) ;

where u(x) 2 L2[0; 2�] and g(x) 2 L2[0; 2�] are assumed periodic.

The coeÆcient, a, is assumed real for hyperbolicity while jaxj must be
bounded to ensure wellposedness. For the purpose of illustration let us

discuss the question of stability using two di�erent versions of the energy

method.

Theorem 18 (Method 1). The pseudospectral Fourier approximation

to the wellposed variable coeÆcient hyperbolic problem, Eq.(5.6), is sta-

ble as

kexp [ADt]kL2[0;2�] �
maxx

pja(x)j
minx

pja(x)j ;

provided a(x) is strictly bounded away from zero, i.e., 0 < ja(x)j <1.

Proof: The Fourier-Collocation approximation to the variable coeÆ-

cient hyperbolic problem, Eq.(5.6), is given as

du(t)

dt
+ADu(t) = 0 ; (5.7)

provided we require that the equation is satis�ed exactly at the grid

points, xj . Here xj signi�es the even grid points, u the associated grid

vector, and A a diagonal matrix with entries, Ajj = a(xj). Also, D

represents the di�erentiation matrix, Eq.(4.19), and we recall that DT =

�D.
The direct solution to Eq. (5.7) is given as
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u(t) = exp [�ADt]u(0) ;

and stability is guaranteed provided

kexp [�ADt]kL2[0;2�] � K(t) ;

which equals

exp [�ADt] exp
h
(�AD)T t

i
� K2(t) :

Consider �rst the case where a(xj) = a for which we obtain

exp [�aDt] exp
h
(�aD)T t

i
= exp

��a �D+DT
�
t
�
= 1 ;

since D is skew-symmetric and commutes with itself.

Consider now the case of a(x) > 0 in which case AD no longer com-

mutes with �DA, causing the above procedure to fail. However, as

a(x) > 0 we have

A = A1=2A1=2 :

Using the Taylor expansion of the matrix exponential one realizes that

A�1=2 exp [�ADt] A1=2 = exp
h
�A1=2DA1=2t

i
:

The key observation to make now is that�
A1=2DA1=2

�T
= A1=2DTA1=2 = �A1=2DA1=2 ;

i.e., the new operator A1=2DA1=2 is skew-symmetric. This implies

kexp [�ADt]kL2[0;2�] =
A1=2 exp

h
�A1=2DA1=2t

i
A�1=2


L2[0;2�]

�
A1=2


L2[0;2�]

exp h�A1=2DA1=2t
i

L2[0;2�]

A�1=2
L2[0;2�]

�
A1=2


L2[0;2�]

A�1=2
L2[0;2�]

� maxx
p
a(x)

minx
p
a(x)

;
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hence establishing stability provided 0 < a(x) <1.

The proof for a(x) < 0 is equivalent with the exception that we split

A as

A = �jAj1=2jAj1=2 :

Since the di�erentiation matrix, ~D, discussed in Sec. 4.2.4, for the odd

method maintains the skew-symmetry, stability of this method follows

from the above. QED

An alternative technique to establish stability may be understood by

realizing that if a(x) is uniformly bounded away from zero, A is non-

singular and A�1 exists. Therefore, by multiplying from the left with

uTA�1 we recover

uTA�1
du

dt
=

1

2

d

dt
uTA�1u = uTDu = 0 ;

as D is skew-symmetric and A is diagonal. This establishes stability in

the weighted norm, uTA�1u, known as the elliptic norm. However, this

norm is clearly uniformly equivalent to the discrete energy norm since

1

maxx
pja(x)juTu � uTA�1u � 1

minx
pja(x)juTu ;

hence completing the proof of stability.

Using the quadrature rules discussed in Sec. 4.2 to relate summa-

tions with integrations we can establish results equivalent to the above

through a di�erent route.

Theorem 19 (Method 2). The pseudospectral Fourier approximation

to the wellposed variable coeÆcient hyperbolic problem, Eq.(5.6), is sta-

ble as

1

2

d

dt
uTA�1u = 0 :

provided a(x) is strictly bounded away from zero, i.e., 0 < ja(x)j <1.

Proof: Seek a polynomial, uN 2 ~BN , that satisfy the equation

@uN
@t

����
xj

+ a(xj)
@uN
@x

����
xj

= 0 ; (5.8)
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where xj represents the even grid points and we require that the equation

be satis�ed on these points also.

Assuming that a(x) is uniformly bounded away from from zero en-

sures that a(x)�1 exists. If we multiply Eq.(5.8) with a(xj)
�1uN (xj)

and sum over all collocation points we obtain

1

2

d

dt

N�1X
j=0

1

a(xj)
u2N(xj) = �

N�1X
j=0

uN(xj)
@uN
@x

����
xj

= �N

2�

Z 2�

0

uN(x)
@uN
@x

dx = 0 ;

where we have used the quadrature rule given in Theorem 5 to establish

stability along with the fact that uN is periodic. The proof for an odd

number of points can be completed in a similar fashion. QED

For the general case where a(x) changes sign somewhere inside the

computational domain, the situation is more complex than reected in

the above. The straightforward way to derive a stable pseudospectral

Fourier approximation to Eq.(5.6) is to consider the equation on the

skew-symmetric form

@u

@t
+

1

2
a(x)

@u

@x
+

1

2

@a(x)u

@x
� 1

2
ax(x)u(x; t) = 0 ;

and seek an approximation to this equation, the stability of which is

stated in the following

Theorem 20. The pseudospectral Fourier approximation to the well-

posed variable coeÆcient hyperbolic equation, Eq.(5.6), expressed on skew-

symmetric form is stable as

1

2

d

dt
kuNk2N � 1

2 maxx
jax(x)jkuNk2N ;

with jax(x)j being bounded due to wellposedness.

Proof: To solve Eq.(5.6) on skew-symmetric form we seek a polyno-

mial, uN(x; t) 2 ~BN , satisfying the equation

@uN
@t

����
xj

+
1

2
a(xj)

@uN
@x

����
xj

+
1

2

@IN [a(x)uN ]
@x

����
xj

� 1

2
ax(xj)uN (xj) = 0 ;
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at all grid points, xj . Multiply with uN(xj) and sum over all the collo-

cation points to obtain

1

2

d

dt

N�1X
j=0

u2N (xj) = �1

2

N�1X
j=0

a(xj)uN (xj)
@uN
@x

����
xj

�1

2

N�1X
j=0

uN(xj)
@IN [a(x)uN ]

@x

����
xj

+
1

2

N�1X
j=0

ax(xj)u
2
N (xj) :

Considering the second term we observe that uN 2 ~BN and IN@IN [a(x)uN (x)]=@x 2
B̂N�1, i.e., the quadrature rule in Theorem 5 is exact and we have

1

2

N�1X
j=0

uN (xj)
@IN [a(x)uN (x)]

@x

����
xj

=
N

4�

Z 2�

0

uN (x; t)IN @IN [a(x)uN (x)]
@x

dx

= �N
4�

Z 2�

0

IN [a(x)uN (x)]IN @uN(x)
@x

dx

= �1

2

N�1X
j=0

a(xj)uN (xj)
@uN (x)

@x

����
xj

;

assuming only that a(x) and uN (x; t) are periodic.

Hence, we recover

1

2

d

dt
kuNk2N =

1

2

N�1X
j=0

ax(xj)u
2
N(xj ; t)

� 1
2 maxx

jax(x)j
N�1X
j=0

u2N(xj ; t) ;

which guarantees stability provided Eq.(5.6) is wellposed. QED

While we may establish stability for the skew-symmetric formulation

it is less interesting from a practical point of view as it is twice as ex-

pensive as solving the original problem
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@uN
@t

����
xj

+ a(xj)
@uN
@x

����
xj

= 0 :

The question of stability of the pseudospectral Fourier approximation

to this problem, however, is shrouded in a number of subtleties and

a complete answer has only recently been given [?], although partial

results for special a(x) has been known for some time [?, ?].

To come to a better understanding of what causes these diÆculties,

let us consider Eq.(5.6) on the following form

@uN
@t

+N1uN +N2uN +N3uN = 0 ;

where

N1uN =
1

2
JN

�
a(x)

@uN
@x

�
+

1

2

@JNa(x)uN
@x

;

is the skew-symmetric form of the operator introduced above,

N2uN =
1

2
JN

�
a(x)

@uN
@x

�
� 1

2
JN @(a(x)uN )

@x
;

and

N3uN =
1

2
JN @(a(x)uN )

@x
� 1

2

@JNa(x)uN
@x

:

We note that we are considering the scheme based on the odd number

of points. This is done for simplicity only as it allows us to pass to

the integrals without complications. However, the conclusions we reach

remains valid also for the even case.

Let us now consider

1

2

d

dt
kuNk2L2[0;2�] = �[uN ;N1uN ]N � [uN ;N2uN ]N � [uN ;N3uN ]N :

As we have shown in Theorem 20, the contribution from the skew-

symmetric form, N1uN , vanishes identically. Furthermore, we easily

establish that

[uN ;N2uN ]N � 1
2 maxx

jax(x)jkuNk2L2[0;2�] ;

by di�erentiation once. Inspecting the last term
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N3uN =
1

2
JN @(a(x)uN )

@x
� 1

2

@JNa(x)uN
@x

;

we see that this measures the error associated with the loss of commu-

tation between di�erentiation and interpolation. Indeed, if the interpo-

lation, JN , and di�erentiation would commute, as for the continuous

expansion in the Fourier-Galerkin scheme, this last term would vanish

identically.

In Sec. 4.2 we discussed how the loss of commutation is a conse-

quence of the aliasing error, i.e., N3uN is a direct measure of the e�ect

of aliasing. To understand the impact of this term on the stability of

the approximation, we use the bound

[uN ;N3uN ]N � C
�
kuNk2L2[0;2�] + kN3uNk2L2[0;2�]

�
:

As kN3uNkL2[0;2�] can be bounded as

kN3uNkL2[0;2�] � CN1�pku(p)N kL2[0;2�] ;

by Theorem ??, with C depending on a(x) and its derivatives, we recover

1

2

d

dt
kuNk2L2[0;2�] � C

�
kuNk2L2[0;2�] +N2�2pku(p)N k2L2[0;2�]

�
;

indicating that as long as the solution, uN , is suÆciently smooth one

can expect the approximation to be stable. However, for poorly re-

solved problems one may experience a weakly unstable solution with

the instability caused solely by aliasing.

These arguments are qualitative in nature and a detailed understand-

ing of the stability has only been obtained recently [?]. The main result

is stated as

Theorem 21. The pseudospectral Fourier approximation to the well-

posed variable coeÆcient hyperbolic problem, Eq.(5.6), is weakly unstable

as

kuN(t)kN � C(t)NkuN(0)kN ;

where C(t) depends on t but not on N .
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This more rigorous analysis con�rms that one can only hope for algebraic

stability and that the source of this growth is aliasing. Hence, if the

solution is well resolved at all relevant times, the errors incurred by

aliasing are very small and linear ampli�cation is insuÆcient to excite

the weak instability and, thus, impact the solution.

For poorly resolved phenomena, however, the situation is di�erent as

the small scale information, which no longer is insigni�cant, is destroyed

by aliasing and experiences an O(N) ampli�cation. This spreads to the

full spectrum and eventually destroys the accuracy of the solution. The

growth is, however, only algebraic.

The diÆculty with solving problems in which a(x) changes sign is that

such problems often develop very steep gradients in �nite time. Take as

an example Eq.(5.6) with

a(x) = � sin(x) ;

the solution of which is

u(x; t) = g
�
2 tan�1

�
et tan x

2

��
:

This develops a very steep gradient around x = 0 as t grows. Hence,

even if the initial conditions, g(x), is well resolved the solution will, if a

�xed grid is used, appear as poorly resolved at a later time, aliasing will

become signi�cant and the weak instability be excited.

5.2.2.2 Entr'acte on a Nonlinear Problem.

The equivalence theorem discussed in Sec. 3.2 supplies the motivate for

splitting the discussion of convergence of the semi-discrete approxima-

tions to linear problems into that of consistency and stability. However,

for nonlinear problems this ceases to be meaningful and one must gen-

erally attempt to prove convergence directly.

Nevertheless, a few results in the spirit of the previous discussion can

be established for certain nonlinear problems. As an example of this

consider the problem

@u

@t
+ u

@u

@x
= 0 ; (5.9)

u(x; 0) = g(x) ;

where we assume that u(x; t) and g(x) are periodic and smooth, local in
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time. By expressing it on skew-symmetric form as

@u

@t
+

1

3
u
@u2

@x
+

1

3
u2
@u

@x
= 0 ; (5.10)

one easily proves

1

2

d

dt
kuk2L2[0;2�] =

Z 2�

0

u2
@u

@x
dx =

1

3

Z 2�

0

�
u2
@u

@x
+ u

@u2

@x

�
dx

=
1

3

Z 2�

0

@u3

@x
dx = 0 ;

where the last equality follows directly from periodicity. Assuming that

that a unique solution exists, this establishes wellposedness.

For the Fourier-Collocation approximation of Eq.(5.10) we have the

following result

Theorem 22. The pseudospectral Fourier approximation of the well-

posed nonlinear problem, Eq.(5.9), is stable as

1

2

d

dt
kuNk2N = 0 ;

if expressed on skew-symmetric form, Eq.(5.10).

Proof: Look for a polynomial, INu(x; t) = uN (x; t) 2 ~BN , that satisfy

Eq.(5.10), in the following way

@uN
@t

����
xj

+
1

3

N�1X
i=0

Djiu
2
N(xi) +

1

3
uN(xj)

N�1X
i=0

DjiuN(xi) = 0 ;

i.e., we require that the equation be satis�ed exactly at the even number

of grid points, xj , on which also the approximation is based. Multiply

with uN(xj ; t) and sum over the grid points to obtain

1

2

d

dt

N�1X
j=0

kuNk2N

= �1

3

N�1X
j=0

uN(xj)

N�1X
i=0

Djiu
2
N(xi)�

1

3

N�1X
j=0

u2N (xj)

N�1X
i=0

DjiuN (xi)
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= �1

3

N�1X
j=0

N�1X
i=0

�
uN(xj)Djiu

2
N (xi) + u2N(xj)DjiuN (xi)

�

= �1

3

N�1X
j=0

N�1X
i=0

�
uN(xj)Djiu

2
N (xi)� u2N(xi)DijuN (xj)

�
= 0 ;

where the last reduction appears by using the skew-symmetry of the

di�erentiation matrix. QED

This establishes stability of the Fourier-Collocation method and also

shows that the semi-discrete approximation of the skew-symmetric form

maintains the energy conserving property.

However, the resulting scheme is twice as computationally expensive

as the simple approximation. While this may be unacceptable for the

linear problem, the fact that the semi-discrete approximation, as the

original partial di�erential equations, conserves energy may be crucial.

The nonlinear energy conserving operator considered in the above

represents a simple example of a much larger class of problems known

as conservation laws. We shall return to such problems and their ap-

proximation in more detail in Chapter 8.

5.2.2.3 Stability of Parabolic Equations.

Let us now consider the question of stability for strongly parabolic prob-

lems as

@u

@t
= b(x)

@2u

@x2
; (5.11)

u(x; 0) = g(x) ;

where b(x) > 0 for wellposedness and u(x; t) as well as g(x) are assumed

to be periodic and smooth.

As for the discussion of stability for hyperbolic problems we shall

approach the question of stability for Eq.(5.11) in two di�erent ways,

yielding the same result.

Theorem 23 (Method 1). The Fourier-Collocation method approxi-

mation to the strongly parabolic problem, Eq.(5.11), is stable as
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1

2

d

dt
kuNk2N � 0 ;

provided b(x) is strictly positive.

Proof: We require the equation to be satis�ed on xj , yielding the the

Fourier-Collocation approximation to the parabolic problem as

du(t)

dt
= BD(2)u(t) :

Here xj represents the grid points, u the associated grid vector and B

the diagonal positive matrix with entries Bjj = b(xj). Furthermore,

D(2) represents the di�erentiation matrix of 2nd order as discussed in

Sec. 4.2.4. We need to be careful, however, when de�ning this operator.

As discussed in Sec. 4.2.4, a consequence of using the even method

is that D(2) 6= D � D where both D and D(2) are obtained directly by

di�erentiation of the Lagrange interpolation polynomial, Eq.(4.12). The

key di�erence between the two formulations is that D(2)u 2 ~BN while

(D �D)u 2 B̂N�1, i.e., the latter reduces the order of the polynomial. As
we shall see shortly, we must choose the latter de�nition, i.e.,

D(2) � D � D ;

to ensure stability of the Fourier-Collocation scheme. We note that

the discrepancy between the two formulations is a consequence of the

restricted space, ~BN , associated with the even number of collocation

points. The problem does not arise when using a method based on an

odd number of grid points.

Following the resolution of this, we continue by multiplying with

uTB�1 from the left to recover

uTB�1
d

dt
u = uTD(2)u = uTDDu

=
�
DTu

�T
(Du) = � (Du)T (Du) � 0 ;

where we use that D is skew-symmetric. Since

1

maxx b(x)
kuNk2N � uTB�1u � 1

minx b(x)
kuNk2N ;

the result follows. QED
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Let us also recover the same result using the quadrature rules.

Theorem 24 (Method 2). The Fourier-Collocation method approxima-

tion to the strongly parabolic problem, Eq.(5.11), is stable as

1

2

d

dt
kuNk2N � 0 ;

provided b(x) is strictly positive.

Proof: We seek solutions on the form

uN(x; t) =

N�1X
j=0

uN (xj ; t)gj(x) ;

and require the equation to be satis�ed at xj as

@uN(x; t)

@t

����
xj

= b(xj)
@2uN(x; t)

@x2

����
xj

:

Multiply with b(xj)
�1uN(xj ; t) and sum over the collocation points to

obtain

1

2

d

dt

N�1X
j=0

1

b(xj)
u2N(xj ; t) =

N�1X
j=0

uN(xj ; t)
@2uN(x; t)

@x2

����
xj

:

We realize that the summation on the right hand side is a polynomial

of order 2N which is beyond the accuracy of the quadrature rule for the

even number of points, Theorem 5, and we cannot immediately pass to

the integral.

To circumvent this problem we de�ne the second order derivative as

IN d

dx
IN d

dx
IN ;

similar to the approach taken in Theorem 23. This ensures that

@2uN(x; t)

@x2
= IN d

dx
IN d

dx
uN(x; t) 2 B̂N�1 ;

since the quadrature rule is exact and we have
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1

2

d

dt

N�1X
j=0

1

b(xj)
u2N (xj ; t) =

N�1X
j=0

uN(xj ; t)

 
@

@x
IN @uN

@x

����
xj

!

=
N

2�

Z 2�

0

uN(x; t)IN
�
@

@x
IN @uN

@x

�
dx

= �N

2�

Z 2�

0

IN @uN
@x

IN @uN
@x

dx

= �
N�1X
j=0

 
@uN
@x

����
xj

!2

� 0 ;

where we use partial integration, periodicity of uN (x; t), and

IN @uN(x; t)
@x

����
xj

=
@uN (x; t)

@x

����
xj

;

as a property of the interpolation operator. Utilizing the uniform equiv-

alence between the elliptic norm and the usual energy norm as discussed

in the proof of Theorem 23 yields the result.

The situation for the odd number of points is simpler as the associated

quadrature, Theorem 7, integrates polynomials of order 2N exactly and

no special de�nition of D(2) needs to be considered. QED



5.2 Stability of Fourier Spectral Methods 127

Exercises

1. Consider the problem

@u

@t
= a(x)

@qu

@xq
; x 2 [0; 2�] ;

where u(x; t) 2 C1p [0; 2�]. Both u(x; t) and a(x) are general complex
numbers.
Assuming that a unique u(x; t) exixts, show what conditions one must
place on a(x) to ensure wellposedness. Note that the answer depends on
q.

2. Consider the biharmonic problem

@u

@t
= �@4u

@x4
; x 2 [0; 2�] ;

where u(x; t) 2 C1p [0; 2�].
Assuming that u(x; t) exists, show that the problem is wellposed.

3. (Continued) Derive a Fourier-Galerkin scheme and discuss its stability.

4. (Continued) Derive a Fourier-Collocation scheme and discuss its stability.

5. Consider the system of equations

@u

@t
=

@v

@x
; x 2 [0; 2�] ;

@v

@t
=

@u

@x
;

where u(x; t) 2 C1p [0; 2�] and v(x; t) 2 C1p [0; 2�].
Derive a Fourier-Galerkin scheme and prove its stability.

6. (Continued) Derive a Fourier-Collocation scheme and show its stability.

7. Consider the variable coeÆcient problem

@u

@t
= �x@u

@x
; x 2 [0; 2�] ;

where we assume that u(x; t) 2 C1p and smooth initial conditions are
given.
Assuming that a unique solution exists, prove that the problem is well-
posed.

8. (Continued) Derive a Fourier-Galerkin scheme and discuss its accuracy
and stability.

9. (Continued) Consider the problem on skew-symmetric form
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@u

@t
=

1

2

�
�x@u

@x
� @(xu)

@x
+ u

�
; x 2 [0; 2�] ;

and derive a stable Fourier-Collocation scheme.

10. Consider the nonlinear Schr�odinger equation

i
@u

@t
+

@2u

@x2
+ ujuj2 = 0 ;

where u(x; t) : [0; 2�] � R+ ! C. Furthermore, assume that u(x; t) 2
C1p [0; 2�].
This equation arises in the modeling of pulse propagation in optical �bers
and studies of deep water waves among other things.
Assuming that a unique solution exists, prove that the problem is well-
posed.

11. (Continued) Propose a Fourier-Collocation scheme and prove that it is
stable in an energy sense.

12. Consider the Korteweg-de Vries equation

@u

@t
+ (c0 + c1u)

@u

@x
+

@3u

@x3
= 0 ;

where u(x; t) : [0; 2�] � R+ ! R. Furthermore, assume that u(x; t) 2
C1p [0; 2�]. Also, c0 and c1 are real constants.
This equation arises in the modeling shallow water waves.
Assuming that a unique solution exists, prove that the problem is well-
posed.

13. (Continued) Derive a Fourier-Galekin method for the Korteweg-de Vries
equation.

14. (Continued) Derive a Fourier-Collocation scheme for the Korteweg-de
Vries equation and prove its stability.
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Orthogonal Polynomials

The last few chapters have focused on a detailed development and anal-

ysis of spectral and pseudospectral methods using trigonometric polyno-

mials. While we found such schemes to perform well and deliver highly

accurate results for certain special classes of problems, the analysis also

revealed that the exponential accuracy of the scheme is achieved only

when the solution is periodic. Moreover, the periodicity is required of

the solution as well as of all its derivatives. As illustrated in Chapter 4,

lacking such higher order periodicity globally impacts the convergence

rate of the Fourier series, often reducing the spatial accuracy of the

spectral scheme to that of a �nite di�erence scheme.

This need for periodicity naturally limits the application of Fourier

methods and inhibits the accurate study of more general non-periodic

problems, e.g., boundary layer phenomena in uid dynamics, scattering

and penetration problems in acoustics and electromagnetics, and elastic

waves in materials.

We recall from the previous chapters that the requirement of peri-

odicity is a consequence of the choice of basis functions, �n(x). This

suggests that to overcome this restriction we should attempt to identify

a di�erent basis better suited for the approximation of solutions on �-

nite domains. The central question, the answer of which we shall devote

a considerable part of this Chapter, is whether it is indeed possible to

identify such a basis, resulting in rapidly converging spectral expansions,

independent of the boundary conditions.

Guided by past experiences, we focus the attention on polynomial

expansions of the form

129
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u(x) =

1X
n=0

ûnx
n ;

which, as we shall see, turns out to be exactly what we seek, albeit often

expressed in a di�erent form. The underlying assumption is that u(x)

can be well approximated in the �nite dimensional subspace of

BN = span fxngNn=0 ;

that satisfy the boundary conditions.

Prior to discussing the properties of the expansion itself, however, we

shall need to look a bit deeper into the properties of the basis, including

attention to completeness and orthogonality. Following this, we subse-

quently limit the attention to a very special class of polynomial, appear-

ing as eigensolutions to Sturm-Liouville problems. The emphasis shall be

on polynomial approximations of continuous functions, u(x) 2 C0[a; b],

where the interval [a; b] can be bounded as well as unbounded. However,

to simplify the exposure we focus on problems de�ned on a bounded in-

terval, keeping in mind that similar results can be established also for

problems de�ned on the semi-in�nite interval, [0;1[, as well as the in-

�nite interval, ] � 1;1[. Where special results are required we shall

provide these but we shall generally omit the proofs.

6.1 Polynomial Approximation and Completeness

As remarked in Chapter 4, establishing completeness of a particular basis

family is an issue of signi�cant complexity. However, for the polynomial

basis it turns out that completeness can be established assuming only

that the trigonometric basis is L2-complete. We have used this classic

result in previous chapters also and a proof can be found in [??].

The �rst step towards a completeness proof for the polynomial basis

involves a fundamental existence theorem for the polynomial approxi-

mation of a continuous functions on the interval

Theorem 25 (Weierstrass). For any continuous function, u(x) 2
C0[0; 1] and an arbitrary " > 0, there exists an N and a polynomial,

pN (x) 2 BN , such that

ku(x)� pN (x)kL1[0;1] � " :
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In other words, any continuous bounded function, u(x), de�ned on [0; 1]

can be uniformly approximated by an N 'th order polynomial.

Proof: The Weierstrass approximation theorem is a theorem of exis-

tence. Consequently, we can prove it directly by constructing a pointwise

convergent approximating polynomial.

Let us extend the function, u(x) 2 C0[0; 1], evenly to the interval

[�1; 1] such that u(x) 2 C0[�1; 1] and u(x) = u(�x). Let us also express
x = cos � and introduce the function v(�) = u(cos �), where v(�) 2
C0[��; �] and v(�) = v(��). As the periodic extension of v(�) itself

is even, continuous and uniformly bounded, it can be expanded in a

pointwise convergent cosine series as (cf. Theorem 2)v(�) �
NX
n=0

v̂n cosn�


L1[��;�]

! 0 as N !1 ;

where v̂n represents the cosine expansion coeÆcients, see Sec. 4.1. In-

troducing the substitution � = arccosx yieldsu(x)�
NX
n=0

v̂n cos (n arccosx)


L1[�1;1]

! 0 as N !1 :

We complete the proof by showing that the basis function

�n(x) = cos (n arccosx) ;

is a polynomial of order n. From the de�nition of �n(x), we have

�0(x) = 1 and �1(x) = x :

Using the identity

cos(n+ 1)� + cos(n� 1)� = 2 cos � cosn� ;

we have a recurrence relation for �n(x) as

�n+1(x) = 2x�n(x)� �n�1(x) :

Since �0 and �1 are polynomials, clearly �n(x) is a polynomial of order

n. These polynomials, �n(x), are known as Chebyshev polynomials and

play a central role in the context of spectral methods as we shall discuss
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thoroughly later.

Establishing the existence of a pointwise convergent polynomial for

the interval of [�1; 1] naturally covers the interval of [0; 1] also.

An alternative, and perhaps more classical, proof of the Weierstrass

approximation theorem involves proving that the Bernstein polynomials

BN (u; x) =

NX
n=0

u
� n
N

��N
n

�
xn(1� x)N�n ;

converges uniformly to u(x) 2 C0[0; 1]. The proof follows from the

properties of the polynomials and the continuity of u(x). A complete

proof can be found in [??]. QED

Existence of the pointwise convergent polynomial sequence for any

bounded continuous function on [0; 1] immediately yields convergence in

any equivalent norm, including L2[0; 1]. Based on this, completeness of

the polynomial basis in L2
w[0; 1] can be established as

Theorem 26 (Completeness). Any piecewise continuous function,

u(x) 2 L2
w[0; 1], can be expanded in a polynomial series that is con-

vergent in the mean

ku(x)� pN (x)kL2w[0;1] ! 0 as N !1 :

Hence, the polynomial basis in complete in L2
w[0; 1].

Proof: We have already established L2[0; 1]-convergence provided only

u(x) 2 C0[0; 1] using the unweighted inner product. However, since

w(x) 2 L1[0; 1], and nonnegative, convergence in the weighted inner

product follows directly from L2[0; 1] convergence since

kuk2L2w[0;1] � kuk
2
L2[0;1]kwk2L2[0;1] :

It thus suÆces to discuss convergence for piecewise continuous functions

in L2[0; 1].

Let us introduce a function, v(x) 2 C0[0; 1], that is a continuous

approximation to u(x). We can always �nd a v(x) such that

ku(x)� v(x)kL2[0;1] < " ;

for any " > 0. Indeed, assume that u(x) has a point of discontinuity at
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x0. We may construct v(x) such that it equals u(x) outside the interval

of [x0�Æ; x0+Æ]. Inside this interval, we construct v(x) by a line segment
connecting the point of (x0� Æ; u(x0� Æ)) with (x0+ Æ; u(x0+ Æ)). From

this it easily follows that

lim
Æ!0

ku(x)� v(x)kL2[0;1] = 0 ; (6.1)

provided only that u(x) 2 L2[0; 1]. Recall also that v(x) 2 C0[0; 1],

implying that there exists a pointwise convergent approximating poly-

nomial, pN 2 BN , to v(x).
Consider now the error

ku(x)� pN (x)k2L2[0;1] = k(u(x)� v(x)) + (v(x) � pN(x))k2L2[0;1]
= ku(x)� v(x)k2L2[0;1] + kv(x)� pN (x)k2L2[0;1]
+2

Z 1

0

(u(x)� v(x)) (v(x)� pN (x)) dx

� ku(x)� v(x)k2L2[0;1] + kv(x)� pN (x)k2L2[0;1]
+2ku(x)� v(x)kL2[0;1]kv(x)� pN (x)kL2[0;1] :

Each term of this expression can be made arbitrarily small using Eq.(6.1)

and Theorem 25, hence establishing convergence in the mean of the

approximation to any piecewise continuous function, u(x) 2 L2
w[0; 1].

QED

The result in the general bounded interval [a; b] follows directly

Lemma 7. Any piecewise continuous function, u(x) 2 L2
w[a; b], can be

expanded in a polynomial series that is convergent in the mean

ku(x)� pN (x)kL2w[a;b] ! 0 as N !1 :

The combination of Theorem 26 and Lemma 7 supplies the proof of

completeness for the polynomial basis on any �nite interval.

Let us also consider the question of orthogonality of the polynomial

basis

 n(x) = xn :
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For simplicity and without loss of generality, we take the interval to be

[�1; 1].
The monomial basis is clearly not orthogonal with respect to the

unweighted inner product, (�; �)L2[�1;1], since

( 0;  2)L2[�1;1] =

Z 1

�1

x2 dx =
2

3
:

However, as all element,  n(x), of the basis clearly are independent

we may use a Gram-Schmidt orthogonalization to construct polynomi-

als, �n(x), that are mutually orthogonal with respect to some speci�c

weighted inner product. Indeed, choosing as an example the unweighted

inner product we obtain the �rst basis element as

�0(x) =
 0(x)

k 0kL2[�1;1] =
1p
2
:

Likewise, the second basis element becomes

~�1(x) =  1(x)� (�0;  1)L2[�1;1]�0(x) ; �1(x) =
~�1(x)

k~�1kL2[�1;1]
=

r
3

2
x ;

while the next is

~�2(x) =  2(x) � (�0;  2)L2[�1;1]�0(x) � (�1;  2)L2[�1;1]�1(x) ;

�2(x) =
~�2(x)

k~�2kL2[�1;1]
=

r
5

8
(3x2 � 1) ;

and so on. It is always possible to construct orthogonal polynomial

basis families with respect to the general weighted inner product using

the Gram-Schmidt orthogonalization.

In the above developments of the completeness result, Weierstrass ap-

proximation theorem plays a crucial role. However, as given in Theorem

25, it does not include polynomial approximation on the semi-in�nite

or in�nite interval. It is, nevertheless, possible to state Weierstrass-like

theorems also for these intervals provided certain bounds are put on the

growth of the function, u(x), being approximated as x approaches in�n-

ity. We shall only give the relevant theorems for reference as the proofs

are rather involved and beyond the scope of the present text. [26]
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Theorem 27. Consider any continuous function, u(x) 2 C0[0;1[, for

which there exists a constant, Æ, such that

lim
x!1

u(x) exp(�Æx)! 0 :

Then for any " > 0, there exists an N and a polynomial, pN (x) 2 BN ,

such that

sup
x2[0;1[

ju(x)� pN (x)j exp(�Æx) � " :

Theorem 28. Consider any continuous function, u(x) 2 C0]�1;1[,

for which there exists a constant, Æ, such that

lim
x!�1

u(x) exp(�Æx2)! 0 ;

Then for any " > 0, there exists an N and a polynomial, pN (x) 2 BN ,

such that

sup
x2]�1;1[

ju(x)� pN (x)j exp(�Æx2) � " :

6.2 Classical Orthogonal Polynomials

In the last section we established L2
w[a; b] completeness of the polyno-

mial basis and realized that they can be expressed on orthogonal form.

These two properties are important for analysis as well as for compu-

tational eÆciency but they alone are not enough to establish that the

polynomial basis is suitable for the construction of spectral methods.

For this purpose we need to understand the rate of convergence of the

polynomial approximation to functions de�ned on a �nite interval and

understand how the properties of the function impacts the convergence

rate.

To address these central issues we shall �nd it convenient to recover

the orthogonal polynomials through a di�erent route. Indeed, we shall

take a detour and consider the Sturm-Liouville problem and the eigen-

solutions to such problems.

6.2.1 Sturm-Liouville Eigensolutions.

Let us consider the general Sturm-Liouville problem
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L�(x) = � d

dx

�
p(x)

d�(x)

dx

�
+ q(x)�(x) = �w(x)�(x) ; (6.2)

subject to the boundary conditions

���(�1) + ���
0(�1) = 0 ; �2� + �2� 6= 0 ; (6.3)

�+�(1) + �+�
0(1) = 0 ; �2+ + �2+ 6= 0 :

Here and in the following we restrict the attention to the interval [�1; 1]
for simplicity. In Eq. (6.2) we have the real functions, p(x) 2 C1[�1; 1]
and strictly positive in ] � 1; 1[, q(x) 2 C0[�1; 1] and non-negative

and bounded, and the non-negative continuous weightfunction, w(x) 2
C0[�1; 1].

Assuming that ���� � 0 and �+�+ � 0 one can show [?] that the

solutions to the Sturm-Liouville eigenvalue problem are unique sets of

eigenfunctions, �n(x), and eigenvalues, �n. The eigenfunctions, �n(x),

form an L2[�1; 1] complete basis while the nonnegative and unique eigen-
values form an unbounded sequence, �0 < �1 < �2 : : :. Based on this, it

is customary to order the eigensolutions in unique pairs as (�n; �n).

This leads to the �rst important observation

Theorem 29. The eigensolutions to the Sturm-Liouville problem are

mutually orthogonal in the k � kL2w[�1;1]-norm

(�n; �m)L2w[�1;1] =

Z 1

�1

�n(x)�m(x)w(x) dx = nÆnm ;

where n = (�n; �n)L2w[�1;1].

Proof: Recall that the Sturm-Liouville operator, Eq.(6.2),

L�n(x) = �nw(x)�n(x) ;

is self-adjoint for solutions, �n(x), obeying the boundary conditions,

Eq.(6.3). Multiplying with �m(x) and integrating over [�1; 1] yields

(�m;L�n)L2[�1;1] = �n (�m; �n)L2w[�1;1]
: (6.4)

Interchanging indices we obtain an equivalent expression

(�n;L�m)L2[�1;1] = �m (�m; �n)L2w[�1;1] : (6.5)
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However, as L is self-adjoint one recovers, by subtracting Eq.(6.5) from

Eq.(6.4), that

(�n � �m) (�m; �n)L2w[�1;1]
= 0 :

Since the eigenvalues, �n, are unique this impliesZ 1

�1

�n(x)�m(x)w(x) dx = nÆnm ;

where n = (�n; �n)L2w[�1;1]
. QED

Note that we have not yet identi�ed the eigenfunctions as polynomi-

als. Indeed, this may only be done for speci�c choices of the functions,

q(x), p(x) and w(x), as we shall discuss shortly. However, for the eigen-

functions to be useful for the expansion of general functions, they, i.e.,

�n(x), must form a complete family. The completeness of the basis set

formed from the eigensolutions is a consequence of the corresponding

eigenvalues, �n, being an unbounded sequence for n approaching in�n-

ity. The connection between completeness and the unbounded growth of

�n may be understood heuristically by considering the Sturm-Liouville

problem with p(x) = q(x) = w(x) = 1 subject to homogeneous boundary

conditions as

d2

dx2
�n(x) + �n�n(x) = 0 :

The solution is given as

�n(x) = An sin
�p

�n�x
�

:

Hence, 1=
p
�n takes the role of a typical spatial scale. Completeness

requires that arbitrary functions be expandable in �n(x). Thus, �n
must be an unbounded sequence in n to be able to catch arbitrarily small

scales. Conversely, the fact that �n is unbounded for the eigenfunctions

of the Sturm-Liouville problems also indicates that these eigenfunctions

form a complete family. A rigorous proof of this can be found in [?].

Assuming that u(x) 2 L2
w[�1; 1], consider the expansion

u(x) =

1X
n=0

ûn�n(x) ;
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with the truncated approximation

PNu(x) =
NX
n=0

ûn�n(x) :

The continuous expansion coeÆcients are obtained from orthogonality

as

ûn =
1

n
(u; �n)L2w[�1;1]

; n = k�nk2L2w[�1;1] :

As discussed previously, convergence in the mean and orthogonality

yields implies Parseval identityZ 1

�1

u2(x)w(x) dx = (u; u)L2w[�1;1] =

1X
n=0

nû
2
n :

Hence, measured in k � kL2w[�1;1] the truncation error is given as

u(x)�
NX
n=0

ûn�n(x)


2

L2w[�1;1]

=

"
1X

n=N+1

nû
2
n

#
:

Since n are constants independent of u(x) and bounded as n approaches

in�nity since �n(x) 2 L2
w[a; b], convergence will depend solely on the

decay of the expansion coeÆcients, ûn. This is a situation much as we

found for expansions based on the trigonometric polynomials discussed

previously.

The decay of the expansion coeÆcients, ûn, can be estimated as

ûn =
1

n
(u; �n)L2w[�1;1] =

1

n

Z 1

�1

u(x)�n(x)w(x) dx

=
1

n�n

Z 1

�1

u(x)L�n(x) dx =
1

n�n

Z 1

�1

u [�(p�0n)0 + q�n] dx

=
1

n�n
[�up�0n]1�1 �

1

n�n

Z 1

�1

[�u0p�0n + qu�n] dx

=
1

n�n
[p (u0�n � u�0n)]

1
�1 +

1

n�n

Z 1

�1

[Lu(x)]�n(x) dx

=
1

n�n
[p (u0�n � u�0n)]

1
�1 +

1

n�n

�
u(1); �n

�
L2w[�1;1]

; (6.6)
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where we have introduced the symbol

u(m)(x) =
1

w(x)
Lu(m�1)(x) ;

and u(0)(x) = u(x). This derivation is valid provided u(1)(x) 2 L2
w[�1; 1],

i.e., u(2)(x) 2 L2
w[�1; 1] and w(x)�1 2 L1[�1; 1].

The estimate of the expansion coeÆcients, ûn, contains two terms.

From the Cauchy-Schwarz inequality, the second term in Eq. (6.6) is

bounded as

1

n�n

�
u(1); �n

�
L2w[�1;1]

� 1

n�n

����
Z 1

�1

u(1)(x)�n(x)w(x) dx

����
� 1

n�n

�Z 1

�1

u2(1)(x)w(x) dx

�1=2�Z 1

�1

�2n(x)w(x) dx

�1=2

=
1

�n
p
n
ku(1)kL2w[�1;1] � O

�
1

�n

�
;

since n is bounded and strictly positive and u(1)(x) 2 L2
w[�1; 1].

To proceed beyond this point it is convenient to split the treatment

into two separate cases that leads to distinctly di�erent results for the

convergence rate.

6.2.1.1 The Regular Sturm-Liouville Problem.

Let us �rst consider the case where p(x) and the weightfunction, w(x),

both are strictly positive, known as the regular Sturm-Liouville problem.

Considering the result in Eq. (6.6) we realize that if u(x) satis�es

u0(�1)�n(�1)� u(�1)�0n(�1) = 0 ) (6.7)

��u(�1) + ��u
0(�1) = 0 ;

by using Eq.(6.3) then the expansion coeÆcients decay as

jûnj ' C
1

�n
ku(1)kL2w[�1;1] :

Indeed, if the whole sequence of u(l), l = 0; ::;m satis�es the boundary

conditions, Eq.(6.7) we obtain the spectral like decay as
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jûnj ' C
1

(�n)m
ku(m)kL2w[�1;1] :

This situation is very similar to the case for Fourier series where we had

to assume that u(x) and its derivatives, u(m)(x), were periodic to ensure

spectral decay of the expansion coeÆcients. Here the constraints are

even harder to ful�ll.

The eigensolutions to the regular Sturm-Liouville problem with ho-

mogeneous boundary conditions have the asymptotic behavior [?]

�n ' (n�)2

 Z 1

�1

s
w(x)

p(x)
dx

!�2
as n!1 ;

and

�n(x) ' An sin

"p
�n

Z x

1

s
w(x)

p(x)
dx

#
as n!1 :

Hence, if u(x) does not satisfy the boundary conditions, Eq.(6.7), the

convergence rate is dominated by the boundary term in Eq.(6.6) as

jûnj / 1p
�n

/ 1

n
:

If, on the other hand, u(x) satis�es Eq.(6.7) we obtain

jûnj ' 1

n2
;

as u(1)(x) 2 L2
w[�1; 1].

This analysis allows us to conclude that we can only expect algebraic

decay of the expansion coeÆcients the general function, u(x), except in

very special cases where the sequence u(l), l = 0; ::;m and therefore u(x),

satis�es a very special set of boundary conditions, Eq.(6.7). For general

problems this is clearly the case.

6.2.1.2 The Singular Sturm-Liouville Problem.

Let us now consider the singular Sturm-Liouville problem by requiring

that p(�1) = 0, i.e., p(x) vanishes at the boundary points but remains

positive and continuous. This has the consequence that the boundary

term in Eq.(6.6) vanishes provided only that p(�1)u0(�1) = 0. In this
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case we immediately have

jûnj ' C
1

(�n)m
ku(m)kL2w ;

for u(m)(x) 2 L2
w[a; b], implying that u

(2m)(x) 2 L2
w[a; b]. Consequently,

in case the function u(x) 2 C1[a; b] we recover spectral decay of the

expansion coeÆcients, i.e., jûnj decays faster than any algebraic order

of �n. This result is valid independent of speci�c boundary conditions

on u(x) at the boundaries.

This suggests that the eigensolutions of the singular Sturm-Liouville

problem are well suited for expanding arbitrary functions de�ned in

the �nite interval as the eigenfunctions form a complete, orthogonal

basis family. Moreover, the convergence rate of the expansions depends

solely on the regularity of the function being expanded and not on the

boundary conditions of the basis or the behavior of the function at the

boundary of the �nite interval beyond the weak regularity constraint on

p(�1)u0(�1) mentioned above.

6.2.2 Jacobi Polynomials.

While the above discussion of the properties of the eigensolutions to the

singular Sturm-Liouville problem strongly supports using these solutions

to approximate arbitrary functions on the interval, we still need to ac-

tually identify these solutions as being polynomials of order n. This, on

the other hand, depends on proper choices of the two functions, p(x),

q(x) and the weightfunction, w(x).

Let us �rst attend to the case where the interval is �nite and seek

polynomial solutions to the singular Sturm-Liouville problem de�ned on

the interval [�1; 1]. The de�nition of p(x), q(x), and the weightfunction,
w(x), leading to eigensolutions of polynomial form are

Theorem 30. The eigensolutions, �n(x) 2 L2
w[�1; 1], to the singular

Sturm-Liouville problem are polynomials of order n if and only if the

functions, p(x), q(x), and the weightfunction, w(x), are given as

p(x) = (1�x)�+1(1+x)�+1 ; w(x) = (1�x)�(1+x)� ; q(x) = cw(x) ;

provided that �; � > �1 and

�n = n(n+ �+ � + 1)� c :
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Proof: We begin by assuming that the polynomial, �n(x) 2 BN , is a

solution to Eq. (6.2)

�n(x) =
1

�nw(x)
L�n(x) :

Expanding the Sturm-Liouville operator, we obtain

�n(x) =
1

�n

�
�p

0(x)

w(x)
�0n(x)�

p(x)

w(x)
�00n(x) +

q(x)

w(x)
�n(x)

�
;

which must hold for any n. By equating the orders of the polynomials

on the two sides for n = 0; 1; 2, we recover that

p(x)

w(x)
2 B2 ;

p0(x)

w(x)
2 B1 ;

q(x)

w(x)
2 B0 ;

as the eigenvalue, �n, is a constant for �xed n. Thus, q(x) = cw(x),

while the only solution to the two remaining equations are

p(x) = c1(1� x)�+1(1 + x)�+1 ;

and

w(x) = c2(1� x)�(1 + x)� ;

as p(x) is required to vanish at the endpoints of the interval. Since the

two constants, c1 and c2, act as normalization constants only we take

them to be unity. However, we must ensure that w(x) 2 L1[�1; 1] as it
is used to de�ne a norm. This is ensured providedZ 1

�1

(1� x)�(1 + x)� dx = 2�+�+1
�(�+ 1)�(� + 1)

�(�+ � + 2)
;

is bounded, e.g., �; � > �1.
To complete the proof we need to show that the particular choice

of p(x), q(x), and w(x) yields polynomial eigensolutions of the Sturm-

Liouville problem with the eigenvalue

�n = n(n+ �+ � + 1)� c : (6.8)

To see this, introduce p(x) and w(x) into the Sturm-Liouville equation,

Eq.(6.2), to obtain
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�(1� x2)�00n(x) + ((� + � + 2)x+ �+ �)�0n(x) = �n�n(x) : (6.9)

We take c = 0 without loss of generality as it just reects a shift of the

eigenvalue. Assuming that

�n(x) =

nX
l=0

alx
l ;

inserting this into Eq. (6.9) and equating the leading coeÆcient of the

polynomial yields the unique result. QED

This result completes our search for orthogonal polynomials suitable

for approximating piecewise continuous functions on the �nite interval.

Since the eigensolutions are polynomials we have all ready established

completeness. Orthogonality follows from the association with eigenso-

lutions to a Sturm-Liouville problem. This connection also ensures rapid

convergence of the approximation to smooth solutions as the convergence

rate depends solely on the regularity of the function being approximated.

The polynomial solutions to the singular Sturm-Liouville problem

on the �nite interval are known as Jacobi polynomials, P
(�;�)
n (x), and

appear as solutions to Eq.(6.9). We note the unbounded growth of �n
for increasing n as evidence of the completeness of the basis as discussed

previously.

The Rodrigues' formula for the Jacobi polynomial is given as

(1� x)�(1 + x)�P (�;�)
n (x) =

(�1)n
2nn!

dn

dxn
�
(1� x)�+n(1 + x)�+n

�
;(6.10)

for integer n. An explicit formula is given as

P (�;�)
n (x) =

1

2n

nX
k=0

�
n+ �

k

��
n+ �

n� k

�
(x� 1)n�k(x+ 1)k (6.11)

=
�(2n+ �+ � + 1)

2nn!�(n+ �+ � + 1)

�
xn +

(�� �)n

2n+ �+ �
xn�1 + � � �

�
;

from which we can also directly recover the identity

d

dx
P (�;�)
n (x) =

1

2
(n+ �+ � + 1)P

(�+1;�+1)
n�1 (x) : (6.12)

The Jacobi polynomial are normalized such that
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P (�;�)
n (1) =

�
n+ �

n

�
=

�(n+ �+ 1)

n!�(�+ 1)
: (6.13)

An important consequence of the symmetry of the weight function, w(x),

and the orthogonality of the Jacobi polynomials is the symmetry relation

P (�;�)
n (x) = (�1)nP (�;�)

n (�x) (6.14)

i.e., the Jacobi polynomials are even and odd depending on the order of

the polynomial.

The expansion of functions, u(x) 2 L2
w[�1; 1], using the Jacobi poly-

nomial, P
(�;�)
n (x), takes the form

u(x) =
1X
n=0

ûnP
(�;�)
n (x) ;

where the continuous expansion coeÆcients, ûn, are found through the

weighted inner product as

ûn =
1

n

�
u; P (�;�)

n

�
L2w[�1;1]

(6.15)

=
1

n

Z 1

�1

u(x)P (�;�)
n (x)(1� x)�(1 + x)� dx ;

with the normalizing constant, n, being

n =
P (�;�)

n

2
L2w[�1;1]

(6.16)

=
2�+�+1

(2n+ �+ � + 1)n!

�(n+ �+ 1)�(n+ � + 1)

�(n+ �+ � + 1)
:

A central issue to address is how to actually evaluate the Jacobi polyno-

mials at a given abcisse. Using Eq. (6.10) or Eq. (6.11) we obtain the

two �rst members of the family as

P
(�;�)
0 (x) = 1 ; P

(�;�)
1 (x) =

1

2
(�+ � + 2)x+

1

2
(�� �) :

It is, however, cumbersome to derive the polynomials this way. The next

result suggests an easier way.
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Theorem 31. All Jacobi polynomials, P
(�;�)
n (x), satisfy a three-term

recurrence relation of the form

xP (�;�)
n (x) = a

(�;�)
n�1;nP

(�;�)
n�1 (x) + a(�;�)n;n P (�;�)

n (x) + a
(�;�)
n+1;nP

(�;�)
n+1 (x) ;

where a(�;�) depends only on �, � and n.

Proof: Let us �rst consider the case of n = 1 for which the recurrence

relation reduces to

xP
(�;�)
1 (x) = a

(�;�)
0;1 P

(�;�)
0 (x) + a

(�;�)
1;1 P

(�;�)
1 (x) + a

(�;�)
2;1 P

(�;�)
2 (x) :

Since P
(�;�)
n (x) is a polynomial, this amounts to �nding three constants

in order to match the coeÆcients of a second order polynomial. This

can clearly always be done.

Consider now the case of n > 1. Clearly, we may always choose a
(�;�)
n+1;n

such that

pn(x) = a
(�;�)
n+1;nP

(�;�)
n+1 (x) � xP (�;�)

n (x) 2 Bn ;

i.e., pn(x) is a polynomial of at most order n. Using the orthogonality

of the Jacobi polynomials, we obtain, by multiplying with P
(�;�)
m (x) for

all m � n� 2 and integrating over [�1; 1], the result

�
pn; P

(�;�)
m

�
L2w[�1;1]

=

a
(�;�)
n+1;n

�
P
(�;�)
n+1 ; P (�;�)

m

�
L2w[�1;1]

�
�
xP (�;�)

n ; P (�;�)
m

�
L2w[�1;1]

=

a
(�;�)
n+1;n

�
P
(�;�)
n+1 ; P (�;�)

m

�
L2w[�1;1]

�
�
P (�;�)
n ; xP (�;�)

m

�
L2w[�1;1]

= 0 ;

where the last reduction follows from the observation that xP
(�;�)
m (x)

is a polynomial of order n � 1 at most and can always be normalized

appropriately to become a Jacobi polynomial. Thus, since pn(x) 2 Bn

but has no components from n�2 to 0 it must be expressible as a linear

combination on the form

pn(x) = �a(�;�)n�1;nP
(�;�)
n�1 (x)� a(�;�)n;n P (�;�)

n (x) ;

and the result follows. QED
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The derivation of the actual constants that enter into the three-term

recurrence relation is straightforward, however lengthy, and is done by

matching the leading coeÆcients of the polynomials on each side of The-

orem 31, using the expression of the polynomial in Eq.(6.11). Following

this procedure, we obtain for n > 0

a
(�;�)
n�1;n =

2(n+ �)(n+ �)

(2n+ �+ � + 1)(2n+ �+ �)
; (6.17)

a(�;�)n;n = � �2 � �2

(2n+ �+ � + 2)(2n+ �+ �)
;

a
(�;�)
n+1;n =

2(n+ 1)(n+ �+ � + 1)

(2n+ �+ � + 2)(2n+ �+ � + 1)
;

with the special case for n = 0 that a
(�;�)
�1;0 = 0. Using the recurrence

relation, all Jacobi polynomials can be evaluated at any x 2 [�1; 1] and
for any order of the polynomial.

Recurrence formulas relating Jacobi polynomials of di�erent order

can be established in several ways. Indeed, we shall �nd the following

result very useful.

Theorem 32. All Jacobi polynomials, P
(�;�)
n (x), satisfy a three-term

recurrence relation of the form

P (�;�)
n (x) = b

(�;�)
n�1;n

dP
(�;�)
n�1 (x)

dx
+ b(�;�)n;n

P
(�;�)
n (x)

dx
+ b

(�;�)
n+1;n

P
(�;�)
n+1 (x)

dx
;

where b(�;�) depends only on �, � and n.

Proof: We begin by taking a derivative of the three-term recurrence

relation given in Theorem 31 to obtain

P (�;�)
n (x) + x

d

dx
P (�;�)
n (x) = a

(�;�)
n�1;n

d

dx
P
(�;�)
n�1 (x) +

a(�;�)n;n

d

dx
P (�;�)
n (x) + a

(�;�)
n+1;n

d

dx
P
(�;�)
n+1 (x) :

Equation Eq.(6.12) guarantees that also the derivative of P
(�;�)
n (x) is

a Jacobi polynomial. Hence, recalling Theorem 31, the derivative also

satis�es a recurrence relation on the form
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x
d

dx
P (�;�)
n (x) = ~a

(�;�)
n�1;n

d

dx
P
(�;�)
n�1 (x) + (6.18)

~a(�;�)n;n

d

dx
P (�;�)
n (x) + ~a

(�;�)
n+1;n

d

dx
P
(�;�)
n+1 (x) :

Combining these two recurrence relations yields

P (�;�)
n (x) =

�
a
(�;�)
n�1;n � ~a

(�;�)
n�1;n

� d

dx
P
(�;�)
n�1 (x) +�

a(�;�)n;n � ~a(�;�)n;n

� d

dx
P (�;�)
n (x) +�

a
(�;�)
n+1;n � ~a

(�;�)
n+1;n

� d

dx
P
(�;�)
n+1 (x)

hence establishing the existence of the new recurrence. QED

Combining Eq.(6.12) and Eq.(6.18) with the recurrence from Theorem

31 allows for expressing the coeÆcients in Theorem 32 as

b
(�;�)
n�1;n = � 1

n+ �+ �
a
(�;�)
n�1;n ; (6.19)

b(�;�)n;n = � 2

�+ �
a(�;�)n;n ;

b
(�;�)
n+1;n =

1

n+ 1
a
(�;�)
n+1;n ;

An important property of the Jacobi polynomials is stated as

Theorem 33 (Christo�el-Darboux). For any Jacobi polynomial, P
(�;�)
n (x),

we have

NX
n=0

1

n
P (�;�)
n (x)P (�;�)

n (y)

=
a
(�;�)
N+1;N

N

P
(�;�)
N+1 (x)P

(�;�)
N (y)� P

(�;�)
N (x)P

(�;�)
N+1 (y)

x� y
;

where

a
(�;�)
N+1;N

N
=

2�(�+�)

2N + �+ � + 2

�(N + 2)�(N + �+ � + 2)

�(N + �+ 1)�(N + � + 1)
;
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using Eq.(6.16) and Eq.(6.17).

Proof: Let us �rst, for convenience, orthonormalize the Jacobi poly-

nomials and consider

~P (�;�)
n (x) =

1p
n
P (�;�)
n (x) :

The recurrence relation in Theorem 31 takes the form

x ~P (�;�)
n (x) = ~a

(�;�)
n�1;n

~P
(�;�)
n�1 (x) + ~a(�;�)n;n

~P (�;�)
n (x) + ~a

(�;�)
n+1;n

~P
(�;�)
n+1 (x) ;

with the recurrence coeÆcients

~a
(�;�)
n�1;n =

r
n�1
n

a
(�;�)
n�1;n =

s
n(n+ 2�)

(2n+ 2�+ 1)(2n+ 2�� 1)
;

~a(�;�)n;n = a(�;�)n;n ;

~a
(�;�)
n+1;n =

r
n+1
n

a
(�;�)
n+1;n =

s
(n+ 1)(n+ 2�+ 1)

(2n+ 2�+ 3)(2n+ 2�+ 1)
:

A key observation to make is that ~a
(�;�)
n�1;n = ~a

(�;�)
n;n�1.

A direct application of this recurrence relation yields

~a
(�;�)
N+1;N

~P
(�;�)
N+1 (x)

~P
(�;�)
N (y)� ~P

(�;�)
N (x) ~P

(�;�)
N+1 (y)

x� y

= ~PN (x) ~PN (y) + ~a
(�;�)
N�1;N

~P
(�;�)
N (x) ~P

(�;�)
N�1 (y)� ~P

(�;�)
N�1 (x)

~P
(�;�)
N (y)

x� y

= ~PN (x) ~PN (y) + ~a
(�;�)
N;N�1

~P
(�;�)
N (x) ~P

(�;�)
N�1 (y)� ~P

(�;�)
N�1 (x)

~P
(�;�)
N (y)

x� y
;

where the last result follows from the symmetry of the recurrence coef-

�cients. Clearly we can repeat the reduction to �nally recover the sum

of the N orthonormal Jacobi polynomials. The result is obtained by

expressing the sum using the standard Jacobi polynomials. QED

A consequence of this result is the following

Theorem 34. All Jacobi polynomials, P
(�;�)
n (x), satisfy a three-term
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recurrence relation of the form

(1�x2)dP
(�;�)
n (x)

dx
= c

(�;�)
n�1;nP

(�;�)
n�1 (x)+c(�;�)n;n P (�;�)

n (x)+c
(�;�)
n+1;nP

(�;�)
n+1 (x) ;

where c(�;�) depends only on �, � and n.

Proof: We shall just sketch the proof. Using the result of Theorem 33

for x = 1 we recover

NX
n=0

1

n
P (�;�)
n (x)P (�;�)

n (1) =

a
(�;�)
N+1;N

N

P
(�;�)
N+1 (1)P

(�;�)
N (x) � P

(�;�)
N (1)P

(�;�)
N+1 (x)

1� x
:

This N 'th order polynomial must be orthogonal to a constant under the

weight w(x) = (1 � x)�+1(1 + x)� and must therefore be proportional

to P
(�+1;�)
N (x). Working out the constants yields

P (�+1;�)
n (x) =

2

2n+ �+ � + 2

(n+ �+ 1)P
(�;�)
n (x) � (n+ 1)P

(�;�)
n+1 (x)

1� x
:

Equivalently, by taking x = �1 in Theorem 33, we recover

P (�;�+1)
n (x) =

2

2n+ �+ � + 2

(n+ � + 1)P
(�;�)
n (x) + (n+ 1)P

(�;�)
n+1 (x)

1 + x
:

The result follows by combining Eq.(6.12), the recurrence in Theorem

31 and the two above results. The details can be found in [?]. QED

Working out the details yields the coeÆcients for the recurrence of

Theorem 34 as

c
(�;�)
n�1;n =

2(n+ �)(n+ �)(n+ �+ � + 1)

(2n+ �+ �)(2n+ �+ � + 1)
; (6.20)

c(�;�)n;n =
2n(�� �)(n+ �+ � + 1)

(2n+ �+ �)(2n+ �+ � + 2)
;

c
(�;�)
n+1;n = � 2n(n+ 1)(n+ �+ � + 1)

(2n+ �+ � + 1)(2n+ �+ � + 2)
:
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Having discussed the general Jacobi polynomials it seems only natural

to raise the question as to which speci�c polynomial family, among all

the Jacobi polynomials, is best suited for the approximation of functions

de�ned on the �nite interval. As can only be expected, the answer to

this question depends on how the error is measured.

6.2.2.1 Legendre Polynomials

Among the many possible measures, the most natural is perhaps the

unweighted L2[�1; 1]. Let us therefore �rst identify of the particular

expansion coeÆcients, ûn, associated with the Jacobi polynomials that

minimize the approximation error in L2[�1; 1]. Thus, we seek among

all the Jacobi polynomials, P (�;�)(x), that particular choice of � and �

that satis�es

min
ûn

u(x)�
NX
i=0

ûnP
(�;�)
n (x)


L2[�1;1]

:

The answer to this question is an immediate consequence of the proper-

ties of expansions of functions in Hilbert spaces.

Theorem 35. Assume that p0(x); p1(x); : : : ; pN(x) represents a sequence

of polynomials which are mutually orthogonal with respect the weighted

inner product as

(pn; pk)L2w[�1;1] = nÆnk ;

where kpnk2L2w[�1;1] = n. For any u(x) 2 L2
w[�1; 1] we haveu(x)�

NX
n=0

1

n
(u; pn)wpn(x)


L2w[�1;1]

�
u(x)�

NX
n=0

v̂npn(x)


L2w[�1;1]

;

for any choice of v̂n.

Proof: The proof follows directly by expressing the right hand side as

(u; u)L2w[�1;1]
�

NX
n=0

1

n
(u; pn)

2
L2w[�1;1]

+

NX
n=0

n

�
v̂n � 1

n
(u; pn)L2w[�1;1]

�2

:

Clearly, the two �rst terms have nothing to do with how the expansion

coeÆcients, v̂n, are computed. Hence, to minimize the last term the
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best choice is

v̂n =
1

n
(u; pn)L2w[�1;1] :

QED

Theorem 35 shows that the best approximating polynomial in L2[�1; 1]
is that particular Jacobi polynomial that is orthogonal in L2[�1; 1], i.e.,
with the weightfunction w(x) = 1 as is recovered for � = � = 0. These

polynomials are known as Legendre polynomials, Pn(x), and appear di-

rectly as eigensolutions to the Sturm-Liouville problem

d

dx
(1� x2)

dPn(x)

dx
+ n(n+ 1)Pn(x) = 0 ;

obtained from Eq.(6.2) with �n = n(n+1) and p(x) = 1�x2, q(x) = 0,

and w(x) = 1.

The Legendre polynomials are related to the Jacobi polynomials,

P
(0;0)
n (x), as

Pn(x) = P (0;0)
n (x) ;

and the Rodrigues formula for the Legendre polynomials is derived from

Eq.(6.10) as

Pn(x) =
(�1)n
2nn!

dn

dxn
�
(1� x2)n

	
: (6.21)

An explicit formula can be recovered from Eq.(6.11) on the form

Pn(x) =
1

2n

[n=2]X
k=0

(�1)k
�
n

k

��
2n� 2k

n

�
xn�2k ; (6.22)

where [n=2] refers to the integer part of the fraction.

The Legendre polynomials are bounded as [?]

jPn(x)j � 1 ; jP 0n(x)j �
1

2
n(n+ 1) ;

with the boundary values being

Pn(�1) = (�1)n ; P 0n(�1) =
(�1)n+1

2
n(n+ 1) : (6.23)
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�gure 6.1. Plot of the �rst 5 Legendre polynomials

Next we need to address the actual computation of the Legendre poly-

nomials. Using Eqs. (6.21)-(6.22) we recover the �rst few Legendre

polynomials as

P0(x) = 1 ; P1(x) = x ; P2(x) =
1

2
(3x2 � 1) ; P3(x) =

1

2
(5x3 � 3x) ;

and so on. The �rst 5 Legendre polynomials are shown in Fig. 6.1.

Note that the Legendre polynomials are identical up to a constant

to the polynomials obtained by orthogonalization in L2[�1; 1] of the
monomial basis discussed in Section 6.1.

The three-term recurrence relation, Theorem 31, for the Legendre

polynomials is

xPn(x) =
n

2n+ 1
Pn�1(x) +

n+ 1

2n+ 1
Pn+1(x) ; (6.24)

using Eq.(6.17), yields a direct way of evaluate the polynomials to arbi-

trary order.

From Theorem 32 we recover the recurrence relation

Pn(x) = � 1

2n+ 1
P 0n�1(x) +

1

2n+ 1
P 0n+1(x) ; (6.25)
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while Theorem 34 yields a recurrence relation on the form

(1� x2)P 0n(x) =
n(n+ 1)

2n+ 1
Pn�1(x) � n(n+ 1)

2n+ 1
Pn+1(x) : (6.26)

These and other properties of the Legendre polynomials are summarized

in Appendix C.

6.2.2.2 Chebyshev Polynomials

Rather than considering the Legendre polynomial, we could seek to iden-

tify the polynomial family which minimizes the approximation error in

L1[�1; 1]. This requires us to work a little harder but, as we shall soon
see, the result is well worth the extra e�ort.

Let us �rst de�ne the polynomial of best approximation

De�nition 7. Consider a function, u(x) 2 C0[�1; 1], and an approx-

imating N 'th order polynomial p�N (x) 2 BN . The polynomial which

minimizes the uniform approximation error

max
x2[�1;1]

ju(x)� p�N (x)j ;

is termed the polynomial of best approximation.

While an explicit form of the polynomial of best approximation for an

arbitrary smooth functions remains unknown, we can say something

quite general about this special polynomial.

Theorem 36. The polynomial of best approximation exists and is unique

for any u(x) 2 C0[�1; 1].

This is a classic result in approximation theory, guaranteeing existence

and uniqueness of the polynomial of best approximation for C0-functions

on the �nite interval. A proof can be found in, e.g., [?, ?].

Theorem 37. Assume that u(x) 2 C0[�1; 1] and that pN(x) 2 BN is

an N 'th order polynomial. Introduce the error function

eN(x) = u(x)� pN (x) ;
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and let

EN = max
x2[�1;1]

jeN (x)j :

If and only if pN (x) is the polynomial of best approximation are there

N +2 points, �1 � x0 < : : : < xN+1 � 1, where eN (x) attains the value

of EN and with alternating signs, i.e. eN(xi) = �eN(xi+1).

This latter theorem is known as the Chebyshev Equioscillation Theorem

and plays a key role in the theory of best approximation as it completely

speci�es the best approximating polynomial. The proof of this classic

result can be found in, e.g. [?, ?].

Assume now that we have an interpolating polynomial, pN (x) 2 BN ,
speci�ed at N + 1 points, xj . Such a polynomial is clearly unique.

Considering the error induced by using this polynomial for the approx-

imation of a smooth function, u(x) 2 CN+1[�1; 1], then the Cauchy

remainder is given as [?]

RN (x) = u(x)� pN (x) =

QN
j=0(x� xj)

(N + 1)!
u(N+1)(�) ;

where � represents a value in the interior of the domain, [�1; 1]. We can

not in general estimate the value of u(N+1)(�) except in the special case

where u(x) = xN+1 in which case u(N+1)(�) is constant. In this special

case, we have

RN (x) =

NY
j=0

(x� xj) 2 BN+1 ;

and we can attempt to specify xj in order to minimize the remainder. In

other words, we seek the polynomial, RN (x) 2 BN+1, which is the poly-

nomial of best approximation to zero or, alternatively, the polynomial,

pN (x) 2 BN , that uniformly minimizes the remainder

RN (x) = xN+1 � pN (x) :

From Theorem 36 we know that such a polynomial of best approximation

exists and is unique. Thus, following Theorem 37, we need only construct

a polynomial of orderN+1, i.e., the polynomial remainder, which attains

its absolute maximum at N + 2 points and with alternating sign.

Introducing the transformation x = cos �, valid for � 2 [0; �], and
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consider the function v(x) = cos(N +1)�, it is clear that v(x) attains its

maximum absolute value of unity at exactly N + 2 points given as

xj = cos

�
�

N + 1
j

�
; j = 0; : : : ; N + 1 :

The polynomial of best approximation is speci�ed by the N + 1 points

at which the reminder vanishes, i.e., the roots of

v(x) = cos ((N + 1) arccosx) ;

given as

xj = cos

�
�

2

2j + 1

N + 1

�
; j = 0; : : : ; N :

This is exactly the set, xj , that minimizes the Cauchy remainder. Fur-

thermore, if these grid points are used to construct pN (x) as an approx-

imation to u(x) it will have the least possible maximum error. In other

words, v(x), is the polynomial of best approximation to zero.

We proved in Theorem 25 that v(x) 2 BN+1 in fact is a polynomial.

Let us now introduce the de�nition

Tn(x) = cos (n arccosx) ;

called the Chebyshev polynomials.

We still need, however, to study the general convergence and ap-

proximation properties of the Chebyshev polynomials. Fortunately, the

following result comes to our rescue

Theorem 38. The Chebyshev polynomial, Tn(x), is a solution to the

singular Sturm-Liouville problem with p(x) =
p
1� x2, q(x) = 0 and

the weightfunction, w(x) = (
p
1� x2)�1, as

d

dx

�p
1� x2

dTn(x)

dx

�
+

�np
1� x2

Tn(x) = 0 ;

with �n = n2 and is related to the Jacobi polynomials with � = � = � 1
2

as

Tn(x) =
(n!2n)2

(2n)!
P
(� 1

2 ;�
1
2 )

n (x) =

��
n� 1

2

n

���1
P
(� 1

2 ;�
1
2 )

n (x) :
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Proof: We �rst note that the singular Sturm-Liouville problem is

equivalent to Eq.(6.2) with the parameters

� = � = �1

2
:

Since we established in Theorem 30 that the only polynomial solutions

to the singular Sturm-Liouville problem are the Jacobi polynomials, it

suÆces to prove that Tn(x) satis�es the di�erential equation in the in-

terior of [�1; 1] as we have all ready established that Tn(x) 2 Bn. That
Tn(x) satis�es the di�erential equation is derived trivially by introducing

the substitution x = cos �.

The normalization constant follows from the normalization chosen for

the Jacobi polynomials as given in Eq.(6.13) by requiring that

Tn(�1) = (�1)n :

This concludes the proof. QED

Since the Chebyshev polynomials are nothing but a special member

of the family of Jacobi polynomials we can immediately apply the theory

for Jacobi polynomials, thereby assuring completeness and exponential

convergence for the approximation of smooth functions on the interval.

The Rodrigues' formula for Chebyshev polynomials is obtained di-

rectly from Eq.(6.10) by normalizing appropriately as

Tn(x) =
(�1)nn!2n

(2n)!

p
1� x2

dn

dxn

n
(1� x2)n�

1
2

o
; (6.27)

while the explicit equivalent of Eq.(6.11) becomes

Tn(x) =
n

2

[n=2]X
k=0

(�1)k (n� k � 1)!

k!(n� 2k)!
(2x)n�2k = cos (n arccosx) : (6.28)

The de�nition of the Chebyshev polynomials yields the bounds

jTn(x)j � 1 ; jT 0n(x)j � n2 ;

with the boundary values

Tn(�1) = (�1)n ; T 0n(�1) = (�1)n+1n2 ; (6.29)

due to the normalization employed.

Using Eqs. (6.27)-(6.28) we recover the �rst few Chebyshev polyno-
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�gure 6.2. Plot of the �rst 5 Chebyshev polynomials

mials on the form

T0(x) = 1 ; T1(x) = x ; T2(x) = 2x2 � 1 ; T3(x) = 4x3 � 3x :

The �rst 5 Chebyshev polynomials are illustrated in Fig. 6.2.

For the Chebyshev polynomials, the three-term recurrence relation

derived in Theorem 31 yields

xTn(x) =
1

2
Tn�1(x) +

1

2
Tn+1(x) ; (6.30)

using the normalized recurrence coeÆcients in Eq.(6.17).

Likewise, we obtain the recurrence relation from Theorem 32 as

Tn(x) = � 1

2(n� 1)
T 0n�1(x) +

1

2(n+ 1)
T 0n+1(x) ; (6.31)

while the recurrence of Theorem 34 yields a relation on the form

(1� x2)T 0n(x) =
n

2
Tn�1(x)� n

2
Tn+1(x) : (6.32)

In Appendix C, we summarize the properties of Chebyshev polynomials

in general, including several results not given here.
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6.2.2.3 Ultraspherical Polynomials.

A special subclass of the Jacobi polynomials are known as the Ultras-

pherical polynomials, P
(�)
n (x), and are related to the Jacobi polynomials

as

P (�)
n (x) =

�(�+ 1)�(n+ 2�+ 1)

�(2�+ 1)�(n+ �+ 1)
P (�;�)
n (x) ; (6.33)

i.e., they represent the symmetric Jacobi polynomials normalized in a

slightly di�erent way. As realized in the two preceding sections, the sym-

metric Jacobi polynomials are particularly well suited for the approxi-

mation of functions on the interval and most of the remaining discussion

of polynomial approximation of nonperiodic functions will be restricted

to methods based on ultraspherical polynomials. Since the majority of

spectral methods are based on either Chebyshev or Legendre polyno-

mials, the development of the appropriate theory for the ultraspherical

polynomials includes both cases. The relation between Legendre and

Chebyshev polynomials and the ultraspherical polynomials are

Pn(x) = P (0)
n (x) ; Tn(x) = n lim

�!� 1
2

�(2�+ 1)P (�)
n (x) ; (6.34)

where the limit is taken as �(2� + 1) has a pole for � = �1=2. A

similar limit has to be taken in all subsequent formulas to recover the

results for the Chebyshev polynomials. The ultraspherical polynomials,

P
(�)
n (x), are also known as the Gegenbauer polynomials, C

(�)
n (x), on the

form

C(�)
n (x) = P

(�� 1
2 )

n (x) :

The ultraspherical polynomials, P
(�)
n (x), appear as the solution to the

Sturm-Liouville problem

d

dx
(1� x2)�+1

dP
(�)
n (x)

dx
+ n(n+ 2�+ 1)(1� x2)�P (�)

n (x) = 0 ; (6.35)

obtained directly from Eq.(6.2), with �n = n(n + 2� + 1) and p(x) =

(1� x2)�+1, q(x) = 0 and w(x) = (1� x2)�.

The Rodrigues formula for the ultraspherical polynomials is obtained

from Eq.(6.10) and Eq.(6.33) as

(1� x2)P (�)
n (x) =

�(�+ 1)�(n+ 2�+ 1)

�(2�+ 1)�(n+ �+ 1)

(�1)n
2nn!

dn

dxn
�
(1� x2)n+�

	
;(6.36)
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while an explicit formula is recovered from Eq.(6.11) on the form

P (�)
n (x) =

1

�(� + 1
2 )

[n=2]X
k=0

(�1)k �(�+ 1
2 + n� k)

k!(n� 2k)!
(2x)n�2k (6.37)

=
�(�+ 1)�(2n+ 2�+ 1)

2nn!�(2�+ 1)�(n+ �+ 1)
[xn + � � �] ;

where [n=2] refers to the integer part of the fraction.

The relation between di�erent ultraspherical polynomials, Eq.(6.12),

takes the form

d

dx
P (�)
n (x) = (2�+ 1)P

(�+1)
n�1 (x) ; (6.38)

while the value of P
(�)
n (x) at the boundary is

P (�)
n (�1) = (�1)n

�
n+ 2�

n

�
; (6.39)

from Eq.(6.13) and Eq.(6.33).

Using Eq.(6.36) or Eq.(6.37) we recover the �rst two polynomials as

P
(�)
0 (x) = 1 and P

(�)
1 (x) = (2�+1)x while the subsequent polynomials

can be computed through the recurrence relation in Theorem 31 of the

form

xP (�)
n (x) = a

(�)
n�1;nP

(�)
n�1(x) + a

(�)
n+1;nP

(�)
n+1(x) ; (6.40)

where the recurrence coeÆcients, obtained by normalizing Eq.(6.17) ap-

propriately, becomes

a
(�)
n�1;n =

n+ 2�

2n+ 2�+ 1
; a

(�)
n+1;n =

n+ 1

2n+ 2�+ 1
: (6.41)

The symmetry of the ultraspherical polynomials is emphasized by the

relation

P (�)
n (x) = (�1)nP (�)

n (�x) : (6.42)

The recurrence relation of the form given in Theorem 32 becomes

P (�)
n (x) = b

(�)
n�1;n

dP
(�)
n�1(x)

dx
+ b

(�)
n+1;n

dP
(�)
n+1(x)

dx
; (6.43)
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where the recurrence coeÆcients are obtained directly from Eq.(6.19) as

b
(�)
n�1;n = � 1

2n+ 2�+ 1
; b

(�)
n+1;n =

1

2n+ 2�+ 1
: (6.44)

Let us �nally also given the result of Theorem 34 for the ultraspherical

polynomials as

(1� x2)
dP

(�)
n (x)

dx
= c

(�)
n�1;nP

(�)
n�1(x) + c

(�)
n+1;nP

(�)
n+1(x) ; (6.45)

with the coeÆcients being

c
(�)
n�1;n =

(n+ 2�+ 1)(n+ 2�)

2n+ 2�+ 1
; c

(�)
n+1;n = � n(n+ 1)

2n+ 2�+ 1
; (6.46)

from Eq.(6.20).

In Chapter 2 we introduced the concept of points-per-wavelength

required to accurately represent a wave, e.g., for the Fourier spectral

method we found that we needed the minimum value of only two points

to represent the wave exactly.

It is illustrative to consider this question also for polynomial expan-

sions as it provides guidelines of how �ne a grid, or how many modes,

one needs to accurately represent a wave.

Example 22. Consider the plane wave

u(x) = exp(ikx) ;

and assume that approximate it using

uN (x) =
NX
n=0

ûnP
(�)
n (x) :

One can show [?] that

ûn =
1

2(�+1)
(2n+ 2�+ 1)�(2�+ 1)

�(�+ 1)

p
2�p
kk�

inJn+1=2+�(k) ;

where Jn(k) is the Bessel function of the �rst kind.

A reasonable of equivalent of points-per-wavelength is degrees-of-

freedom per wavelength de�ned as
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p =
�

2=n
=
n�

2
=
�n

k
:

Assuming that n is large and using the asymptotic representation

Jn+1=2+�(k) ' 1p
2�(n+ 1=2 + �)

�
e�

2(n+ 1=2 + �)

�n+1=2+�

� 1p
2�n

�e�
2n

�n+1=2+�
;

one obtains

jûnj ' 1

2�
�(2�+ 1)

�(�+ 1)

�e
2

��+1=2 1

n�

�
e�

2p

�n
= C(�)

1

n�

�
e�

2p

�n
:

Assuming that � is held constant, a suÆcient condition for exponential

decay is

p >
e�

2
' 4 :

Thus, about 4 degrees-of-freedom, e.g., modes or grid points, per wave-

length are required to experience the exponential convergence. While

this is twice the number required for the Fourier case, we can now eÆ-

ciently represent also nonperiodic functions with as little as 4 points/modes-

per-wavelength which is still dramatically less than needed for the low

order �nite di�erence schemes discussed in Chapter 2.

6.2.3 Laguerre Polynomials.

In previous sections we have focused on the development of polynomi-

als suitable for representing functions de�ned on a �nite interval. An

equivalent development can be undertaken for problems de�ned on the

semi-in�nite domain x 2 [0;1[.

Rather than engaging in a thorough analysis, very similar in spirit to

the one in the previous sections, we focus the attention on polynomial

eigensolutions to the singular Sturm-Liouville problem de�ned on [0;1[

with p(x) = x exp(�x), q(x) = 0 and w(x) = exp(�x) as
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d

dx
x exp(�x)dLn(x)

dx
+ n exp(�x)Ln(x) = 0 ;

where Ln(x), known as the Laguerre Polynomial, is de�ned on [0;1[.

As p(x) is singular at x = 0 we can expect exponential decay of the

expansion in Ln(x) independent of the boundary conditions of the ap-

proximated function. Note that the eigenvalue problem has polynomial

solutions only for �n = n as can be shown in a way similar to that in

the proof of Theorem 30. The linear growth of �n is to be contrasted to

the result for the Jacobi polynomials where �n � O(n2), i.e., one could
expect a signi�cantly slower rate of convergence for expansions based on

Laguerre polynomials.

The Rodrigues formula for the Laguerre polynomials is given as

exp(�x)Ln(x) = 1

n!

dn

dxn
fx exp(�x)g ; (6.47)

with an explicit expression of the form

Ln(x) =

nX
k=0

(�1)k
k!

�
n

n� k

�
xk : (6.48)

The polynomial expansion, based on the use of Laguerre polynomials,

of u(x) 2 L2
w[0;1] becomes

u(x) =

1X
n=0

ûnLn(x) ;

where the expansion coeÆcients are recovered through the inner product

as

ûn =
1

n
(u; Ln)L2w[0;1] =

Z 1

0

u(x)Ln(x) exp(�x) dx ; (6.49)

where n = 1.

The Laguerre polynomials are normalized such that

Ln(0) = 1 ;
dLn(0)

dx
= �n ; (6.50)

and, using Eq.(6.47) or Eq.(6.48), the �rst few polynomials can be com-

puted as
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�gure 6.3. Plot of the �rst 5 Laguerre polynomials

L0(x) = 1 ; L1(x) = 1� x ; L2(x) =
1

2
x2 � 2x+ 1 ;

and so on. For illustration, we plot in Fig. 6.3 the �rst few Laguerre

polynomials.

The higher order Laguerre polynomials can be found using a recur-

rence like the one stated in Theorem 31 as

xLn(x) = �nLn�1(x) + (2n+ 1)Ln(x)� (n+ 1)Ln+1(x) : (6.51)

Also, one may obtain a relation of the form

Ln(x) = L0n(x) � L0n+1(x) ; (6.52)

similar to the expression in Theorem 32.

Example 23. Consider the plane wave

u(x) = exp(ikx) exp(�Æx) ; Æ � 0 ;
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i.e., Æ > 0 implies a decay as x approaches in�nity, for which we seek an

approximation as

uN(x) =

NX
n=0

ûnLn(x) :

One can show [?] that

ûn =

�
Æ � ik

1 + Æ � ik

�n
:

Let us de�ne degrees-of-freedom per wavelength as

p =
�

x=n
:

Again assuming that n is large, we have the asymptotic representation

Ln(x) ' 1p
�
exp(x=2)

1
4
p
nx

cos
�
2
p
nx� �

4

�
;

leading to

jûnj � 1p
�

�
Æ2 + k2

(1 + Æ)2 + k2

�n=2
exp

�
�n

pk

��
2�n2

pk

��1=4
:

The requirement for exponential convergence clearly is

�
(1 + Æ)2 + k2

Æ2 + k2

�n=2�
2�n2

pk

�1=4

> exp

�
�n

pk

�
:

Taking, as a �rst example, a non-decaying plane wave, i.e., Æ = 0, with

the aim of resolving one wavelength, i.e., k = np�1 = 1, one recovers

that n = p > 6:4, slightly higher than for the ultraspherical polynomials.

Increasing the domain of interest, i.e., increasing np�1, yields an increase

in n also. However, the increase is linear, e.g., taking np�1 = 2 yields a

requirement of n = 2p > 14:4, reecting an almost constant value of p.

Inspecting the above condition for spectral convergence suggests that

taking Æ > 0 would lower the requirement on p. The optimal value Æ is

seen to be

Æ =
1

2

�p
1 + 4k2 � 1

�
:

Using this value, again with k = np�1 = 1, yields n = p > 4:8 which
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is very close to the value for the ultraspherical polynomial. This result

requires the function being approximation to decay approximately as

exp(�x=2) which is reasonable considering the behavior of the polyno-

mials.

In Appendix C, we summarize the properties of Laguerre polynomials

in general, including several results not given here. We should also

mention that an even more general family of Laguerre polynomials can

derived from p(x) = x�+1 exp(�x), q(x) = 0 and w(x) = x� exp(�x) in
the Sturm-Liouville problem while the eigenvalue remains �n = n. The

polynomials are known as generalized Laguerre polynomials, L
(�)
n (x),

and have properties very similar to the special case of � = 0 discussed

above. However, as these generalized Laguerre polynomials are used

even less for the construction of spectral methods for solving partial

di�erential equations than the classical Laguerre polynomials we shall

not discuss them further. A general introduction can be found in [26].

6.2.4 Hermite Polynomials.

Similar to the introduction of Laguerre polynomials for the polynomial

approximations of functions de�ned on the semi-in�nite interval, we may

likewise seek polynomials suited for the approximation of functions de-

�ned on the in�nite domain, x 2]�1;1[.

If we seek polynomial solutions to the non-singular Sturm-Liouville

problem de�ned on the in�nite domain, we recover these solutions for

p(x) = exp(�x2), q(x) = 0, and w(x) = exp(�x2) as
d

dx
exp(�x2)dHn(x)

dx
+ 2n exp(�x2)Hn(x) = 0 ;

where the Hermite polynomial, Hn(x), is de�ned for x 2]�1;1[. Note

that even though the Hermite polynomials appears as solutions to a reg-

ular Sturm-Liouville problem, spectral convergence can be maintained

as no boundary conditions need to be enforced or, rather, the function

being approximated is assumed to vanish as x approaches in�nity. As

for the Laguerre polynomials we recover a linear growth in n of the

associated eigenvalue since �n = 2n.

The Hermite polynomial has a Rodrigues formula of the form



166 6. Orthogonal Polynomials

exp(�x2)Hn(x) = (�1)n dn

dxn
�
exp(�x2)	 ; (6.53)

with an explicit expression as

Hn(x) = n!

[n=2]X
k=0

(�1)k
k!(n� 2k)!

(2x)n�2k : (6.54)

Polynomial approximation, using the Hermite polynomials, of functions

u(x) 2 L2
w[�1;1] is given as

u(x) =
1X
n=0

ûnHn(x) ;

where the expansion coeÆcients are given through the inner product as

ûn =
1

n
(u;Hn)L2w[�1;1] =

1

n

Z 1

�1

u(x)Hn(x) exp(�x2) dx ; (6.55)

where

n = (Hn; Hn)L2w[�1;1] =
p
�2nn! :

The Hermite polynomials are normalized such that

Hn(0) = (�1)n=2 n!

(n=2)!
;

for n being even and Hn(0) = 0 for n odd.

Using Eq.(6.53) or Eq.(6.54), the �rst few polynomials can be ex-

pressed as

H0(x) = 1 ; H1(x) = 2x ; H2(x) = 4x2 � 2 ; H3(x) = 8x3 � 12x ;

and in Fig. 6.4 we show the �rst few Hermite polynomials.

The higher order Hermite polynomials are most easily obtained using

the recurrence relation

xHn(x) = nHn�1(x) +
1

2
Hn+1(x) : (6.56)

Also, one may obtain a relation of the form

Hn(x) =
1

2(n+ 1)
H 0
n+1(x) ; (6.57)
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�gure 6.4. Plot of the �rst 5 Hermite polynomials

similar to the expression appearing from Theorem 32. Further proper-

ties of the Hermite polynomials are summarized in Appendix C.

Example 24. Consider the plane wave

u(x) = exp(ikx) ;

and seek an approximation as

uN (x) =

NX
n=0

ûnHn(x) :

One can show [?] that

ûn =
inkn

2nn!
exp

�
�k

2

4

�
:

Let us again de�ne degrees-of-freedom per wavelength as

p =
�

2x=n
:
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For n being large, we have the asymptotic representation [?]

Hn(x) ' �(n+ 1)

�(n=2 + 1)
exp

�
x2

2

�
cos
�p

(2n+ 1)x� n
�

2

�
;

leading to

jûnj � kn

2n�(n=2 + 1)
exp

�
�k

2

4

�
exp

 
1

2

�
n�

kp

�2
!

One easily �nds the requirement for exponential convergence as

2n(n=2)!

kn
exp

�
k2

4

�
> exp

 
1

2

�
n�

kp

�2
!

:

Consider, as a �rst example, that one aims at resolving one wave, i.e.,

k = np�1 = 1, one �nds the requirement to to be n = p > 6, suggesting

a behavior very similar to that of the previously considered polynomials.

One problem, however, with the Hermite expansion is exposed by

considering the case where one wishes to consider a bigger domain, i.e.,

increasing np�1. Taking np�1 = 2 yields n = 2p > 15 while np�1 = 4

results in n = 4p > 44. Thus, p is a function of the size of the domain.

This makes the Hermite expansion less attractive as p becomes very

large for large domains.

As for the Laguerre expansion, the situation improves when consid-

ering decaying waves. However, the improvement is only quantitative

in lowering p for speci�c choices of k while it maintains the nonlinear

growth of p with the size of the domain.

6.3 Approximation by Ultraspherical Polynomials

In previous sections we identi�ed orthogonal and complete polynomial

families suitable for the approximation of functions de�ned on �nite and

in�nite domains. This sets the stage for the continued development of

spectral methods based on these orthogonal polynomials.

In this section we focus on the approximation of functions de�ned on

a bounded interval and we will, without loss of generality, restrict the

attention to the interval [�1; 1]. Other intervals can be handled by a

linear variable transformation as discussed in Lemma 7. Additionally,
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we restrict the attention to series expansions based on the ultraspherical

polynomials of which the Legendre and Chebyshev polynomials both ap-

pear as special cases. Only in very rare cases are spectral methods based

on expansions of polynomials that are not ultraspherical. Hence, it is

with little loss of generality that we restrict the attention to this spe-

ci�c class of polynomials rather than dealing. One should keep in mind,

however, that spectrally accurate approximations to smooth problems

can be formulated using the general Jacobi polynomials if a particular

application suggest advantages of doing so.

The subsequent discussion includes the de�nition of continuous and

discrete expansion coeÆcients, emphasizing the key issues related to the

evaluation of derivatives of functions expressed in terms of the ultras-

pherical polynomials. Due to the importance of expansions in Legendre

and Chebyshev polynomials, these cases will be given special attention

during the development. A thorough discussion of the approximation

theory for truncated expansions using ultraspherical polynomials is post-

poned to Sec. 6.6.1.

6.3.1 The Continuous Expansion.

Consider the continuous expansion of functions, u(x) 2 L2
w[�1; 1], in

ultraspherical polynomials on the form

u(x) =

1X
n=0

ûnP
(�)
n (x) : (6.58)

The expansion coeÆcients are found as

ûn =
1

n

�
u; P (�)

n

�
L2w[�1;1]

=
1

n

Z 1

�1

u(x)P (�)
n (x)(1� x2)� dx ; (6.59)

where

n =
P (�)

n

2
L2w[�1;1]

= 22�+1
�2(�+ 1)�(n+ 2�+ 1)

n!(2n+ 2�+ 1)�2(2�+ 1)
; (6.60)

If we assume that u(x) 2 L2
w[�1; 1] is expressed as in Eq.(6.58), we need

to consider whether it is possible to recover the expansion coeÆcients,

û
(q)
n , for

dqu(x)

dxq
=

1X
n=0

û(q)n P (�)
n (x) ;
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i.e., given the expansion for u(x) how does one recover the expansion for

u(q). Solving partial di�erential equations, this is a key operation and it

needs to be performed accurately and eÆciently.

The following result establishes the required connection between the

expansion coeÆcients.

Theorem 39. Assume that the q'th derivative, u(q)(x) 2 L2
w[�1; 1], is

expanded in ultraspherical polynomials as

u(q)(x) =
1X
n=0

û(q)n P (�)
n (x) :

Then the approximation of u(q�1)(x),

u(q�1)(x) =

1X
n=0

û(q�1)n P (�;�)
n (x) ;

can be recovered up to a constant through the relation (n > 0)

û(q�1)n = b
(�)
n;n�1û

(q)
n�1 + b

(�)
n;n+1û

(q)
n+1 ;

where b
(�)
n;n�1 and b

(�)
n;n+1 are de�ned in Eq.(6.44).

Proof: We establish the result by recovering the expansion coeÆcients,

ûn, of a function from the expansion coeÆcients, û
(1)
n , of the derivative

of the function up to a constant. Generalization to the general case

follows directly.

Recall the recurrence relation, Eq.(6.43), and continue as

d

dx
u(x) =

1X
n=0

û(1)n P (�)
n (x)

=

1X
n=0

û(1)n

 
b
(�)
n�1;n

dP
(�)
n�1(x)

dx
+ b

(�)
n+1;n

P
(�)
n+1(x)

dx

!

=

1X
m=�1

b
(�)
m;m+1û

(1)
m+1

dP
(�)
m (x)

dx
+

1X
m=1

b
(�)
m;m�1û

(1)
m�1

dP
(�)
m (x)

dx

=

1X
m=1

h
b
(�)
m;m�1û

(1)
m�1 + b

(�)
m;m+1û

(1)
m+1

i dP (�)
m (x)

dx
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=

1X
n=0

ûn
dP

(�)
n (x)

dx
;

where we have used that P
(�)
0 (x) is constant and de�ned that the poly-

nomial P
(�)
�1 (x) to be zero.

The equality clearly has to be valid for each polynomial as they are

independent and the theorem follows.

Note that û0 remains undetermined as the operation essentially is an

integration, hence leaving a constant undetermined. QED

Inverting the tridiagonal integration operator derived in Theorem 39

one obtains an operator to recover û
(q)
n from û

(q�1)
n , i.e., it expresses

the expansion coeÆcients for the di�erentiated function in terms of the

expansion of the original function. The operator is given as (� 6= �1=2)

û(q)n = (2n+ 2�+ 1)

1X
p=n+1

n+p odd

û(q�1)p ; (6.61)

and forms an upper triangular matrix with zeros along the diagonal and

in the �rst column. In the case of a �nite expansion, it also has zeros in

the last row. Note that in contrast to the Fourier series, where di�erenti-

ation corresponds to a local operation in spectral space, computing the

polynomial expansion coeÆcients for the derivative generally involves

all the expansion coeÆcients, ûn. Hence, the computation of û
(q)
n from

û
(q�1)
n using Eq.(6.61) is in general an O(N2) operation.

Fortunately, Theorem 39 suggests a more eÆcient way to compute

derivatives of functions expanded in ultraspherical polynomials if a �nite

expansion is used. Assume we have the expansion

PN d
(q�1)u(x)

dx(q�1)
=

NX
n=0

û(q�1)n P (�)
n (x) ;

and we seek an approximation of the derivative as

PN d
(q)u(x)

dx(q)
=

NX
n=0

û(q)n P (�)
n (x) :

Considering a �nite expansion only, we realize that û
(q)
N = û

(q)
N+1 = 0.

Theorem 39 then suggests the backward recursion formula for n 2 [1; N ]
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as

û
(q)
n�1 = (2n+ 2�� 1)

�
1

2n+ 2�+ 3
û
(q)
n+1 + û(q�1)n

�
: (6.62)

Applying the backward recursion, Eq.(6.62), for the computation of û
(q)
n ,

the computational workload is reduced to O(N).

Contrary to the case of a continuous Fourier series, truncation and

di�erentiation does not in general commute, i.e.,

PN�1 du
dx

6= d

dx
PNu :

This is a natural consequence of the global nature of the di�erentiation

process in spectral space, Eq.(6.61). Hence, the exact way in which the

in�nite dimensional operator is terminated does make a di�erence and

inhibits the commutation.

6.3.1.1 The Continuous Legendre Expansion.

The Legendre expansion of a function, u(x) 2 L2[�1; 1], is given as

u(x) =

1X
n=0

ûnPn(x) ; (6.63)

with the expansion coeÆcients being

ûn =
1

n
(u; Pn)L2[�1;1] =

2n+ 1

2

Z 1

�1

u(x)Pn(x) dx ;

since n = 2=(2n+ 1) using Eq.(6.16).

Connecting Eq. (6.25) to Theorem 39 provides a relation between the

expansion coeÆcients, û
(q�1)
n , and those of its derivative, û

(q)
n , as

û(q�1)n =
1

2n� 1
û
(q)
n�1 �

1

2n+ 3
û
(q)
n+1 : (6.64)

The inversion of this tridiagonal integration operator yields a di�erenti-

ation operator on the form

8n : û(q)n = (2n+ 1)

1X
p=n+1

p+n odd

û(q�1)p : (6.65)
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As discussed in relation to Eq. (6.62), we may also compute, û
(q)
n through

a backward recurrence for the truncated expansion by using

8n 2 [1; N ] : û
(q)
n�1 =

2n� 1

2n+ 3
û
(q)
n+1 + (2n� 1)û(q�1)n ; (6.66)

provided only that we are dealing with a �nite approximation to Eq.(6.63)

such that û
(q)
N = û

(q)
N+1 = 0.

6.3.1.2 The Continuous Chebyshev Expansion.

The continuous Chebyshev expansion of a function, u(x) 2 L2
w[�1; 1],

becomes

u(x) =

1X
n=0

ûnTn(x) ;

with the expansion coeÆcients being

ûn =
1

n
(u; Tn)L2w[�1;1] ;

with

n =

Z 1

�1

Tn(x)Tn(x)
1p

1� x2
dx = cn

�

2
;

and

cn =

�
2 n = 0

1 n > 0
: (6.67)

This additional constant is a consequence of the particular normalization

we have chosen, i.e., Tn(�1) = (�1)n. Thus, we obtain that

ûn =
1

n
(u; Tn)L2w[�1;1] =

2

cn�

Z 1

�1

u(x)Tn(x)
1p

1� x2
dx :

Through Eq.(6.31), we obtain, using Theorem 39, a connection between

the expansion coeÆcients, û
(q�1)
n and those of its derivative, û

(q)
n , on the

form (n > 0)

û(q�1)n =
cn�1
2n

û
(q)
n�1 �

1

2n
û
(q)
n+1 ; (6.68)

where cn�1 enters due to the normalization. Inverting this tridiagonal
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integration operator yields a di�erentiation operator as

8n : û(q)n =
2

cn

1X
p=n+1

p+n odd

pû(q�1)p : (6.69)

To arrive at an O(N) method to compute the expansion coeÆcients for

the approximate derivative we employ the backward recurrence provided

by Eq. (6.68) as

8n 2 [1; N ] : cn�1û
(q)
n�1 = û

(q)
n+1 + 2nû(q�1)n ; (6.70)

where û
(q)
N+1 = û

(q)
N = 0.

Prior to continuing the development of the discrete expansions let us

consider an example to illustrate the resolution power of the Chebyshev

expansion.

Example 25. Consider u(x) 2 C1[�1; 1], as

u(x) =
1

x+ a
; a > 1 ;

for which the continuous expansion coeÆcients are given as

ûn =
2

cn

1p
a2 � 1

(
p
a2 � 1� a)n :



6.3 Approximation by Ultraspherical Polynomials 175

As the function is smooth we �nd, as expected, that the expansion

coeÆcients decay exponentially fast in n. Note that when a approaches 1

the function develops a strong gradient at x = �1 and becomes singular

in the limit. In this example we used a = 1:1.

In Fig. 6.5 we plot the Chebyshev series approximation of u(x) and

the pointwise error for increasing N . We clearly observe the expected

spectral convergence of the Chebyshev series and also that the conver-

gence is uniform. Note that there is nothing special about the behavior

of u(x) at the boundaries, illustrating the resolution power of orthogonal

polynomials for general functions de�ned on the bounded interval.

6.3.2 Gauss Quadrature for Ultraspherical

Polynomials.

While the ultraspherical polynomials seem ideally suited for the approx-

imation of functions de�ned on �nite intervals we are facing a familiar

problem when trying to use them. As for the continuous Fourier series

expansion, using the ultraspherical polynomials requires the evaluation

of an integral to recover the expansion coeÆcients, ûn. For practical

problems this is clearly not feasible.

Guided by the successful use of discrete approximations to the Fourier

integral, leading to the discrete Fourier series and its dual formulation,

we shall seek to identify similar discrete approximation to the integrals

associated with the ultraspherical polynomials. As we shall learn shortly,

classical Gauss quadratures provides the key step that enables the prac-

tical use of polynomial methods for the approximation of general func-

tions.

Let us �rst recall the general polynomial expansion to approximate

u(x) 2 L2
w[�1; 1], as

PNu(x) =
NX
n=0

ûnP
(�)
n (x) ; ûn =

1

n

Z 1

�1

u(x)P (�)
n (x)(1� x2)� dx ;

where the normalizing factor, n, is given in Eq.(6.6).

As for the Fourier series, Chap. 4, we seek to approximate the inte-

grals as

Z 1

�1

p(x)w(x) dx =
MX
j=1

~wjp(~xj) +
N�MX
j=0

wjp(xj) ;
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as well as possible. Here ~xj represents M preassigned grid points. To

minimize the error associated with using the discrete sum rather than

the integral we must determine the 2(N + 1) � M unknowns, ~wj ; wj
and xj , that maximizes the order of the polynomial, p(x), for which the

summation is exact. The vector of (~xj ; xj) then takes the role of the

grid points on which p(x) is to be evaluated, and (~!j ; !j) the associated

nodal weights.

One should note that provided only that the grid points, (~xj ; xj), are

distinct, one can always �nd a set of weights that integrate any poly-

nomial, p(x) 2 BN , exactly. The remarkable thing is that by carefully

choosing the weights and the grid points, one can do much better than

that.

Theorem 40. Assume that a distinct set of N + 1 collocation points,

xi, is given and construct the polynomial, q(x) 2 BN+1, as

q(x) =

MY
j=1

(x� ~xj)

N�MY
j=0

(x� xj) ;

where ~xj refers to M speci�c collocation points.

The quadrature rule

Z 1

�1

p(x)w(x) dx =
MX
j=1

~wjp(~xj) +
N�MX
j=0

wjp(xj) ;

is exact for p(x) 2 B2N+1�M if and only if

a) It is exact for all p(x) 2 BN .
b) For all p(x) 2 BN�M , p(x) is orthogonal to q(x) in the weighted

inner product as

(p; q)L2w[�1;1] =

Z 1

�1

p(x)q(x)!(x) dx = 0 :

Proof: Let us �rst assume that the summation is exact for all p(x) 2
B2N+1�M . The validity of assumption a) is thus trivial. Furthermore

assume that p(x) 2 BN�M . Then clearly q(x)p(x) 2 B2N+1�M for which

the summation is exact. This results inZ 1

�1

q(x)p(x)w(x) dx =

MX
j=1

~wjq(~xj)p(~xj) +

N�MX
j=0

wjq(xj)p(xj) = 0 ;



6.3 Approximation by Ultraspherical Polynomials 177

due to the construction of q(x). This implies orthogonality of p and q

as in assumption b).

Suppose conversely that a) and b) hold and that p(x) 2 B2N+1�M .

Then, by matching the coeÆcients, we can always �nd two polynomials,

r(x) 2 BN�M and s(x) 2 BN such that

p(x) = q(x)r(x) + s(x) :

Recalling condition b) impliesZ 1

�1

p(x)w(x) dx =

Z 1

�1

[q(x)r(x) + s(x)]w(x) dx

=

Z 1

�1

s(x)w(x) dx

as r(x) 2 BN�M . However, the remaining term can be integrated ex-

actly under assumption a), hence completing the proof that the two

assumptions are both necessary and suÆcient to guarantee the accuracy

of the summation. QED

Theorem 40 is a remarkable result. It establishes the existence of

summation rules, known as Gauss quadrature rules, that are exact for

the integration of polynomials up to order 2N +1�M using only N +1

integration points. Note that increasing the number of speci�ed colloca-

tion points results in a decreased maximum accuracy of the summation

as it essentially removes degrees of freedom available to construct the

summation rule.

We are still faced with the open problem of computing the quadrature

points, xj , and the weights required to form the quadrature rule. Let

us, for a minute, assume that the collocation points are given. Then

the N + 1 weights, wj and ~wj , are recovered by using condition a) in

Theorem 40 on the form

8k 2 [0; : : : ; N ] :

Z 1

�1

xkw(x) dx =

MX
j=1

~wj(~xj)
k +

N�MX
j=0

wj(xj)
k : (6.71)

As the summation is required to be exact for any p(x) 2 BN we can

express this using the monomial basis to obtain N +1 equations for the

N + 1 unknown weights.

Computing the quadrature points, xi, is a bit more involved and

requires that assumption b) in Theorem 40 be used. An immediate
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consequence of the required orthogonality between q(x) 2 BN+1 and

any !-orthogonal p(x) 2 BN�M is that we can express q(x) as

q(x) = pN+1(x) + aNpN (x) + : : :+ aN�M+1pN�M+1(x) : (6.72)

The M constants, aN ; : : : ; aN�M+1, must be found such that q(~xj) = 0,

consistent with prede�ned grid points and the de�nition of q(x) given

in Theorem 40. The remaining quadrature points, xj , can be found as

the N + 1�M roots of the orthogonal polynomial, q(x), in Eq.(6.72),

provided only that the following holds

Theorem 41. Consider the orthogonal polynomial, pN (x) 2 BN with

N � 1. Then the N roots of the polynomial are real, distinct, and located

in the interior of [�1; 1].

Proof: The theorem follows from the orthogonality. Indeed, we have

(p0; pN )L2w[�1;1] =

Z 1

�1

pN (x)w(x) dx = 0 ;

for N � 1. Since w(x) > 0 we know that pN (x) must change sign at

least once in the interior of [�1; 1]. Assume that x0; : : : ; xL represent

the L+1 interior points at which pN (x) changes sign and construct the

polynomial

pL(x) =

LY
j=0

(x� xj) :

As pL(x) changes sign at the same xj as does pN(x), it is clear that

the product pN(x)pL(x) does not change sign. Thus, we recover that

have j(pN ; pL)wj > 0, which is a contradiction of orthogonality except if

L = N , i.e., pN (x) has exactly N real distinct roots in the interior of

the domain. QED

This completes the required development of the quadrature rules for

which we have identi�ed the N + 1 distinct quadrature points, xj , as

the roots of an orthogonal polynomial, q(x) 2 BN+1, in Eq.(6.72), while

the associated weights, wj can be found by solving the linear system

appearing from Eq.(6.71). To proceed beyond this point it is illustra-

tive to restrict the attention to three special cases, distinguished by the

number, M , of speci�ed grid points in the quadrature rule.
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�gure 6.6. The Ultraspherical Gauss-Lobatto collocation points, xi, for N =
12 for the polynomial, P

(�)
12 (x), as a function of �.

6.3.2.1 Gauss-Lobatto Quadrature.

The Gauss-Lobatto quadrature for the ultraspherical polynomial, P
(�)
N (x),

is de�ned for M = 2, i.e., we de�ne two collocation points, in this case

the edge points, ~x1 = �1 and ~x2 = 1 while, following the result of Eq.

(6.72), the remaining grid points are found as the roots of the polynomial

q(x) = P
(�)
N+1(x) + aNP

(�)
N (x) + aN�1P

(�)
N�1(x) ; (6.73)

where aN and aN�1 are chosen such that q(�1) = 0 and the weights,

wi, are found using Eq.(6.71). Hence, assume that the N +1 collocation

points, xi, are given as �1 = x0; x1; : : : ; xN�1; xN = 1 and the N + 1

weights, wi, ordered as ~w1 = w0; w1; : : : ; wN�1; wN = ~w2 are found as

solutions to Eq.(6.71) it follows directly from Theorem 40 that

Z 1

�1

p(x)w(x) dx =

NX
j=0

p(xj)wj ;

is exact for all p(x) 2 B2N�1.
The weights, wj , can be given explicitly as [?]
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wj =

(
(�+ 1)�

(�)
N;j j = 0; N

�
(�)
N;j j 2 [1; N � 1]

; (6.74)

where

�
(�)
N;j = 22�+1

�2(�+ 1)�(N + 2�+ 1)

NN !(N + 2�+ 1)�2(2�+ 1)

h
P
(�)
N (xj)

i�2
:

The quadrature nodes, xj , on the other hand, can not in general be

given in explicit form and must be obtained by numerical means. In

Fig. 6.6 we plot the position of the ultraspherical Gauss-Lobatto nodes

for � 2] � 1; 1[. One observation well worth making is that the nodes

cluster close to the boundaries with the amount of clustering decreasing

as � increases.

For the ultraspherical polynomials, there is a more convenient repre-

sentation of q(x), Eq.(6.73), as

q(x) = (1� x2)
d

dx
P
(�)
N (x) : (6.75)

This follows directly from Theorem 34 for Jacobi polynomials (Eq.(6.45)

for ultraspherical polynomials) since

(p; q)L2w[�1;1] =

Z 1

�1

p(x)(1� x2)
d

dx
P
(�)
N (x)w(x) dx

=

Z 1

�1

p(x)
�
cN�1;NP

(�)
N�1(x) + cN+1;NP

(�)
N+1(x)

�
w(x) dx = 0 ;

which we recognize as the condition from Theorem 40 specifying q(x).

The last reduction follows since p(x) 2 BN�2.

6.3.2.2 Gauss-Radau Quadrature.

Rather than specifying two collocation points, one choose to include

only one of the endpoints of the interval, [�1; 1], in the summation.

Such rules are known as Gauss-Radau quadrature methods.

If we chose to include the point ~y1 = �1, the remaining quadrature

points are found as the roots of the polynomial

q(y) = P
(�)
N+1(y) + aNP

(�)
N (y) ; (6.76)

with aN being chosen such that q(�1) = 0 and the weights, vj , are given

as [?]
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�gure 6.7. The Gauss-Radau collocation points, yi, for N = 12 for the
ultraspherical, P

(�)
12 (x), as a function of � with the node y0 = �1 being �xed.

vj =

(
(�+ 1)�

(�)
N;0 j = 0

�
(�)
N;j j 2 [1; N ]

; (6.77)

where

�
(�)
N;j = 22�

�2(�+ 1)�(N + 2�+ 1)

N !(N + �+ 1)(N + 2�+ 1)�2(2�+ 1)
(1�yj)

h
P
(�)
N (yj)

i�2
:

Following Theorem 40 we recover that

Z 1

�1

p(y)w(y) dy =

NX
j=0

p(yj)vj ;

is exact for all p(y) 2 B2N .
The quadrature nodes, yj , must be obtained by numerical means. In

Fig. 6.7 we plot the position of the ultraspherical Gauss-Radau quadra-

ture nodes for N = 12 and � 2] � 1; 1[. As in the case of the Gauss-

Lobatto quadrature the nodes cluster close to the boundaries with the

amount of clustering decreasing as � increasing and only the left bound-

ary is included in the nodal set.

The formulation of a Gauss-Radau quadrature that includes the right

endpoint follows directly from the above by mirroring the weights, vj ,
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as well as the quadrature nodes, yj , around the center of the interval.

6.3.2.3 Gauss Quadrature

Let us �nally consider the case where no quadrature points are speci�ed

a priori, i.e. M = 0, in which case all quadrature points are in the

interior of the domain [�1; 1] following Theorem 41. The quadrature

points, zj , appear as the roots of the polynomial,

q(z) = P
(�)
N+1(z) ; (6.78)

while the weights, uj , are obtained from Eq.(6.71) on the form [?]

uj = 22�+1
�2(�+ 1)�(2�+N + 2)

�(N + 2)�2(2�+ 1)(1� z2j )

�
d

dx
P
(�)
N+1(zj)

��2
; (6.79)

for all j 2 [0; N ]. We obtain directly from Theorem 40 that

Z 1

�1

p(z)w(z) dz =

NX
j=0

p(zj)uj ;

is exact for all p(x) 2 B2N+1. This is recognized as the classic Gauss

quadrature, providing the rule of exact integration of a polynomial of

maximum order.

The quadrature points, zj , are generally not given on analytic form

and in Fig. 6.8 we plot for illustration the position of the nodes in the

case of the ultraspherical polynomials for N = 12 and � 2] � 1; 1[. We

emphasize, as is also evident from Fig. 6.8, that the nodal set associated

with the Gauss quadrature does not include any of the endpoints of the

interval.

6.3.2.4 Quadrature for Legendre Polynomials

The quadrature formulas for the integration of polynomials speci�ed

at the Legendre quadrature points can be obtained directly from the

formulas derived above by setting � = 0. Due to the extensive use of

the Legendre polynomials we summarize the expressions in the following.

Legendre Gauss-Lobatto Quadrature. The Legendre Gauss-Lobatto

quadrature points, xj , appear as the roots of the polynomial
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�gure 6.8. The Gauss collocation points, zi, for N = 12 for the ultraspherical
polynomial, P

(�)
12 (x), as a function of �.

q(x) = (1� x2)
d

dx
PN (x) ; (6.80)

following Eq.(6.75). Unfortunately, no explicit formula is known for

these. The weights, wj , can be recovered directly from Eq.(6.74) on the

form

wj =
2

N(N + 1)
[PN (xj)]

�2 : (6.81)

Legendre Gauss-Radau Quadrature. The Legendre Gauss-Radau

quadrature points, yj , appear as the roots of the polynomial

q(y) = PN+1(y) + PN (y) ; (6.82)

by using Eq.(6.76) assuming that y = �1 is included in the set of quadra-
ture points for which no explicit formula is known. The weights, vj , are

given as

vj =
1

(N + 1)2
1� yj

[PN (yj)]2
: (6.83)

Legendre Gauss Quadrature. From Eq.(6.78) we recover the Legen-

dre Gauss quadrature points, zj , as the N + 1 roots of the polynomial
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q(z) = PN+1(z) : (6.84)

The weights, uj , are obtained directly from Eq.(6.79) for � = 0 on the

form

8j 2 [0; N ] : uj =
2

[1� (zj)2][P 0N+1(zj)]
2
: (6.85)

6.3.2.5 Quadrature for Chebyshev Polynomials

The quadrature formulas, i.e., the quadrature points and the correspond-

ing weights, for the Chebyshev polynomials can likewise be obtained

from the general results for the ultraspherical polynomials, albeit some

care is needed due to the required normalization, Eq.(6.34).

The Chebyshev quadrature distinguishes itself from the previous cases

by allowing for explicit and simple expressions for the quadrature points

as well as the corresponding weights. This supplies a compelling moti-

vation for the use of these polynomials, apart from the fact that they

are well suited for the approximation of general functions as discussed

in Sec. 6.2.2.2.

Chebyshev Gauss-Lobatto Quadrature. The Chebyshev Gauss-Lobatto

quadrature points, xi, are given explicitly as

xj = � cos
� �
N
j
�

; j 2 [0; : : : ; N ] : (6.86)

as the roots of

q(x) = (1� x2)
d

dx
TN(x) ; (6.87)

from Eq.(6.75). The corresponding weights, wj , appear directly from

Eq.(6.74)

wj =
�

cjN
; cj =

�
2 j = 0; N

1 j 2 [1; N � 1]
: (6.88)

Note the reduction in the expressions of the weights as a consequence of

the equioscillatory property of the Chebyshev polynomials

TN(xj) = (�1)N+j :

Chebyshev Gauss-Radau Quadrature. The Chebyshev Gauss-Radau

quadrature points, yj , appear as the roots of the polynomial
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q(y) = TN+1(y) + TN (y) ; (6.89)

from Eq.(6.76) with the explicit expression

yj = � cos

�
2�

2N + 1
j

�
; j 2 [0; : : : ; N ] ; (6.90)

assuming only that the left endpoint is included in the set of quadrature

points. The weights, vj , are given as

vj =
�

cj

1

2N + 1
(6.91)

directly from Eq.(6.77). Here cn takes the usual meaning, Eq.(6.67).

Chebyshev Gauss Quadrature. Equation (6.78) de�nes the Cheby-

shev Gauss quadrature points, zj , as the N + 1 roots of the polynomial

q(z) = TN+1(z) ; (6.92)

i.e., the quadrature points are

zj = � cos

�
(2j + 1)�

2N + 2

�
; j 2 [0; : : : ; N ] : (6.93)

We recognize this set of grid points as those derived in Sec. 6.2.2.2 which

speci�es the best approximating polynomial to zero, i.e., these points

are particularly well suited for polynomial interpolation and, through

an entirely di�erent procedure, appear also as the Chebyshev Gauss

quadrature points.

The weights, uj , are obtained directly from Eq.(6.79) as

8j 2 [0; N ] : uj =
�

N + 1
; (6.94)

i.e., they are constant for all the quadrature points. The Chebyshev

Gauss quadrature is the only case among the quadrature for the Jacobi

polynomials for which this is the case.

6.3.3 Discrete Inner Products and Norms.

The identi�cation of the quadrature formulas enables the introduction of

discrete versions of the inner product and the corresponding L2
w-norm.

We recall the continuous case which take the form
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(f; g)L2w[�1;1] =

Z 1

�1

f(x)g(x)w(x) dx ; kfkL2w[�1;1] = (f; f)
1=2
L2w[�1;1]

;

for f; g 2 L2
w[�1; 1]. Using the quadrature formulas it seems natural to

de�ne the corresponding discrete inner product

[f; g]w =
NX
j=0

f(xj)g(xj)wj ; kfkN;w = [f; f ]1=2w ;

where xj = (xj ; yj ; zj) can be any of the Gauss quadrature points with

the corresponding weights, wj = (wj ; vj ; uj), and f; g 2 BN . We note

that in the event that f; g 2 BN the discrete inner product and norm

based on the Gauss-Radau and Gauss quadratures are identical to the

continuous ones due to the accuracy of the quadratures. This, however,

ceases to be true for the Gauss-Lobatto quadrature as f(x)g(x) 2 B2N

and the quadrature is no longer exact.

Let us �rst compute the norm, ~n, of P
(�)
n (x) using the three types

of quadrature. Clearly, using Gauss or Gauss-Radau quadrature, we

immediately recover

~n =
�
P (�)
n ; P (�)

n

�
L2w[�1;1]

= 22�+1
�2(�+ 1)�(n+ 2�+ 1)

n!(2n+ 2�+ 1)�2(2�+ 1)
; (6.95)

using Eq.(6.59).

For the Gauss-Lobatto quadrature, one obtains a slightly di�erent

conclusion as the quadrature is inexact for n = N . However, the follow-

ing result allows us to evaluate the inner product.

Lemma 8. The ultraspherical polynomials, P
(�)
N (x), satisfy

8j 2 [1; N � 1] :
d

dx
P
(�)
N�1(xj) = �NP (�)

N (xj) ;

provided xj represents the interior Gauss-Lobatto quadrature points.

Using this result, the proof of which is left as an exercise, the weights

together with Eq.(6.90) yields the norm for P
(�)
N (x) using the Gauss-

Lobatto quadrature

~N = kP (�)
N k2N;w = 22�+1

�2(�+ 1)�(N + 2�+ 1)

NN !�2(2�+ 1)
: (6.96)
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While the discrete Gauss-Lobatto norm is slightly di�erent from the

continuous norm, it follows immediately from the above that they are

equivalent for any polynomial, uN 2 PN , since

kuNkL2w[�1;1] � kuNkN;! �
r
2 +

2�+ 1

N
kuNkL2w[�1;1] ;

as ~N > N for all values of N and � > �1.

Legendre Polynomials To summarize the results for Legendre poly-

nomials, Pn(x), we recover the discrete norms, ~n, obtained for � = 0

from Eqs.(6.95)-(6.96) as

~n =

8<
:

2
2n+1 n < N

2
2N+1 n = N for Gauss and Gauss-Radau quadrature
2
N n = N for Gauss-Lobatto quadrature

: (6.97)

Chebyshev Polynomials The results for the Chebyshev polynomials,

Tn(x), can likewise be summarized as

~n =

8<
:
cn

�
2 n < N

�
2 n = N for Gauss and Gauss-Radau quadrature

� n = N for Gauss-Lobatto quadrature

; (6.98)

where cn takes the usual meaning de�ned in Eq.(6.67).

6.3.4 The Discrete Expansion

With the development of the quadrature rules, we have the tools in place

to formulate accurate methods to commutate the expansion coeÆcients

based on summations rather than integrations. As we identi�ed several

di�erent ways of accurately approximating the integrals of polynomials

using Gauss quadratures, it comes as no surprise that we can also de�ne

several discrete expansions with slightly di�erent properties.

Let us �rst recall the de�nition of the continuous expansion as

PNu(x) =
NX
n=0

ûnP
(�)
n (x) ; ûn =

1

n

Z 1

�1

u(x)P (�)
n (x)(1� x2)� dx ;

where the normalizing factor, n, is given in Eq.(6.60).

Using the Gauss-Lobatto quadrature it is natural to de�ne a discrete
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approximation to the expansion on the form

INu(x) =
NX
n=0

~unP
(�)
n (x) ; ~un =

1

~n

NX
j=0

u(xj)P
(�)
n (xj)wj ; (6.99)

where the collocation points, xj , are found as the roots of the polynomial,

Eq.(6.75), while the corresponding weights, wj , are given in Eq.(6.74)

and the normalizing factor, ~n, in Eqs.(6.95)-(6.96).

Likewise, we can base the de�nition of the discrete expansion coeÆ-

cients on the use of the Gauss quadrature as

INu(z) =
NX
n=0

~unP
(�)
n (z) ; ~un =

1

~n

NX
j=0

u(zj)P
(�)
n (zj)uj ; (6.100)

with the collocation points, zj , obtained as the roots of the polynomial,

Eq.(6.78), and the corresponding weights, uj , from Eq.(6.79) with the

normalization, ~n, given in Eq.(6.95).

We could naturally also de�ne discrete expansion coeÆcients based

on the Gauss-Radau quadrature points. However, due to their little use

we shall not pursue this approach in detail but simply state the central

results.

The approximation of the discrete expansion coeÆcients using the

Gauss quadratures has a striking consequence.

Theorem 42. Let the discrete expansion coeÆcients, ~un, be an approx-

imation to the continuous expansion coeÆcients, ûn, obtained by using

a Gauss quadrature.

For any function, u(x) 2 L2
w[�1; 1], we then have

8xj : INu(xj) = u(xj) ;

where xj are the quadrature points associated with the Gauss quadrature.

Proof: Let us �rst demonstrate the result in case a Gauss quadrature,

Eq.(6.100), is used to approximate the inner product. Introducing the

discrete expansion coeÆcients into the polynomial approximation we

recover
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INu(z) =
NX
n=0

~unP
(�)
n (z)

=
NX
n=0

0
@ 1

~n

NX
j=0

u(zj)P
(�)
n (zj)uj

1
AP (�)

n (z)

=

NX
j=0

u(zj)

 
uj

NX
n=0

1

~n
P (�)
n (z)P (�)

n (zj)

!

=

NX
j=0

u(zj)~lj(z) ;

where we have de�ned the polynomial

lj(z) = uj

NX
n=0

1

~n
P (�)
n (z)P (�)

n (zj) : (6.101)

We note that lj(z) 2 BN as expected. To establish the theorem we need

to show that lj(z) is the Lagrange interpolation polynomial based on

the Gauss quadrature nodes, i.e., lj(zi) = Æij .

This follows by realizing that the sum in Eq.(6.101) can be evaluated

explicitly by the Christo�el-Darboux, Theorem 33. Recalling that ~n =

n in the Gauss quadrature, Eq.(6.95), we recover

lj(z) = uj2
�(2�+1) �(N + 2)�2(2�+ 1)

�(N + 2�+ 1)�2(�+ 1)

P
(�)
N+1(z)P

(�)
N (zj)

z � zj
;

since P
(�)
N+1(zj) = 0 de�nes the Gauss points. Clearly lj(zi) = 0 for

i 6= j. Using l'Hospital rule we obtain for i = j that

lj(zj) = uj2
�(2�+1) �(N + 2)�2(2�+ 1)

�(N + 2�+ 1)�2(�+ 1)
P
(�)
N (zj)

d

dx
P
(�)
N+1(zj) :

Introducing the Gauss weights, Eq.(6.79), yields

lj(zj) = (N + 2�+ 1)P
(�)
N (zj)

�
(1� z2j )

d

dx
P
(�)
N+1(zj)

��1
= 1 ;

where the last reduction follows by combining Eq.(6.40) and Eq.(6.45)

and using the de�nition of the Gauss quadrature points.
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While the proof of the interpolation property of the discrete expansion

based on the Gauss-Radau quadrature follows the above exactly, the

case for the Gauss-Lobatto quadrature is more involved since ~N 6= N ,

Eqs.(6.95)-(6.96).

However, since the polynomial is given as

lj(x) = wj

NX
n=0

1

~n
P (�)
n (x)P (�)

n (xj) ;

the result can be recovered by separating out the last term, utilizing

the Christo�el-Darboux identity and the Gauss-Lobatto weights, given

in Eq.(6.74), together with Lemma 8 for the interior nodes. The result

follows by considering the internal and edge nodes separately. QED

Similar to the case of the Fourier expansion, Chap. 4, we have thus

established that there are two mathematically equivalent but computa-

tionally di�erent ways of dealing with the discrete expansion. Indeed, we

can use the discrete expansion coeÆcients, Eqs.(6.99)-(6.100), directly

or we can make use of the Lagrange interpolation polynomial, lj(x),

identi�ed in Theorem 42.

To proceed along this latter line of thinking, we need to look further

into the expressions for the Lagrange polynomials.

For interpolating at the Gauss-Lobatto nodes we have

Theorem 43. The Lagrange interpolation polynomial, lj(x), based on

the ultraspherical Gauss-Lobatto quadrature points, xj , is given as

lj(x) =

(
(�+ 1)�

(�)
N;j(x) j = 0; N

�
(�)
N;j(x) else

; (6.102)

where

�
(�)
N;j(x) = �

1

N(N + 2�+ 1)

(1� x2)
�
P
(�)
N

�0
(x)

(x� xj)P
(�)
N (xj)

:

Proof: Using the Christo�el-Darboux identity the Lagrange interpo-

lation polynomial can be expressed directly by following the proof of

Theorem 42. However, as lj(x) 2 BN and lj(xi) = Æij it suÆces to

construct a polynomial in BN with this property to recover the unique

Lagrange polynomial.
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If we �rst look at the case of j = 0 it is clear that the polynomial

g(x) = c(x� 1)
d

dx
P
(�)
N (x) ;

vanishes at all quadrature points with the exception of x = �1. Utilizing
Eq.(6.38) and Eq.(6.39) one can straightforwardly obtain the missing

constant c such that g(�1) = 1. The same approach can be used to

recover the expression for j = N .

For the interior nodes, we realize that

g(x) = c
1

x� xj
(1� x2)

d

dx
P
(�)
N (x) ;

vanishes at all Gauss-Lobatto quadrature points and c is to be deter-

mined such that g(xj) = 1. This is readily achieved by combining

Eq.(6.40) and Eq.(6.45) to express the denominator of g(x) in terms of

P
(�)
N and P

(�)
N�1, and apply l'Hospitals rule in combination with Lemma

8 and the de�nition of the Gauss-Lobatto quadrature points. Alterna-

tively, one can �rst utilize l'Hospitals rule on g(x) and then exploit that

P
(�)
N satis�es a Sturm-Liouville equation, Eq.(6.35), to recover the same

result. QED

Theorem 44. The Lagrange interpolation polynomial, lj(y), based on

the ultraspherical Gauss-Radau quadrature points, yj , is given as

lj(y) =

(
(�+ 1)�

(�)
N;j(y) j = 0; N

�
(�)
N;j(y) else

; (6.103)

where

�
(�)
N;j(y) =

1

2(N + �+ 1)(N + 2�+ 1)

(1� yj)

P
(�)
N (yj)

(N + 1)P
(�)
N+1(y) + (N + 2�+ 1)P

(�)
N

y � yj
:

Theorem 45. The Lagrange interpolation polynomial, lj(z), based on

the ultraspherical Gauss quadrature points, zj , is given as
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lj(z) =
P
(�)
N+1(z)

(z � zj)
�
P
(�)
N+1

�0
(z)

: (6.104)

Both results follow directly from the application of Theorem 33, the

properties of the ultraspherical polynomials, Eqs.(6.40)-(6.45), the as-

sociated Sturm-Liouville equation, Eq.(6.35), and the de�nition of the

quadrature.

Before we continue with the development of the methods based on

discrete expansion coeÆcients and the equivalent formulation using the

Lagrange interpolation polynomials, let us briey touch on the issue

of the aliasing errors associated with the use of the discrete expansion

coeÆcients.

To obtain an estimate for the aliasing error, we consider the continu-

ous function, u(x), and relate the discrete expansion coeÆcients to the

continuous expansion coeÆcients to recover

~un =
1

~n

NX
j=0

u(xj)P
(�)
n (xj)wj

=

1X
l=0

ûl

0
@ 1

~n

NX
j=0

P
(�)
l (xj)P

(�)
n (xj)wj

1
A

= ûn +

1X
l�N

ûl

h
P
(�)
l ; P (�)

n

i
w

;

where the last term, representing the aliasing error, remains since the

Gauss quadrature ceases to be exact for l � N . Here l is strictly larger

than N for Gauss and Gauss-Radau integration only. Hence, the aliasing

error takes the form

kRNuk2w =


NX
n=0

1X
l�N

ûl

h
P
(�)
l ; P (�)

n

i
w
P (�)
n (x)


2

w

:

Contrary to the situation for the trigonometric polynomials, we have no

simple expression for this since
h
P
(�)
l ; P

(�)
n

i
w
6= 0 for any l � N with a

few notable exceptions for special choices of �.

As we shall discuss further in Sec. 6.6.1, only crude bounds on the

aliasing error is known although sharper results are available for the im-
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portant cases of Legendre and Chebyshev methods based on the Gauss

and Gauss-Lobatto nodes. Nevertheless, it is safe to state that if the

function, u(x), is suÆciently smooth the global convergence rate remains

spectral, i.e., while the aliasing error may have a quantitative impact it

does not change the qualitative behavior of the approximation as com-

pared to the continuous expansion. We shall return to these questions

in more detail in Sec. 6.6.1.

Let us now return to the issue of how to obtain an approximation to

the derivative of a function once the discrete approximation, expressed

by using the discrete expansion coeÆcients or the Lagrange polynomials,

is known.

We �rst focus on the use of the discrete expansion coeÆcients in which

case the approximations to derivatives is obtained in a similar way as

if the continuous expansion coeÆcients were being used. If we consider

the Gauss-Lobatto approximation

INu(x) =
NX
n=0

~unP
(�)
n (x) ; ~un =

1

~n

NX
j=0

u(xj)P
(�)
n (xj)wj ;

we obtain an approximation to the derivative of u(x) as

IN d

dx
u(x) =

NX
n=0

~u(1)n P (�)
n (x) ;

where the new expansion coeÆcients, ~u
(1)
n , are obtained by using the

backward recursion

~u(1)n = (2n+ 2�+ 1)

�
1

2n+ 2�+ 5
~u
(1)
n+2 + ~un+1

�
;

from Eq.(6.62) and initialized by ~u
(1)
N+1 = ~u

(1)
N = 0 as INu(x) 2 BN . We

note that

d

dx
INu(x) 6= IN�1 d

dx
u(x) ;

as is expected since even the continuous expansion lacks this property.

Furthermore, in the discrete case we have additional errors caused by

aliasing. Although the computation of the derivative here is exempli-

�ed using the Gauss-Lobatto quadrature the same holds if one is using

discrete expansion coeÆcients based on any of the Gauss quadrature

points. Higher derivatives is computed by applying the recurrence rela-
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tion repeatedly.

In the equivalent formulation of the discrete expansion, utilizing the

Lagrange interpolating polynomial as

INu(x) =
NX
j=0

u(xj)lj(x) ;

the derivative of u(x) at the collocation points is approximated simply

by di�erentiating the global polynomial, lj(x). In particular, if one

evaluates it at the quadrature points one obtains

IN d

dx
INu(xi) =

NX
j=0

u(xj)
dlj(x)

dx

����
xi

=

NX
j=0

Diju(xj) :

where the (N + 1) � (N + 1) di�erentiation matrix, D, has been intro-

duced.

Considering �rst the Lagrange interpolation polynomial based on the

Gauss-Lobatto quadrature points, Theorem 43, the corresponding dif-

ferentiation matrix, D, has the entries

Dij =

8>>>>>>>><
>>>>>>>>:

��N(N+2�+1)
2(�+2) i = j = 0

�xj
1�(xi)2

i = j 2 [1; N � 1]

�+1
xi�xj

P
(�)

N
(xi)

P
(�)

N
(xj)

i 6= j; j = 0; N

1
xi�xj

P
(�)

N
(xi)

P
(�)

N
(xj)

i 6= j; j 2 [1; N � 1]

�D00 i = j = N

(6.105)

Although the derivation, relying heavily on the properties of the ultra-

spherical polynomials summarized in Sec. 6.2.2.3, of these entries is

somewhat lengthy it is nevertheless straightforward and the details are

left as an exercise.

A similar result is obtained for the approximation based on the Gauss

quadrature nodes and the associated Lagrange polynomial in Theorem

45. In this case the di�erentiation matrix, D, has the entries

Dij =

8><
>:

(�+1)zi
1�(zi)2

i = j�
P
(�)

N+1

�0
(zi)

(zi�zj)
�
P
(�)

N+1

�0
(zj)

i 6= j
: (6.106)

For an approximation based on the use of the Gauss-Radau quadrature



6.3 Approximation by Ultraspherical Polynomials 195

points one can recover an equivalent expression by using the associated

Lagrange interpolation polynomial given in Theorem 44.

Some or all of the di�erentiation matrices share a number of properties

that we shall �nd it useful to be aware of. In particular, we have

Theorem 46. The di�erentiation matrix, D, derived from the Lagrange

interpolation polynomial based on any of the Gauss quadrature points, is

nilpotent.

Proof: We establish the result for the di�erentiation matrix based on

the Gauss-Lobatto points. If we recall that the interpolation polynomial

takes the form

lj(x) = wj

NX
n=0

1

~n
P (�)
n (xj)P

(�)
n (x) ;

we can express the entries to the di�erentiation matrix as

Dij = wj

NX
n=0

1

~n
P (�)
n (xj)

dP
(�)
n (xi)

dx
= wj (P (xj))

T
(P x(xi)) ;

where

P (xj) =

"
P
(�)
0 (xj)p

~0
; ; : : : ;

P
(�)
N (xj)p
~N

#T
;

and

P x(xj) =

"
1p
~0

dP
(�)
0 (xj)

dx
; : : : ;

1p
~N

dP
(�)
N (xj)

dx

#T
:

Using Eq.(6.43), we can relate these two vectors by a linear transforma-

tion as

P (xj) = BP x(xj) ;

where B is a bi-diagonal matrix with the entries given in Eq.(6.44).

Introducing the (pseudo)-inverse of B we have

B�1P (xj) = P x(xj) ;

where B�1 is strictly upper triangular due to the special structure of B.
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From this we recover

Dij = wj (P (xj))
T
B�1P (xi) :

However, since P (xj)
TP (xi) = w�1j Æij , we have that the di�erentiation

matrix is uniformly similar to B�1, which is strictly upper triangular.

Hence

DN+1 =
�
B�1

�N+1
= 0 ;

con�rming that D is indeed nilpotent.

As the proof relies entirely on the properties of the polynomials it

applies also to the approximations based on the Gauss and the Gauss-

Radau quadrature points. QED

This property is hardly a surprise, i.e., by di�erentiating a polynomial

the order of the polynomial is reduced by one order and after N + 1

di�erentiations the polynomial vanishes identically.

Theorem 47. The di�erentiation matrix, D, based on the Gauss or the

Gauss-Lobatto quadrature points is centro-antisymmetric

Dij = �DN�i;N�j :

Proof: This property follows immediately from the expressions for the

entries of D in Eq.(6.105) and Eq.(6.106), the even-odd symmetry of the

ultraspherical polynomials, Eq.(6.42), and, as a reection of this, the

the symmetry of the quadrature points around x = 0. QED

It is worth emphasizing that the di�erentiation matrix based on Gauss-

Radau quadrature points does not possess the centro-antisymmetric

property due to the lack of symmetry in the grid points. As we shall

return to in Chap. 9, this subtle symmetry enables a factorization of

the di�erentiation matrices that ultimately allows for the computation

of the derivatives at a reduced cost.

The computation of higher derivatives follows the approach for the

computation of the �rst derivative. One may compute entries of the

q'th order di�erentiation matrix, D(q) by evaluating the q'th derivative

of Lagrange interpolation polynomial at the quadrature points. Alterna-
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tively, one may compute the q'th order di�erentiation matrix by simply

multiplying the �rst order di�erentiation matrices, i.e.,

D(q) = (D)q ;

where q � N . Although this latter approach certainly is appealing in

terms of simplicity, we shall experience in Chap. 9 that care is warranted

in de�ning the entries of the di�erentiation matrices. Hence, whenever

possible, one should strive to use the exact expressions for the entries

rather than those obtained through matrix multiplications to lessen the

impact of �nite precision arithmetics.

6.3.4.1 The Discrete Legendre Expansion

Based on the theory developed above let us summarize the results for

methods using discrete Legendre expansions, recovered for � = 0.

Legendre Gauss Lobatto. In this case we consider

INu(x) =
NX
n=0

~unPn(x) ; ~un =
1

~n

NX
j=0

u(xj)Pn(xj)wj ; (6.107)

where ~n is given in Eq.(6.97) and the quadrature points, xj , and the

weights, wj , are given as the solution to Eq.(6.80) and in Eq.(6.81),

respectively.

Computation of the expansion coeÆcients for the derivatives is done

using the backward recurrence relation given in Eq.(6.66).

Since INu(x) is the interpolant of u(x) at the Legendre Gauss Lo-

batto quadrature points, as stated in Theorem 42, we may express the

approximation as

INu(x) =
NX
j=0

u(xj)lj(x) ; (6.108)

where the Lagrange interpolation polynomial, obtained directly from

Eq.(6.102) with � = 0, takes the form

lj(x) =
�1

N(N + 1)

(1� x2)P 0N (x)

(x� xj)PN (xj)
: (6.109)

Examples of the Lagrange polynomials based on the Legendre Gauss

Lobatto points are shown in Fig. 6.9.
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�gure 6.9. The interpolating Lagrange polynomial, lj(x), based on the Leg-
endre Gauss-Lobatto quadrature points with N = 8.

From Eq.(6.105) we recover the entries of the di�erentiation matrix,

D, as

Dij =

8>>><
>>>:
�N(N+1)

4 i = j = 0

0 i = j 2 [1; N � 1]
PN (xi)
PN (xj)

1
xi�xj

i 6= j
N(N+1)

4 i = j = N

: (6.110)

Legendre Gauss-Radau. As an alternative to the Gauss-Lobatto based

interpolation, one can utilize the Gauss-Radau quadrature points, lead-

ing to the approximation

INu(y) =
NX
n=0

~unPn(y) ; ~un =
1

~n

NX
j=0

u(yj)Pn(yj)vj : (6.111)

Here the normalization constant, ~n can be found in Eq.(6.97), the

weights are given in Eq.(6.82) and the quadrature points are found as

the solution to Eq.(6.83).

Expressing the Gauss-Radau interpolation using the Lagrange poly-

nomial yields
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INu(y) =
NX
j=0

u(yj)lj(y) ; (6.112)

where the Lagrange polynomial is obtained from Eq.(6.103) as

lj(y) =
1

2

(1� yj)

N + 1

PN+1(y) + PN (y)

PN (yj)(y � yj)
: (6.113)

The associated di�erentiation matrix can be derived by standard tech-

niques, i.e., by di�erentiating the interpolation polynomials and evalu-

ating it at the grid points.

Legendre Gauss. Consider �nally the discrete Legendre expansion

based on the Legendre Gauss approximation to the continuous expansion

coeÆcients as

INu(z) =
NX
n=0

~unPn(z) ; ~un =
1

~n

NX
j=0

u(zj)Pn(zj)uj : (6.114)

The normalization constant, ~n, being given in Eq.(6.97), the quadrature

points, zj , are found as the roots of the polynomial, Eq.(6.84), and the

weights, uj , from Eq.(6.85).

We express the interpolation as

INu(z) =
NX
j=0

u(zj)lj(z) ; (6.115)

with the Lagrange interpolation polynomial derived from Eq.(6.104) on

the form

lj(z) =
PN+1(z)

(z � zj)P 0N+1(zj)
: (6.116)

The di�erentiation matrix, Dij , is obtained from Eq.(6.106) with the

entries

Dij =

8<
:

zi
1�z2

i

i = j
P 0N+1(zi)

(zi�zj)P 0N+1
(zj)

i 6= j
: (6.117)
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6.3.4.2 The Discrete Chebyshev Expansion.

Methods based on Chebyshev polynomials continue to play a key role

in the context of spectral methods. Their widespread use can be traced

to a number of reasons. Not only are the polynomials given on a simple

form but all the Gauss quadrature nodes and the associated weights are

also, as shown in Sec. 6.3.2.5, given on closed form. Furthermore, as will

be discussed in more detail in Chap. 9, the close relation ship between

Chebyshev expansions and Fourier series allows for the fast evaluation

of derivatives and interpolations.

Chebyshev Gauss Lobatto. We obtain the discrete expansion from

Eq.(6.99) as

INu(x) =
NX
n=0

~unTn(x) ; ~un =
2

Ncn

NX
j=0

1

cj
u(xj)Tn(xj) ; (6.118)

utilizing the result of Eq.(6.98) and the weights in Eq.(6.88). In Eq.(6.118)

we have introduced the parameter

cn =

�
2 n = 0; N

1 n 2 [1; N � 1]
:

The Chebyshev Gauss Lobatto quadrature points are given as

xj = � cos
� �
N
j
�

;

which allows us to express the computation of the interpolating polyno-

mial at the quadrature points as

INu(xj) =
NX
n=0

~un cos
� �
N
nj
�

; ~un =
2

Ncn

NX
j=0

1

cj
u(xj) cos

� �
N
nj
�

:

Hence, the discrete Chebyshev Gauss-Lobatto expansion is nothing more

than a Cosine series in disguise and the expansion coeÆcients and the

interpolation can be computed using the Fast Fourier Transform.

Using the discrete expansion, approximations to derivatives are ob-

tained through the backward recurrence relation in Eq.(6.70). However,

the equivalence between the discrete expansion and the interpolation at

the quadrature points enables us to express the approximation as
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�gure 6.10. The Lagrange interpolation polynomial, lj(x), based on the
Chebyshev Gauss-Lobatto quadrature points with N = 8.

INu(x) =
NX
j=0

u(xj)lj(x) ; (6.119)

where the Lagrange interpolation polynomial is obtained directly from

Eq.(6.102) with � = �1=2 as

lj(x) =
(�1)N+j+1(1� x2)T 0N (x)

cjN2(x� xj)
: (6.120)

In Fig. 6.10 we show examples of the Lagrange polynomials, lj(x),

based on the Chebyshev Gauss-Lobatto nodes. Comparing with the

polynomials based on the Legendre Gauss-Lobatto nodes in Fig. 6.9 we

observe only small di�erences as is a natural consequence of the grid

points being qualitatively the same.

Associated with the interpolation polynomial is the di�erentiation

matrix, D, obtained from Eq.(6.105), with the entries

Dij =

8>>>><
>>>>:

� 2N2+1
6 i = j = 0

ci
cj

(�1)i+j+N

xi�xj
i 6= j

� xi
2(1�x2

i
)

i = j 2 [1; N � 1]

2N2+1
6 i = j = N

: (6.121)
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Chebyshev Gauss Radau. Using the Gauss-Radau quadrature points

leads to an approximation as

INu(y) =
NX
n=0

~unTn(y) ; ~un =
1

~n

NX
j=0

u(yj)Tn(yj)vj : (6.122)

Here the normalization constant, ~n, is given in Eq.(6.98), the weights

are obtained from Eq.(6.91) and the quadrature points are given as

yj = � cos

�
2�

2N + 1
j

�
; j 2 [0; : : : ; N ] :

Expressing the Gauss-Radau interpolation through the associated La-

grange polynomial yields

INu(y) =
NX
j=0

u(yj)lj(y) ; (6.123)

with the Lagrange polynomial from Eq.(6.103) as

lj(y) =
1� yj

N(2N + 1)

(N + 1)TN+1(y) +NTN(y)

TN(yj)(y � yj)
(6.124)

The associated di�erentiation matrix can be derived by standard tech-

niques.

Chebyshev Gauss. Let us �nally also summarize the formulas for the

application of the Chebyshev Gauss method. Indeed, the discrete ex-

pansion is recovered directly from Eq.(6.100) as

INu(z) =
NX
n=0

~unTn(z) ; ~un =
2

cn(N + 1)

NX
j=0

u(zj)Tn(zj) ; (6.125)

using Eq.(6.97), the weights given in Eq.(6.94) and cn as de�ned in

Eq.(6.67). Recall from Eq.(6.93) that the Chebyshev Gauss quadrature

points are

zj = � cos

�
(2j + 1)�

2N + 2

�
;

indicating that also the Chebyshev Gauss discrete expansion coeÆcients

may be obtained using a modi�ed Fast Fourier Transform as the expan-

sion is little more than a Cosine series.
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�gure 6.11. The Lagrange interpolation polynomial, lj(z), based on the
Chebyshev Gauss quadrature points with N = 8.

Using the Lagrange interpolation polynomials, we can express the

Gauss interpolation as

INu(z) =
NX
j=0

u(zj)lj(z) ; (6.126)

with the Lagrange polynomial from Eq.(6.104) as

lj(z) =
TN+1(z)

(z � zj)T 0N+1(zj)
; (6.127)

and the di�erentiation matrix, Dij , from Eq.(6.106) as

Dij =

8<
:

zi
2(1�z2

i
)

i = j
T 0N+1(zi)

(zi�zj)T 0N+1
(zj)

i 6= j
: (6.128)

For the purpose of illustration we plot in Fig. 6.11 the Lagrange poly-

nomials based on the Gauss quadrature points. We note in particular

the di�erent behavior at the boundaries of the domain as compared to

polynomials based on the Gauss-Lobatto points and shown in Fig. 6.10.



204 6. Orthogonal Polynomials

6.3.5 On Lagrange Interpolation, Electrostatics, and

the Lebesgue Constant.

As just discussed, one can approximate functions and their derivatives

using discrete expansions as well as Lagrange interpolation polynomials.

Indeed, for certain special choices of grid points and quadrature rules,

these representations are identical.

However, if one is willing to leave the advantages of the dual formu-

lation it appears only natural to consider approximations based solely

on the Lagrange interpolation polynomials, i.e.,

INu(x) =
NX
j=0

u(xj)lj(x) ;

where the Lagrange interpolation polynomial, lj(x), based on the grid

points, xj , is given as

lj(x) =
qN (x)

(x� xj)q0N (xj)
; qN (x) =

NY
j=0

(x� xj) : (6.129)

Following the approach in previous sections, we recover the entries of

the di�erentiation matrix as

Dij =
1

q0N (xj)

�
q0N (xi)(xi � xj)

�1 i 6= j
1
2q
00
N (xi) i = j

:

The only issue that requires attention to complete this approach is the

speci�cation of the grid points, xj , which, it appears, we are completely

free to choose.

To realize that care has to be exercised in this choice, let of consider

a classical example.

Example 26.

Consider the analytic function, u(x) 2 C1[�1; 1],

u(x) =
1

1 + 16x2
; x 2 [�1; 1] ;

for which we shall seek an interpolation of the form
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�gure 6.12. a) Interpolation of u(x) using N = 8 equidistant grid points.
b) Interpolation of u(x) using N = 8 Chebyshev-Gauss-Lobatto distributed
grid points. c) Interpolation of u(x) using N = 16 equidistant grid points.
d) Interpolation of u(x) using N = 16 Chebyshev-Gauss-Lobatto distributed
grid points.

INu(x) =
NX
j=0

u(xj)lj(x) :

To illustrate the impact of choosing di�erent grid points, xj , to base the

interpolation polynomials on, let us compare the interpolation using the

equidistant points

xj =
2

N
j � 1 ; j 2 [0::N ] ;
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with that based on the Chebyshev-Gauss-Lobatto quadrature points

xj = � cos
� �
N
j
�

; j 2 [0::N ] :

In Fig. 6.12 we illustrate the dramatic di�erences between the resulting

interpolation polynomials of u(x). We note that while the one based on

the Chebyshev-Gauss-Lobatto grid points seems to converge as expected,

the interpolation polynomials based on the equidistant grid is divergent

as N increases. Clearly, the choice of the grid points matters when

considering the quality of the global interpolation.

This wildly oscillatory and divergent behavior close to the limits of

the domain is known as the Runge-phenomenon.

As the example illustrates, the choice of the grid points can severely

impact the quality of the interpolation polynomials. Keeping in mind

that we wish to use these polynomials to obtain good approximations to

the spatial derivatives of u(x) it is critical that we have an understanding

of the properties of the grid points required to ensure a well behaved

polynomial approximation.

A useful measure of the quality of the interpolation is introduced as

Theorem 48. Assume that u(x) 2 C0[�1; 1] with INu(x) being the cor-
responding N 'th order polynomial interpolation based on the grid points,

xj . Then

ku� INuk1 � [1 + �N ] ku� p�k1 ;

where p� signi�es the best approximating N 'th order polynomial, and

�N = max
x2[�1;1]

�N (x) ; �N (x) =
NX
j=0

jlj(x)j ;

represents the Lebesque constant and the Lebesque function, respectively.

Proof: As u(x) 2 C0[�1; 1], the best approximating polynomial, p�,

exists and we immediately have

ku� INuk1 � ku� p�k1 + kp� � INuk1 :

However, the uniqueness of p� and INu implies that
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kp� � INuk1 � �Nku� p�k1 ;

where

�N = max
x2[�1;1]

�N (x) ; �N =

NX
j=0

jlj(x)j :

QED

A number of properties of the Lebesque function and the Lebesque

constant are worth while emphasizing. In particular, we note that both

depend only on the choice of xj as they uniquely de�ne the interpola-

tion polynomials and, hence, these measures. Furthermore, it is clear

from Theorem 48 that when choosing the grid points one should strive

to minimize the Lebesque constant as that provides a direct measure

between the actual interpolation and the best possible polynomial ap-

proximation.

As a more practical matter one can also use knowledge about the

Lebesque function to come to understand how computational issues such

as rounding errors can impact the accuracy of the interpolation. As an

example, assume that u"(x) represents a perturbed version of u(x)

ku� u"k1 � " :

The di�erence between the two polynomial representations are then

given as

kINu� INu"k1 � "�N :

Clearly, if the Lebesque constant, �N , is large such that "�N � 1 is

violated the interpolation is illposed and the impact of the rounding is

very severe.

It is thus worth while looking at the behavior of the Lebesque function

and the value of �N for various choices of grid points. Indeed, one could

hope to identify families of grid points, xj , for which �N remains a

constant. A seminal result in approximation theory, however, rules the

existence of such a set of grid point out [?, ?]

Theorem 49. For all sets of N + 1 distinct grid points, xj 2 [�1; 1],
and all values of N , the Lebesque constant is bounded as
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�N � 2

�
log(N + 1) + A ;

where

A =
2

�

�
 + log

4

�

�
;

in the limit of large N . Here  = 0:577221566:: represents Euler's con-

stant.

In other words, the Lebesque constant grows at least logarithmicly with

N . This has the unfortunate consequence that for any given set of

grid points there exists continuous functions for which the polynomial

representations will exhibit nonuniform convergence [?]. On the other

hand, one can also show that for any given continuous function one

can always construct a set of grid points that will result in a uniformly

convergent polynomial representation [?].

Thus, we can not in general seek one set of grid points, xj , that will

exhibit optimal behavior for all possible interpolation problems. How-

ever, the behavior of the Lebesque constant can serve as a guideline to

understand whether certain families of grid points are likely to result in

well behaved interpolation polynomials.

Computing the Lebesque constant for various speci�c choices of the

grid points is an interesting, and in general, complex task and we shall

not attempt to do so. It is, however, illustrative to consider some of

the known results, in particular in view of the observations made in Fig.

6.12.

If we �rst consider interpolation based on the equidistant set of points

we have [?]

Theorem 50. Assume that the interpolation is based on the equidis-

tributed set of grid points

xj = �1 + 2j

N
; j 2 [0::N ] :

Then the corresponding Lebesque constant, �eq
N is bounded for N � 1 as

2N�2

N2
� �eq

N � 2N+3

N
;
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with the asymptotic behavior given by

�eq
N ' 2N+1

eN(logN + )
:

This is clearly far from optimal and for large values of N one can not

expect anything meaningful from the interpolation based on the equidis-

tant set of grid points, i.e., for N � 65, �eq
N � 1016 and the illposedness

of the interpolation is catastrophic.

Having realized that an equidistribution of grid points is far from op-

timal, the question arises as to whether we can identify common qualities

that grid points, leading to well behaved interpolations, must share. To

understand that, consider the Cauchy remainder for the interpolation

u(z)� INu(z) = RN (z) =
u(N+1)(�)

(N + 1)!
q(z) ;

where � refers to some position in [�1; 1], q(z) is de�ned in Eq.(6.129)

although z is taken as the complex extension of x. Note that the grid

points, xj , remain real. Considering q(z) it follows directly that

log jq(z)j =
NX
j=0

log jz � xj j = �(N + 1)�N (z) ; (6.130)

where �N (z) can be interpreted as the electrostatic energy associated

with N + 1 unit mass, unit charge particles interacting according to a

logarithmic potential. In the limit of N !1 it is natural to model this

as

�1(z) = lim
N!1

1

N + 1

NX
j=0

log jz � xj j =
Z 1

�1

�(x) log jz � xj dx ;

where �(x) represents a normalized charge density, reecting an asymp-

totic measure of the grid point distribution. This implies that

lim
N!1

jq(z)j1=N = exp(��1(z)) ;

for large values of N . Understanding the second part of the remainder,

associated with the particular function being interpolated, is a bit more

diÆcult. Using complex analysis allows one to derive that [?] that
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lim
N!1

����u(N+1)(�)

(N + 1)!

����
1=N

= exp(�1(z0)) ;

where z0 represents the radius of the largest circle within which u(z) is

analytic. Hence, we recover that

lim
N!1

jR(z)j1=N = exp(�1(z0)� �1(z)) :

Clearly, if �1(z0) � �1(z) is less than zero throughout the interval

[�1; 1], we can expect exponential convergence in N . On the other

hand, if �1(z0) � �1(z) exceeds zero anywhere in the unit interval we

expect exponential divergence of the remainder and thus of the error.

Let us �rst return to the equidistant charge distribution, in which

case �(x) = 1
2 and the electrostatic energy becomes

�1(z) = 1 +
1

2
Re [jz � 1j log jz � 1j � jz + 1j log jz + 1j] :

We �rst of all note that while �1(0) = 1, we have that �1(�1) = 1�
log 2, i.e., we should expect to see the most severe problems of divergence

closer to the limits of the domain, as observed in Fig. 6.12. In fact, if

we consider the u(x) in Ex. 26, it has a pole at z0 = �i=4 and

�1(�i=4) = 1� 1

2

�
log

17

16
+ 1

2 arctan 4

�
' 0:63823327:: :

Thus, the remainder, and hence the polynomial representation of u(x)

will diverge in regions close to [�1; 1] as �1(�i=4)� �1(x) will exceed

zero. Finding the exact point of divergence yields x ' �0:794226::. A
close inspection of the results in Fig. 6.12 con�rms this.

An equidistant distribution of grid points is evidently not a good

choice for high-order polynomial interpolation of analytic functions de-

�ned on the interval. On the other hand, there is evidence in the above

that the main problems close to the limits of the domain and that clus-

tering the grid points relieves these problems as illustrated in Ex. 26.

To study this further let us begin by realizing that the continuous

charge distribution leading to the Gauss-Lobatto-Chebyshev nodes used

in Ex. 26 takes the form

�(x) =
1

�
p
1� x2

; (6.131)
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since we have

j = N

Z xj

�1

1

�
p
1� x2

) xj = � cos
� �
N
j
�

;

where j 2 [0::N ] is the charge number. With this, we have the corre-

sponding electrostatic energy on the form

�1(z) = � log
jz �pz2 � 1j

2
:

Inspection reveals that �1(z) are level curves associated with an ellip-

soid with foci at �1. Furthermore, as z becomes purely real, this level

curve collapses to a ridge spanning the domain of [�1; 1] along which

�1(z) takes on its maximum value. Hence, there are no restrictions

on the position of the poles of the function, u(x), being approximated

as we can guarantee that �1(z0) � �1(x) is negative for any value of

z0. This collapse of the level curve of �1(z) to a perfectly at ridge

clearly represents the optimal choice when considering the electrostatic

analysis.

Having identi�ed grid point distributions which lead to well behaved

Lagrange interpolations, let us now return to the evaluation of these

interpolations in terms of the Lebesque constant.

For the symmetric Chebyshev-Gauss and Chebyshev-Gauss-Lobatto,

both having the same asymptotic distribution given in Eq.(6.131), we

have the Lebesque constant, �CG
N , of the former as

�CG
N � 2

�
log(N + 1) +A+

2

�
log 2 :

The constant A is given in Theorem 49. The Lebesque constant, �CGL
N

of the latter set of grid points is bounded as

�CGL
N � �CG

N�1 ;

i.e., the Gauss-Lobatto points are, when measured by the growth of the

Lebesque constant, superior to the Gauss points and very close to the

theoretical optimum given in Theorem 49.

The particular characteristic of the Chebyshev distributed grid points

that gives the well behaved Lagrange polynomials is the quadratic clus-

tering of the grid points close to the ends of the domain. This quality is,

however, shared among the zeros of all the ultraspherical polynomials

as they all have a minimum grid size of the kind
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�xmin = 1� cN2 ;

where the constant c depends on the particular polynomial. This dif-

ference, however, vanishes as N approaches in�nity as the grid distri-

butions of the zeros of the ultraspherical polynomials share the limiting

continuous charge distribution, Eq.(6.131).

With this result, it becomes clear that in choosing grid points well

suited for polynomial interpolation, we need only impose structural con-

ditions on the position of the grid points, e.g., close to the boundaries of

the domain the grid points must cluster quadratically. This means that

in terms of interpolation, the exact position of the grid points is immate-

rial, e.g., Legendre-Gauss-Lobatto points are as good as the Chebyshev-

Gauss-Lobatto points as the basis of the Lagrange polynomials. This is

also reected in the associated Lebesque constant of the form [?]

�LGL
N � 2

�
log(N + 1) + 0:685:: :

Having realized, however, that it is the quadratic behavior of the grid

points close to the end of the interval that is the key to high-order

convergence, there is nothing that prohibits us from seeking grid point

distributions with this particular quality. Indeed, the closest to optimal

grid point distribution as measured through the Lebesque constant, and

for which a simple formula is known, is de�ned as

xECGj = �
cos
�

2j+1
2N+2�

�
cos
�

�
2N+2

� ;

known as the extended Chebyshev-Gauss grid points. These are not ze-

ros of any ultraspherical polynomial, yet they have a Lebesque constant,

�ECG
N , bounded as

�ECG
N =

2

�
log(N + 1) +A+

2

�

�
log 2� 2

3

�
;

which is very close to the optimal set of grid points and for all practical

purposes can serve as that.

The above discussion of the Lebesque constant and the electrostatic

approach evolves, to a large extend, around the behavior of the interpo-

lation as it depends on the choice of the grid points in the limit where N
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is very large. It is, however, illustrative and useful to realize that there

is a close connection between the zeros of the ultraspherical polynomials

and the solution to a slightly modi�ed version of the �nite dimensional

electrostatic problem, Eq.(6.130).

Let us de�ne the electrostatic energy, E(x0; ::; xN ), as

E(x0; ::; xN ) = �1

2

NX
i=0

NX
j=0
j 6=i

log jxi � xj j ;

for the N +1 unit mass, unit charge particles interacting according to a

logarithmic potential and consider the problem as an N -body problem

for which we seek the steady state, minimum energy solution if it exists.

For the one given above, however, the dynamics of the problem is such

that all charges would move to in�nity as that would be the minimum

energy solution. Let us therefore consider the slightly changed problem

E(p; x0; ::; xN ) = �
NX
i=0

2
64p log(1� x2i ) +

1

2

NX
j=0
j 6=i

log jxi � xj j

3
75 : (6.132)

This corresponds to forcing the N + 1 charges with an exterior �eld

corresponding to two charges, positioned at �1, of strength p > 0. If

we now assume that all charges initially are positioned in the interior

of [�1; 1] they are con�ned there and nontrivial steady-state minimum

energy solutions can be sought.

Considering the gradient of E, we �nd that a condition for minimum

energy is

@E

@xi
=

1

2

NX
j=0
j 6=i

1

xi � xj
� 2xip

1� x2i
= 0 :

Using qN (x) as de�ned in Eq.(6.129) we recover

1

2

q00N (xi)

q0N (xi)
� 2xip

1� x2i
= 0 ;

or equivalently

(1� x2i )q
00
N (xi)� 4pxiq

0
N (xi) = 0 :

Since this is a polynomial of order N + 1 with N + 1 point constraints
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where it vanishes, it must, due to the de�nition of qN (x), be proportional

to qN (x) it self. By matching coeÆcients we recover

(1� x2)q00N (x) � 4xpq0N(x) + (N + 1)(N + 4p)qN(x) = 0 : (6.133)

The polynomial solution, qN 2 BN+1, of Eq.(6.133) has the optimal

solution to the electrostatic problem, Eq.(6.132), as it N + 1 roots. If,

however, we take � = 2p � 1 and multiply Eq.(6.132) by (1 � x2)� we

recover

d

dx
(1� x2)�+1

dqN
dx

+ (N + 1)(N + 2�+ 2)(1� x2)�qN = 0 ;

which we may recognize as the Sturm-Liouville problem de�ning the

general ultraspherical polynomial, P
(�)
N+1(x), i.e., qN (x) = P

(�)
N+1(x).

Hence, a further manifestation of the close relation between grid

points, well suited for interpolation, and the solution to problems of

electrostatics is realized by observing that the minimum energy steady

state charge distribution to the N -body problem stated in Eq.(6.132) is

exactly the Gauss quadrature points of the ultraspherical polynomial,

P
(2p�1)
N (x). Using the simple relation

2
dP

(�)
N

dx
= (N + 1 + 2�)P

(�+1)
N�1 (x) ;

we see that also the interior part of the Gauss-Lobatto points can be

found as a solution to an electrostatic problem by taking � = 2(p �
1), i.e., the Chebyshev-Gauss-Lobatto grid appears as the steady state

solution for p = 3=4.

It should be noted that by allowing an asymmetric exterior �eld in

Eq.(6.132) one can recover the Gauss quadrature nodes for all the Jacobi

polynomials, P
(�;�)
N (x). See [?] for a discussion of this result.

6.4 Approximation by Laguerre Polynomials

Let us, albeit in much less detail, also discuss the use of Laguerre poly-

nomials, introduced in Sec. 6.2.3, for the approximation of functions

de�ned on the semi-in�nite interval.

6.4.1 The Continuous Expansion.

Consider the continuous Laguerre expansion of a function, u(x) 2 L2
w[0;1],
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u(x) =

1X
n=0

ûnLn(x) ; (6.134)

with the expansion coeÆcients being

ûn = (u; Ln)L2w[0;1] =

Z 1

0

u(x)Ln(x) exp(�x) dx ; (6.135)

utilizing the orthonormality of the polynomials.

As for the expansions based on the ultraspherical polynomials, the

�rst thing to address is how one utilizes the expansion of u(x) on the form

given in Eq.(6.134) to recover expressions for the expansion coeÆcients

of the derivatives of u(x). The required connection is established from

a result similar to that of Theorem 39

Theorem 51. Assume that the q'th derivative, u(q)(x) 2 L2
w[0;1], is

expanded in Laguerre polynomials as

u(q)(x) =

1X
n=0

û(q)n Ln(x) :

Then the representation of u(q�1)(x),

u(q�1)(x) =

1X
n=0

û(q�1)n Ln(x) ;

can be recovered up to a constant through the relation (n > 0)

û(q�1)n = û(q)n � û
(q)
n�1 :

As for the ultraspherical basis, we can invert the tridiagonal operator to

obtain

û(q)n = �
1X

p=n+1

û(q�1)p ;

resulting in a direct relation between û
(q�1)
n and û

(q)
n .

As for the ultraspherical expansions, it is, however, more natural

to consider the issue of representing the derivative from a truncated

expansion. Hence, if we consider the �nite expansion expansion
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PNu(q�1)(x) ' dq�1

dxq�1
PNu =

NX
n=0

û(q�1)n Ln(x) ;

we recover the approximate expansion

PNu(q)(x) ' dq

dxq
PNu =

NX
n=0

û(q)n Ln(x) ;

through the backward recurrence

û
(q)
n�1 = û(q)n � û(q�1)n ; (6.136)

using that û
(q)
N = 0.

6.4.2 The Discrete Expansion.

Discussing the discrete Laguerre expansion

INu(x) =
NX
n=0

~unLn(x) ; ~un =

NX
j=0

u(xj)Ln(xj)wj ; (6.137)

we shall �rst need to introduce a suitable quadrature rule as an approx-

imation to the continuous inner product.

Among several alternatives we focus the attention on grid points, xj ,

de�ned as the zeros of L0N+1(x) as well as x0 = 0, i.e., in the terminology

of the Sec. 6.3.2 it represents a mix between Gauss-Radau and Gauss-

Lobatto points. For this one can show [?, ?, 89] that

NX
j=0

u(xj)wj =

Z 1

0

u(x) exp(�x) dx ; (6.138)

provided u(x) 2 B2N , i.e., for all polynomials of order 2N . We shall thus

refer to this quadrature as a Gauss-Radau quadrature with the weights

being

wj =
1

N + 1

(
1 j = 0�
LN+1(xj)

d
dxLN(xj)

��1
j = 1::N

:

Alternative quadratures are discussed in [?, 89].
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We can use the three-term recurrence relation of the Laguerre-polynomials,

Eq.(6.51), to derive a Christo�el-Darboux identity for the Laguerre poly-

nomials, hence enabling the proof of the key result

INu(x) =
NX
n=0

~unLn(x) =

NX
j=0

u(xj)lj(x) :

Thus, the discrete expansion represents an N'th order interpolation poly-

nomial based on the Gauss-Radau points, xj , which is given on closed

form as

lj(x) =
�xL0N+1(x)

(N + 1)LN+1(x)(x � xj)
: (6.139)

With this result, we have established the duality of the discrete expan-

sion and the Lagrange interpolation polynomials based on the Laguerre-

Gauss-Radau points, hence pawing the way for the approximation of

derivatives using the recurrence, Eq.(6.136), as for the continues expan-

sion, or by the de�nition of the di�erentiation matrix

IN du
dx

����
xi

' d

dx
INu

����
xi

=

NX
j=0

u(xj)Dij :

The entries of the di�erentiation matrix, D, are

Dij =
dlj
dx

����
xi

=
1

2

8><
>:
(N + 2) i = j = 0

1 i = j 6= 0
LN+1(xi)
LN+1(xj)

2
xi�xj

i 6= j

: (6.140)

As for the di�erentiation matrices based on the ultraspherical Gauss-

Radau points, there are no symmetries in the operator di�erentiation

matrix.

Higher order derivatives can be computed by using backward recur-

rence repeatedly, by de�ning higher-order di�erentiation operators by

repeated di�erentiation of Eq.(6.139) at the grid points, or by repeated

application of the di�erentiation matrix, Eq.(6.140).

Alternative choices of grid points, leading to slightly di�erent La-

grange polynomials and di�erentiation matrices, are discussed in [89,

26, 91].
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6.5 Approximation by Hermite Polynomials

Let us, following the approach of the last few sections, �nally discuss

the use of Hermite polynomials, introduced in Sec. 6.2.4, for the repre-

sentation of functions de�ned on the doubly in�nite interval as well as

the approximation of derivatives.

6.5.1 The Continuous Expansion.

Consider the continuous expansion of a function, u(x) 2 L2
w[�1;1],

using Hermite polynomials as

u(x) =

1X
n=0

ûnHn(x) ; (6.141)

where the expansion coeÆcients are given as

ûn =
1

n
(u;Hn)L2w[�1;1] =

1

n

Z 1

�1

u(x)Ln(x) exp(�x2) dx ; (6.142)

by the orthogonality of the polynomials. The normalization is

n = kHn(x)k2L2w [�1;1] =
p
�2nn! :

Similar to previously discussed polynomial expansions the �rst thing to

address in the context of spectral methods is how to use the expansion

of u(x), Eq.(6.141), to recover expressions for the expansion coeÆcients

of the derivatives of u(x). The required connection can be established

from a result similar to that of Theorem 39 as

Theorem 52. Assume that the q'th derivative, u(q)(x) 2 L2
w[�1;1],

is expanded in Hermite polynomials as

u(q)(x) =

1X
n=0

û(q)n Hn(x) :

Then the representation of u(q�1)(x),

u(q�1)(x) =
1X
n=0

û(q�1)n Hn(x) ;

can be recovered up to a constant using the relation (n > 0)
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û(q�1)n =
1

2n
û
(q)
n�1 :

We note that the di�erentiation operator, as for the Fourier basis but

contrary to the expansions based on ultraspherical or Laguerre polyno-

mials, is diagonal. Hence, if we consider the �nite expansion expansion

PNu(q�1)(x) = dq�1

dxq�1
PNu =

NX
n=0

û(q�1)n Hn(x) ;

we recover the approximate expansion

PNu(q)(x) = dq

dxq
PNu =

NX
n=0

û(q)n Hn(x) ;

through the backward recurrence

û
(q)
n�1 = 2nû(q)n ; (6.143)

using that û
(q)
N = 0 due to the nature of the expansion. Note also, that

the diagonality of the di�erentiation operator implies that truncation

and di�erentiation commute as for the continuous Fourier expansion.

6.5.2 The Discrete Expansion.

Consider the discrete Hermite expansion

INu(x) =
NX
n=0

~unHn(x) ; ~un =
1

~n

NX
j=0

u(xj)Hn(xj)wj :

We shall �rst consider a suitable quadrature rule. Among several alter-

natives we shall focus the attention on grid points, xj , de�ned as the

zeros of HN+1(x), i.e., in the terminology of the Sec. 6.3.2 it represents

the Gauss points. For this one can show [?, 26] that

NX
j=0

u(xj)wj =

Z 1

1

u(x) exp(�x2) dx ; (6.144)

provided u(x) 2 B2N+1, i.e., for all polynomials of order 2N+1. We shall

thus refer to this quadrature as a Gauss quadrature with the weights
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wj =
p
�2N+2(N + 1)!

�
H 0
N+1(xj)

��2
:

As for ultraspherical expansion we may use the three-term recurrence

relation of the Hermite-polynomials, Eq.(6.57), to derive a Christo�el-

Darboux identity for the Hermite polynomials, hence establishing that

INu(x) =
NX
n=0

~unHn(x) =

NX
j=0

u(xj)lj(x) ;

i.e., the discrete expansion represents an N'th order interpolation poly-

nomial based on the Gauss- points, xj . The Lagrange interpolation

polynomial is given on explicit form as

lj(x) =
HN+1(x)

H 0
N+1(xj)(x� xj)

: (6.145)

With this result, we have recovered the duality of the discrete expansion

and the Lagrange interpolation polynomials based on the Hermite-Gauss

points, hence pawing the way for the approximation of derivatives using

the direct connection, Eq.(6.143), as for the continuous expansion or by

the de�nition of the di�erentiation matrix

IN du
dx

����
xi

' d

dx
INu

����
xi

=

NX
j=0

u(xj)Dij ;

emphasizing the introduction of the aliasing error, and with

Dij =
dlj
dx

����
xi

=

(
xi i = j
H`N+1(xi)
H`N+1(xj)

1
xi�xj

i 6= j
: (6.146)

It follows directly from Eq.(6.53) that the Hermite polynomials are

endowed with a symmetry as Hn(x) = (�1)nHn(�x). This immedi-

ately implies that D is centro-antisymmetric, i.e., Dij = �DN�i;N�j as

was the case for the di�erentiation matrices based on the ultraspherical

Gauss- or Gauss-Lobatto grid points.

Higher order derivatives can be computed by using the simple re-

lation, Eq.(6.143), between expansion coeÆcients repeatedly. Alterna-

tively, one can de�ne higher-order di�erentiation operators by repeated

di�erentiation of Eq.(6.145) at the grid points or by repeated application

of the di�erentiation matrix, Eq.(6.146).
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6.6 Approximation Theory for Smooth Functions.

In Sec. 6.2.1 we established that since the orthogonal polynomials ap-

pear as solutions to a singular Sturm-Liouville problem, we expect the

polynomial expansion of smooth functions to converge at a rate depend-

ing only on the smoothness of the function being approximated. Indeed,

for C1-functions we expect the convergence rate to be faster than any

algebraic order of N , the maximum polynomial order in a way similar

to that of Fourier series representations of analytic periodic functions.

In this section we shall discuss this in more detail for function of �nite

regularity. We aim at obtaining approximation results to con�rm the

accuracy in a quantitative manner. While the convergence behavior for

the continuous expansion is closely related to the orthogonal polynomials

themselves we need, as for the discrete Fourier expansion discussed in

Sec. 4.3.2, to pay particular attention to the behavior of the discrete

expansions due to the aliasing error.

The literature on approximation theory using orthogonal polynomials

is vast and we will not attempt to survey all results in a rigorous manner.

Rather we focus on the results of central importance in the present

context of spectral methods and state more peripheral results without

proof only.

6.6.1 Approximation by Ultraspherical Polynomial

Expansions.

The ultraspherical polynomials holds a central position in the theory of

spectral methods and it is also for expansions based on these polyno-

mials, and in particular for expansions using Legendre and Chebyshev

polynomials, that the theory is most complete. Hence, while we shall

quote results of a general nature we shall pay special attention to the

properties of approximations based on Legendre and Chebyshev poly-

nomials when speci�c results are available for these expansions only.

6.6.1.1 The Continuous Expansion

Recall the spectral expansion

PNu(x) =
NX
n=0

ûnP
(�)
n (x) ; ûn =

1

n

�
u; P (�)

n

�
w

:

The aim is to estimate the distance between u(x) and PNu in the



222 6. Orthogonal Polynomials

weighted Sobolev norm, k � kHm
w [�1;1], where w(x) is the weight under

which P
(�)
n (x) is orthogonal.

To establishing the basic approximation results for expansions utiliz-

ing ultraspherical polynomials we rely on the approach �rst proposed in

[12], and here extended to include the general ultraspherical polynomial

basis.

Theorem 53. For any u(x) 2 Hp
w[�1; 1] and p � 0 there exists a

constant C, independent of N , such that

ku�PNukL2w[�1;1] � CN�p kukHp
w[�1;1]

:

Proof: We shall �rst recall Parsevals identity to obtain

ku�PNuk2L2w[�1;1] =
1X

n=N+1

njûnj2 :

The expansion coeÆcients, ûn, are given as

ûn =
1

n

Z 1

�1

u(x)P (�)
n (x)(1� x2)� dx ;

where P
(�)
n (x) satis�es the Sturm-Liouville equation

(1� x2)��
d

dx
(1� x2)�+1

dP
(�)
n

dx
+ �nP

(�)
n = [Q+ �n]P

(�)
n = 0 :

Here �n = n(n+2�+1) is the eigenvalue associated with the N'th order

ultraspherical polynomial, P
(�)
n (x).

Repeated integration by parts of ûn yields

ûn =
(�1)p
n�mn

Z 1

�1

[Qmu(x)]Pn(x)w(x) dx ;

due to the singularity of Q. We have

jûnj2 � C
1

n�2mn
kQmuk2L2w[�1;1] ;

using Cauchy-Schwarz. To bound this, we recall that

Qu = (1� x2)
d2u

dx2
� 2x(1 + �)

du

dx
:
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Since jxj � 1, we have

kQukL2w[�1;1] � CkukH2
w[�1;1]

;

which, by induction, yields

kQmukL2w[�1;1] � CkukH2m
w [�1;1] :

Combining the above results gives

ku�PNuk2L2w[�1;1] � Ckuk2H2m
w [�1;1]

1X
n=N+1

��2mn � CN�4mkuk2H2m
w [�1;1] :

Taking p = 2m establishes the result. QED

To arrive at a more general result in higher norms, we shall employ

a result on the error due to loss of commutation of truncation and dif-

ferentiation.

Theorem 54. For any u(x) 2 Hp
w[�1; 1] and j�j � 1

2 there exists a

constant C, independent of N , such thatPN dudx � d

dx
PNu


Hq
w [�1;1]

� CN2q�p+3=2 kukHp
w [�1;1]

;

where 1 � q � p.

Proof: We shall give the proof in detail for N being even only as that

for N being odd follows from an equivalent line of arguments.

Let us �rst of all recall that if

u(x) =

1X
n=0

ûnP
(�)
n (x) ;

then we have

du

dx
=

1X
n=0

û0nP
(�)
n (x) ; û0n = (2n+ 2�+ 1)

1X
p=n+1

p+n odd

ûp ;

and
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du

dx
=

1X
n=0

ûn
dP

(�)
n

dx
;
dP

(�)
n

dx
=

n�1X
k=0

k+n odd

(2k + 2�+ 1)P
(�)
k (x) :

This yields that

PN du
dx
� d

dx
PNu =

N�1X
n=0

"
û0nP

(�)
n � ûn

dP
(�)
n

dx

#
+ û0NP

(�)
N :

Inserting the expressions for û0n and
�
P
(�)
n

�0
gives

û0nP
(�)
n � ûn

�
P (�)
n

�0
=

n�1X
k=0

k+n odd

1X
p=n+1

p+n odd

h
(2n+ 2�+ 1)ûpP

(�)
n � (2k + 2�+ 1)ûnP

(�)
k

i
:

Carefully rearranging the terms we have

PN du
dx
� d

dx
PNu = 1

2N + 2�+ 1
û0N

�
P
(�)
N+1

�0
+

1

2N + 2�� 1
û0N�1

�
P
(�)
N

�0
:

To bound this, �rst recall that û0k are scalars and that
�
P
(�)
k

�0
are

orthogonal polynomials. Hence, we havePN dudx � d

dx
PNu


2

L2w[�1;1]

=
jû0N j2

(2N + 2�+ 1)2
�2
N+1+

jû0N�1j2
(2N + 2�� 1)2

�2
N ;

where

�2
N =

�P (�)
N

�0
2

L2w[�1;1]

:

We have that

jû0N j2 � ku0 � PN�1u
0k2L2w[�1;1] � CN2(1�p)kuk2Hp

w[�1;1]
;

using Theorem 53 with p � 1 and Parsevals identity. Furthermore we

have
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�P (�)
N

�0
2

L2w[�1;1]

=


N�1X
k=0

k+N odd

(2k + 2�+ 1)P
(�)
k


2

L2w[�1;1]

�
N�1X
k=0

k+N odd

(2k + 2�+ 1)2k � CN3

using orthogonality of P
(�)
k (x) and that k, Eq.(6.60), is bounded in k

provided j�j � 1
2 .

Combining these estimates yieldsPN dudx � d

dx
PNu


2

L2w[�1;1]

� CN3�2pkuk2Hp
w[�1;1]

:

Generalization to higher norms follows by �rst considering

ku�PNuk2Hq
w[�1;1]

=

qX
m=0

u(m) � dm

dxm
PNu


2

L2w[�1;1]

:

We have

dm

dxm
PNu =

NX
n=0

ûn
dm

dxm
P (�)
n (x) ;

which, in combination with���� dmdxmP (�)
n (x)

���� � CN2m
���P (�)

n (x)
��� ;

from the Sturm-Liouville equations and the Poincar�e inequality, yields

ku�PNuk2Hq
w[�1;1]

� CN2qku�PNuk2L2w[�1;1] ;

by using the Bessel inequality. Combining this with the previous result

yields the theorem. QED

This result paves the way for a generalization of Theorem 53 as

Theorem 55. For any u(x) 2 Hp
w[�1; 1] there exists a constant C,

independent of N , such that
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ku�PNukHq
w[�1;1] � CN�(q;p) kukHp

w[�1;1]
;

where

�(q; p) =

�
3
2q � p 0 � q � 1

2q � p� 1
2 q � 1

;

and 0 � q � p.

Proof: It suÆces to prove it for integer values of q and then apply

interpolation between spaces [?]. Hence, for q = 0 we recover the result

of Theorem 53. For higher norms we can use the triangle inequality to

obtaindudx � d

dx
PNu

 �
dudx �PN dudx

+
PN dudx � d

dx
PNu

 ;

where each term can be bounded by Theorems 53 and 54. QED

A couple of remarks are in place regarding these results. First of all

we note that, as expected, all results con�rm that the convergence rate of

the continuous expansion depends solely on the regularity of the function

being approximated. However, Theorem 55 also suggest that one can

construct a function, u(x) 2 H1
w[�1; 1], for which PNu converges with

the prescribed rate but the derivative of the truncated approximation

does not converge to u0(x). This is in contrast to the Fourier case where

u(x) 2 H1
p [0; 2�] suÆces to guarantee L2-convergence of the derivative.

To appreciate this di�erence, let us consider a simple example.

Example 27. Consider the function

u(x) =
1

2N + 1
[PN+1 � PN�1] ;

where Pn(x) = P
(0)
n (x) represents the Legendre polynomials as usual

and N is assumed even. This particular choice means that

du

dx
= PN (x) ;

using the recurrence for the Legendre polynomials, Eq.(6.25). From
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Parseval's identity we immediately get

kuk2L2[�1;1] =
1

(2N + 1)2

�
2

2N + 3
+

2

2N � 1

�
;

which is bounded for all values of N . Furthermore, we have that

ku0k2L2[�1;1] =
2

2N + 1
;

i.e. u(x) 2 H1[�1; 1] (but not in H2[�1; 1]).
Let us now assume that we wish to approximate u(x) by a truncated

Legendre expansion as

PNu =
NX
n=0

ûnPn(x) :

The expansion coeÆcients follows directly from the de�nition of u(x).

Consider the error induced by the loss of commutation as

d

dx
PNu�PNu0 = � 1

2N + 1

dPN+1

dx
:

Using Parseval's identity we recover

 ddxPNu�PNu0

2

L2[�1;1]

=
1

(2N + 1)2

NX
n=0

n even

(2n+ 1)2n

=
2

(2N + 1)2

NX
n=0

n even

2n+ 1

=
(N + 1)(N + 2)

(2N + 1)2
:

Hence, for large N we have ddxPNu�PNu0

L2[�1;1]

' 1

2
:

However, since we have that

1

2N + 1
� kuk2H1[�1;1] �

2

2N + 1
;
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one recovers that ddxPNu�PNu0

L2[�1;1]

� C
p
Nkuk2H1[�1;1] ;

which diverges as N increases. The divergence is caused by the inabil-

ity of the derivative of the truncated approximation to approximate the

derivative of u, as predicted in Theorem 54.

As the example con�rms, the bounds in Theorem 54 and, hence, Theo-

rem 55, are sharp and we can construct functions in H1[�1; 1] for which
the derivative of the truncated expansion diverges.

6.6.1.2 The Discrete Expansion.

The analysis of the properties of the discrete interpolation expansion,

INu(x) =
NX
n=0

~unP
(�)
n (x) =

NX
j=0

u(xj)lj(x) ;

is considerably more complex than for the continuous expansion dis-

cussed above and the theory remains incomplete As for the discrete

Fourier expansion, discussed in detail in Sec. 4.3, the main reason for

this added complexity is the aliasing error introduced as a consequence

of the use of a discrete, grid based representation of the function be-

ing approximated. Under the assumption of suÆcient smoothness, e.g.,

u(x) 2 H1
w[�1; 1], the aliasing error is reected in

~un = ûn +
1

~n

1X
k>N

h
P (�)
n ; P

(�)
k

i
w
ûk ;

where we recall [�; �]w as being the discrete inner product introduced in

Sec. 6.3.3. It follows from orthogonality that

ku� INk2L2w[�1;1] = ku�PNk
2
L2w[�1;1]

+ kRNuk2L2w[�1;1] ;

where the aliasing error takes the form

RNu(x) =
NX
n=0

1

~n

 
1X

k>N

h
P (�)
n ; P

(�)
k

i
w
ûk

!
P (�)
n (x) :

Interchanging the two summations we recover the simple expression
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RNu(x) =

1X
k>N

�
INP (�)

k

�
ûk :

We can thus interpreted the aliasing error as the error induced by using

the interpolation of the basis, INP (�)
k , rather than the basis itself to

represent the higher modes. As we can not distinguish between lower

and higher modes at a �nite grid, this introduces an error exactly as in

the discrete Fourier case.

Let us attempt to arrive at a qualitative understanding of the aliasing

error before we continue with more rigorous results. Among other things

this will help to identify situations where the aliasing error may become

signi�cant.

Example 28. We restrict ourselves to expansions based on Legendre

polynomials and the associated Gauss-quadratures. However, the main

conclusions are valid for the ultraspherical polynomials and associated

general quadratures also.

Let us �rst recall that

kRNuk2L2[�1;1] �
1X

k>N

(INPk)2 jûkj2 � Ck�2pkuk2Hp[�1;1] ;

as an consequence of Theorem 53. Furthermore we have

INPk =
NX
n=0

~pnPn ; ~pn =
1

n

NX
j=0

Pk(zj)Pn(zj)vj ;

where zj and uj are the Legendre-Gauss points and weights, respectively,

as discussed in Sec. 6.3.2.4. Let us also recall that while the Gauss

quadrature is exact for all f 2 B2N+1, using the quadrature on general

functions introduces an error as

EN (f) =

Z 1

�1

f dx�
NX
j=0

f(zj)uj =
22N+3

2N + 3

�(N + 2)4

�(2N + 3)

d2N+2

dx2N+2
f(�) ;

provided f 2 C2N+2[�1; 1]. Here � 2 [�1; 1]. The latter expression is a

standard error term for Gauss quadratures and can be found in e.g. [?].

Utilizing the orthogonality of Pn and Pk { recall n � N < k { we



230 6. Orthogonal Polynomials

recover

~pn = � 1

n
EN (PnPk) = �2N + 1

2

22N+3

2N + 3

�(N + 2)4

�(2N + 3)

d2N+2

dx2N+2
Pn(�)Pk(�) ;

for n + k > 2N + 1 and zero otherwise. Assuming N large and using

Stirling's formula for �(N), we recover the bound

j~pnj � C exp (�N)NN

 d2N+2

dx2N+2
Pn(�)Pk(�)


L2[�1;1]

:

The latter term is be bounded as d2N+2

dx2N+2
Pn(�)Pk(�)


L2[�1;1]

� C(n+ k)4N+4 kPn(�)Pk(�)kL2[�1;1] :

With this, one derives a bound on the aliasing error as

kRNukL2[�1;1] � C exp (�N)N�(N)

 
1X

k>N

k�(N)�p

!
kukHp[�1;1];

where C is independent of N while �(N) and �(N) represent linear

algebraic expressions in N . Clearly, for u being suÆciently smooth, we

can always �nd p such that the sum is �nite, i.e., p > �(N) + 1, and,

furthermore, we can �nd a larger p, i.e., p > �(N)+�(N)+1, suÆcient

to guarantee exponential decay of the aliasing error as N increases. In

other words, for smooth well resolved functions the aliasing error is not

expected to a�ect the convergence properties of the discrete expansion

in any signi�cant way.

Quantitative results, the proof of which are highly technical and omitted

in the following, for the interpolation using ultraspherical Gauss- and

Gauss-Lobatto nodes are discussed in detail in [?]. In particular we

quote the following result

Theorem 56. Assume that u 2 Hp
w[�1; 1] with p > 1

2 max(1; 1 + �)

where INu is constructed using ultraspherical polynomials, P�
n (x), with

j�j � 1. Then there exists a constant, C, depending on � and p but not

on N such that

ku� INukL2w[�1;1] � CN�pkukHp
w[�1;1]:
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This holds for Gauss and Gauss-Lobatto based interpolations.

Hence, the result con�rms that for well resolved smooth functions the

qualitative behavior of the continuous and the discrete expansion is sim-

ilar for all practical purposes.

To be more speci�c and reach results in higher norms we leave the

general ultraspherical expansion and consider discrete expansions based

on Legendre and Chebyshev polynomials and the associated Gauss-type

quadrature points.

Results for the Discrete Legendre Expansion. Consider �rst the

discrete Legendre expansion

INu(x) =
NX
n=0

~unPn(x) =

NX
j=0

u(xj)lj(x) :

The most general result is given as [11]

Theorem 57. For any u(x) 2 Hp[�1; 1] with p > 1
2 and 0 � q � p,

there exists a positive constant, C, independent of N , such that

ku� INukHq [�1;1] � CN2q�p+1=2kukHp[�1;1] :

The proof of this result, again somewhat technical, can be found in [11].

However, we note that for q = 0, the result is suboptimal for Gauss and

Gauss-Lobatto based interpolation and Theorem 56 presents a sharper

bound.

Again we observe that for functions with suÆcient smoothness, i.e.,

for any u(x) 2 Hp[�1; 1] with p � 1, we recover results similar to those

for the continuous expansion stated in Theorem 55, although the exact

convergence rate is lowered by 1. However, for smooth functions the

aliasing error does not modify the convergence rate of the discrete ex-

pansion as compared to the continuous expansion in any substantial way

and spectral convergence for analytic functions is maintained [?]

A straightforward combination of Theorems 56 and 57 yields an esti-

mated of the commutation errorIN dudx � d

dx
INu


L2[�1;1]

� N
5
2�pkukHp[�1;1] ;

which should be compared with the result of Theorem 54, con�rming the
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modi�cation of the convergence rate but the persistence of the spectral

convergence.

Results for the Discrete Chebyshev Expansion. The behavior of

the discrete Chebyshev expansion

INu(x) =
NX
n=0

~unTn(x) =

NX
j=0

u(xj)lj(x) ;

is most easily understood by utilizing the close connection between the

Chebyshev expansion and the Fourier/Cosine series. Indeed, if we intro-

duce the transformation, x = cos(�), the aliasing error can be expressed

on a simple form since

~pn =
1

~n
[Tk(x); Tn(x)]N =

�
1 k = 2Np� n p = 0;�1;�2:::
0 else

;

as a direct consequence of the discrete orthogonality of the exponential

function and hence the cosine function. This immediately yields that

RNu =

1X
k>N

(INTk)ûk =
p=1X
p=�1
p 6=0

(û2Np+n + û2Np�n)Tn(x) :

Comparing with the Lemma 5 highlights the close connection between

the Chebyshev and the Fourier expansion.

In light of this it comes as no surprise that

Theorem 58. For any u(x) 2 Hp[�1; 1] with p > 1
2 and 0 � q � p,

there exists a positive constant, C, independent of N , such that

ku� INukHq
w[�1;1] � CN2q�pkukHp

w[�1;1] :

Proof: For q = 0 the result follows by evenly extending a function

u(cos(�)), � 2 [0; �] around � = � to cover the whole domain [0; 2�]. In

this case the Fourier interpolation becomes a cosine series and we can

thus take the result from Theorem 11 to obtain

ku� INukL2w[�1;1] =
1p
2
ku� INukL2[0;2�] � CN�pkukHp

w[�1;1] :

The extension to higher Sobolev norms follows with equal ease by real-

izing that
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ku� INukH1
w[�1;1]

� ku� INuk2L2w[�1;1] + ku
0 � (INu)0kL2w[�1;1] ;

where the latter term can be bounded by an inverse inequality as

ku0 � (INu)0kL2w[�1;1] � N2ku� INuk2L2w[�1;1] :

The general result follows by induction. QED

Let us �nally quote the L1-error for the discrete Chebyshev expan-

sion as [11]

Theorem 59. For any u(x) 2 Hp
w[�1; 1] with p > 1

2 , there exists a

positive constant, C, independent of N , such that

ku� INukL1[�1;1] � CN1=2�pkukHp
w[�1;1] :

6.6.2 Approximation by Laguerre Polynomial

Expansions.

For reference and completeness of the discussion let us also briey sum-

marize some central approximation results for expansions of functions,

u(x) 2 L2
w[0;1], using continuous and discrete Laguerre expansions.

In the spirit of the analysis for ultraspherical expansions, let us �rst

consider the behavior of the continuous expansion, Eqs. (6.134)-(6.135).

From [90] we have the result

Theorem 60. For any u(x) 2 Hp
w[0;1], p > 0 there exists a positive

constant, C, independent of N , such that

ku�PNukHq
w[0;1] � CNq�p=2kukHp

w[0;1] ;

where 0 < q < p.

This is the most general result needed in the context of spectral methods

as we have seen in Sec. 6.6.1. A signi�cant di�erence is the lower

convergence rate for p �nite, i.e.,
p
N
p
rather than Np as we have seen

previously. In particular, it follows immediately that
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 ddxPNu�PN dudx

L2w[0;1]

� CN1�p=2kukHp
w[0;1] ;

for p � 1. As for the ultraspherical polynomials this indicates that one

can construct functions, u(x) 2 H1
w[0;1], for which the derivative of

the truncated approximation is divergent as exempli�ed for the ultras-

pherical expansion in Ex. 27.

A general idea of when the Laguerre expansion will work well can be

obtained by viewing the Laguerre expansion as a regular L2 expansion

in the function

 n(x) = Ln(x) exp(�x=2) :

Clearly, for functions that exhibit a decay dramatically di�erent from

e�x=2 the expansion is less natural and can be expected to exhibit very

slow convergence. On the other hand, for simple rapidly decaying func-

tions the Laguerre expansion can work well [90, 92].

For the Gauss-Radau based discrete expansion, Eq.(6.137), discussed

in Sec. 6.4.2 a result similar to the one above has been proven in [90] as

Theorem 61. For any u(x) 2 Hp
w[0;1], p > 1

2 there exists a positive

constant, C, independent of N , such that

ku� INukHq
w[0;1] � CNq�p=2+1=2kukHp

w[0;1] ;

where 0 � q � 1
2 < p.

This indicates that we loose at most
p
N due to aliasing.

6.6.3 Approximation by Hermite Polynomial

Expansions.

Let us �nally summarize the key results for the expansion of functions,

u(x) 2 L2
w[�1;1], using continuous and discrete Hermite expansions.

As in the previous sections, let us begin by considering the behavior

of the continuous expansion, Eqs. (6.141)-(6.142). From [26] we have

Theorem 62. For any u(x) 2 Hp
w[�1;1], p > 0 there exists a positive

constant, C, independent of N , such that
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ku�PNukL2w[�1;1] � CN�p=2kukHp
w[�1;1] :

As for the Laguerre expansion we can appreciate the limitations of the

Hermite expansion by viewing it as an L2 expansion in the Hermite

function

 n(x) = Hn(x) exp(�x2=2) :

If, indeed, the function exhibit a decay dramatically di�erent from e�x
2=2

the expansion is less natural and can be expected to exhibit very slow

convergence On the other hand, for simple rapidly decaying functions

the Hermite expansion can work well as examples in [?] veri�es.

For the Gauss based discrete expansion, Eq.(6.144), discussed in Sec.

6.5.2 a result is given in [26] on the form

Theorem 63. For any u(x) 2 Hp
w[�1;1], p > 1 there exists a positive

constant, C, independent of N , such that

ku� INukL2w[�1;1] � CN�p=2+1=2kukHp
w[�1;1] :

As for the Laguerre expansion, this indicates that we loose at most
p
N

due to aliasing.
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Exercises

1. Assume that u(x) has a point of discontinuity at x0 and construct v(x)
such that it equals u(x) outside the interval of [x0 � Æ; x0 + Æ]. Inside
this interval, we construct v(x) by a line segment connecting the point of
(x0 � Æ; u(x0 � Æ)) with (x0 + Æ; u(x0 + Æ)).
Prove that

lim
Æ!0

ku(x)� v(x)kL2[0;1] = 0 ;

i.e. prove that any function, u(x) 2 L2[�1; 1], can be approximation ar-
bitrarily well in mean by a C0[�1; 1] function.

2. Assume that u(x) 2 L2
w[�1; 1] and that it is expanded in an orthogonal

and complete basis as

u(x) =

1X
n=0

ûn�n(x) :

Prove that if

PNu =

NX
n=0

ûn�n(x) :

is convergent in the mean thenZ 1

�

u2(x)w(x)dx = (u; u)w =

1X
n=0

nû
2
n :

3. Prove that if �n(x) is an nth order polynomial, then the only solution to

�(1� x2)�00n(x) + ((�+ � + 2)x+ �+ �)�0n(x) = �n�n(x) ;

is

�n = n(n+ � + � + 1) :

4. Prove that the recurrence relation in Theorem 32 has the coeÆcient given
in Eq.(6.19).

HINT: Prove �rst that

~a
(�;�)
n�1;n =

n+ �+ � + 1

n + �+ �
a
(�+1;�+1)
n�2;n�1 ;

~a(�;�)n;n = a
(�+1;�+1)
n�1;n�1 ;

~a
(�;�)
n+1;n =

n+ �+ � + 1

n+ �+ � + 2
a
(�+1;�+1)
n;n�1 :
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5. Combine Eq.(6.40) and Eq.(6.45) to prove Lemma 8.

6. Prove Theorem 51.

7. Derive Eq.(6.139) using the de�nition of the Lagrange polynomials and
the properties of the Laguerre polynomials.

8. Plot the Legendre polynomials, Pn(x), for n = 0� 5.

9. Plot the Chebyshev polynomials, Tn(x), for n = 0� 5.

10. Compute the discrete Chebyshev expansion, based on the Chebyshev
Gauss Lobatto points, of the following functions (x 2 [�1; 1])
(a) u(x) = x7

(b) u(x) = j sin(�x)j
(c) u(x) = sign(x)

and compute the L1 error when increasing N , the length of the expansion.

11. (Continued) Repeat the computations using the Chebyshev Gauss points.
Do you see a di�erence ?

12. Compute the derivative of the functions (x 2 [�1; 1])
(a) u(x) = x7

(b) u(x) = (1:1� x)�1

(c) u(x) = j sin(�x)j
using the di�erentiation matrix based on the Chebyshev Gauss-Lobatto
points. Compute the L1 and L2

w-error for increasing length N of the
expansion.

13. (Continued) Repeat the computation using the backward recurrence. Do
you see a di�erence ?

14. Derive the entries for the 2nd order Chebyshev di�erentiation matrix
based on the Gauss-Lobatto points.

15. (Continued) Compare these entries to those computed by matrix-multiplication
for increasing values of N (take N larger than 100).

16. (Continued) It has been suggested that one should initialize the diagonal
of the di�erentiation matrices as

Dii = �
NX
j=0
j 6=i

Dij :

Explain why this makes sense and verify whether it has any impact on
the accuracy of the entires of D(2) when these are computed from D.
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7

Polynomial Spectral Methods

Having identi�ed the orthogonal polynomials as a suitable choice of basis

on which to base the development of spectral methods, we can now

return to the actual development of such methods for solving partial

di�erential equations.

As in Chapter 5, where we discussed schemes based on Fourier ex-

pansions, we shall discuss the issue of how to satisfy the equation, i.e.,

we shall concern ourselves with the details of the Galerkin, the tau and

the Collocation methods when using polynomial expansions. The key

di�erence between the previous discussion is that we need to consider

methods for enforcing nontrivial boundary conditions. For the sake of

simplicity, we shall also restrict ourselves to problems involving smooth

solutions and return to the special issues related to non-smooth problems

in the following chapter.

We consider the construction of schemes for the problem

@u(x; t)

@t
= Lu(x; t) ; x 2 [a; b] ; t � 0 ; (7.1)

B�u(a; t) = 0 ; t � 0

B+u(b; t) = 0 ; t � 0

u(x; 0) = f(x) ; x 2 [a; b] ; t = 0 :

where B� represent the boundary operator at x = a and x = b, respec-

tively, with a and/or b possibly being unbounded.

For ease of exposure we restrict much of the discussion to methods

based on Legendre or Chebyshev expansions on the �nite interval [�1; 1].
However, all results extend in a straightforwardmanner to schemes based

239
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on ultraspherical polynomials in general. We also briey discuss special

concerns related to the construction of methods using Laguerre or Her-

mite expansions for problems on unbounded intervals.

7.1 Polynomial Methods on the Bounded Interval

The formulation of spectral methods for solving initial boundary value

problems involve choosing the polynomial space, BN , in which the ap-

proximate solution is sought, and the speci�cation of the projection op-

erator, PN , detailing how the equation is satis�ed. As discussed in

Chapter 3 these requirements split the development of the methods into

three distinct categories to which we shall attend in what follows.

7.1.1 Galerkin Methods.

In the polynomial Galerkin method we seek solutions, uN(x; t) 2 BN , to
Eq.(7.1) of the form

uN (x; t) =

NX
n=0

ûn(t)�n(x) ;

where �n(x) represents a polynomial basis and the polynomial space,

BN , in which we seek solutions is given as

BN = span
n
�n(x) 2 span

�
xk
	n
k=0

jB��n(�1) = 0 ; B+�n(1) = 0
oN
n=0

:

The N + 1 equations for the unknown expansion coeÆcients, ûn(t), are

obtained from Eq.(7.1) by requiring the residual

RN (x; t) =
@uN
@t

�LuN(x; t) ;

is orthogonal to BN in L2
w[�1; 1]. Using the testfunctions,  k(x) =

�k(x)=k, this yields

8k 2 [0; N ] :

NX
n=0

Mkn
dûn
dt

=

NX
n=0

Sknûn(t) ;

Hence, the basis-functions, �n(x), must satisfy the boundary conditions

individually as there is no other mechanism by which to impose the

boundary conditions.
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We have introduced the mass-matrix, M, with the entries

8k; n 2 [0; N ] : Mkn =
1

k

Z 1

�1

�k(x)�n(x)w(x) dx ;

where w(x) 2 L1[�1; 1] signi�es a weight-function. Likewise, we have

the entries of the sti�ness-matrix, S, as

8k; n 2 [0; N ] : Skn =
1

k

Z 1

�1

�k(x)L�n(x)w(x) dx :

The basis, �n(x), is usually constructed from a linear combination of

P
(�)
n (x) to ensure that the boundary conditions are satis�ed for all

�n(x). In this case it is natural to choose the weight-function, w(x),

such that (P
(�)
n ; P

(�)
k )w = nÆnk, thereby completing the speci�cation

of the scheme.

We consider in the following a few examples of polynomial Galerkin

methods to illustrate the steps needed to formulate such methods.

Example 29. Consider �rst the linear hyperbolic problem

@u

@t
=
@u

@x
;

where we assume that u(x; t) 2 L2
w[�1; 1] and the solution is subject to

the boundary condition

u(1; t) = 0 ;

with the initial condition u(x; 0) = f(x).

We wish to solve the problem using a Chebyshev Galerkin method.

However, as Tn(1) = 1 we must modify the basis to obtain a Galerkin

formulation. There are indeed many ways of specifying polynomials that

satisfy the boundary conditions and spans BN and a viable choice could

be

�n(x) = Tn(x)� 1 :

Thus, we seek solutions, uN(x; t) 2 BN , of the form

uN (x; t) =

NX
n=1

ûn(t)�n(x) =

NX
n=1

ûn(t) (Tn(x) � 1) :
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Note that the sum is from n = 1 rather than n = 0 since  0(x) = 0. We

now require that the residual

RN (x; t) =
@uN
@t

� @uN
@x

;

is orthogonal to �n(x) in L
2
w[�1; 1] as

8k 2 [1; N ] :
2

�

Z 1

�1

RN (x; t)�k(x)
1p

1� x2
dx = 0 :

We have chosen w(x) as the weight for which Tn(x) is orthogonal to

simplify the scheme. While this is natural it is not necessary.

This yields the Chebyshev Galerkin scheme

8k 2 [1; N ] :

NX
n=1

Mkn
dûn
dt

=

NX
n=1

Sknûn(t) ;

where the mass-matrix has the entries

Mkn =
2

�

Z 1

�1

(Tk(x)� 1) (Tn(x)� 1)
1p

1� x2
dx = 2 + Ækn :

Computing the entries of the sti�ness-matrix requires a little more work.

Indeed, the entries are given as

8k; n 2 [1; N ] : Skn =
2

�

Z 1

�1

(Tk(x) � 1)
dTn(x)

dx

1p
1� x2

dx :

Using Eq.(6.31) we obtain

dTn(x)

dx
= 2n

n�1X
p=0

p+n odd

Tp(x)

cp
;

where c0 = 2 and cp = 1 otherwise as usual. Introducing this into the

expression for the sti�ness-matrix yields

Skn =
2

�

Z 1

�1

(Tk(x)� 1) 2n

n�1X
p=0

p+n odd

Tp(x)

cp

1p
1� x2

dx
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= 2n

n�1X
p=0

p+n odd

(Ækp � Æ0p) :

This completes the speci�cation of the Chebyshev Galerkin scheme and

we have N equations for the N unknowns, û = (û1; : : : ; ûN)
T , on the

form

dû

dt
= M�1Sû(t) ;

with the initial conditions given as

8n 2 [1; N ] : ûn(0) =
2

�

Z 1

�1

f(x) (Tn(x)� 1)
1p

1� x2
dx :

The formulation of the Chebyshev Galerkin is a bit cumbersome and

involves, in the general case, the inversion of a mass-matrix, which de-

pends on the speci�cation of the basis. The mass-matrix is, however,

symmetric and positive de�nite. The latter property follows by consid-

ering a general non-zero N -vector, u, and using the de�nition of M to

obtain

uTMu =

NX
i;j=0

uiujMij

=

NX
i;j=0

uiuj

Z 1

�1

�i(x)�j (x)w(x) dx

=

Z 1

�1

 
NX
i=0

ui�i(x)

!2

w(x) dx � 0 ;

since k�kL2w[�1;1] is a norm. Thus, the inverse of M is guaranteed to exist.

Example 30. Consider the linear parabolic problem

@u

@t
=
@2u

@x2
;

where we assume that u(x; t) 2 L2[�1; 1] and the solution obeys the
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boundary conditions

u(�1; t) = u(1; t) = 0 ;

with the initial conditions u(x; 0) = f(x).

We wish to use a Legendre Galerkin methods for solving this problem.

However, since Pn(1) = 1 we must again modify the basis to derive the

Galerkin scheme. Any choice of polynomials that satisfy the boundary

conditions and spans BN is acceptable. However, a convenient choice

could be

�n(x) = Pn+1(x) � Pn�1(x) ;

which has the desired property, �n(�1) = 0. An alternative option is

�n(x) =

�
Pn(x) � P0(x) n even

Pn(x) � P1(x) n odd
:

Choosing the former, we seek solutions, uN(x; t) 2 BN , of the form

uN (x; t) =

N�1X
n=1

ûn(t)�n(x) =

N�1X
n=1

ûn(t) (Pn+1(x) � Pn�1(x)) ;

and require the residual

RN (x; t) =
@uN
@t

� @2uN
@x2

;

to be L2-orthogonal to �k(x) as

8k 2 [1; N � 1] :
2k + 1

2

Z 1

�1

RN (x; t)�k(x) dx = 0 :

This yields the Legendre Galerkin scheme

8k 2 [1; N � 1] :

N�1X
n=1

Mkn
dûn
dt

=

N�1X
n=1

Sknûn(t) ;

with the mass-matrix having the entries

Mkn =
2k + 1

2

Z 1

�1

�k(x)�n(x) dx
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=
2(2k + 1)2

(2k � 1)(2k + 3)
Ækn � 2k + 1

2k + 3
Æk;n+2 � 2k + 1

2k � 1
Æk;n�2

using the orthogonality of the Legendre polynomials. Note that the

mass-matrix is only tridiagonal, i.e., the computation of M�1 is straight-

forward.

The computation of the entries of the sti�ness matrix yields

8k; n 2 [1; N � 1] : Skn =
2k + 1

2

Z 1

�1

�k(x)
d2�n(x)

dx2
dx :

These entries can either be derived by using the properties of the Legen-

dre polynomials or use a Gauss quadrature of suÆciently high accuracy.

This yields a complete scheme for the N � 1 equations with N � 1

unknowns, û = (û1; : : : ; ûN�1)
T , as

dû

dt
= M�1Sû(t) ;

with the initial conditions given as

8n 2 [1; N � 1] : ûn(0) =
2n+ 1

2

Z 1

�1

f(x) (Pn+1(x)� Pn�1(x)) dx :

Similar to the Chebyshev Galerkin scheme for the wave equation, we

arrive at a method that requires the inversion of a matrix, albeit in

this case it is only tridiagonal. The complexities associated with the

polynomial Galerkin methods result from the complicated relationships

between the orthogonal polynomials and their derivatives, and the re-

quirement that �n(x) satisfy the boundary conditions individually. One

could of course simplify matters a bit by using quadratures of suÆcient

accuracy to compute the entries of the operators.

Example 31. Consider Burgers equation

@u

@t
+ u

@u

@x
= �

@2u

@x2
;

where u(x; t) 2 L2
w[�1; 1] with the homogeneous boundary conditions

u(�1; t) = u(1; t) = 0 ;
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and the initial condition u(x; 0) = f(x).

We shall solve Burgers equation using a Chebyshev Galerkin method,

and use the modi�ed basis

�n(x) = Tn+1(x) � Tn�1(x) ;

which has the desired property, �n(�1) = 0.

We seek solutions, uN(x; t) 2 BN , of the form

uN (x; t) =

N�1X
n=1

ûn(t)�n(x) =

N�1X
n=1

ûn(t) (Tn+1(x) � Tn�1(x)) ;

and require the residual,

RN (x; t) =
@uN
@t

+ uN
@uN
@x

� �
@2uN
@x2

;

to be orthogonal to �k(x) in L
2
w[�1; 1] as

8k 2 [1; N � 1] :
2

�

Z 1

�1

RN (x; t)�k(x)
1p

1� x2
dx = 0 :

This yields the Chebyshev Galerkin scheme

8k 2 [1; N � 1] :

N�1X
n=1

Mkn
dûn
dt

=

N�1X
n=1

Skn(û(t))ûn(t) ;

where the tridiagonal mass-matrix has the entries

Mkn =
2

�

Z 1

�1

�k(x)�n(x)
1p

1� x2
dx = 2Ækn � Æk;n+2 � Æk;n�2 :

The derivation of the sti�ness-matrix is more complicated, with the en-

tries of S consisting of contributions from the hyperbolic part, Sh, and

the parabolic part, Sp, respectively, as

Skn(û(t)) = �Shkn(û(t)) + �Spkn

= � 2

�

Z 1

�1

�k(x)�n(x)

N�1X
l=1

ûl(t)
d�l(x)

dx

1p
1� x2

dx

+�
2

�

Z 1

�1

�k(x)
d2�n(x)

dx2
1p

1� x2
dx :
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If we �rst consider the term associated with the parabolic term, we rec-

ognize this term as the one obtained for the parabolic equation in the

Example 30. The entries of this part depends only on the choice of

basis functions and may be computed once and for all using the de�ni-

tion of �n(x) and the orthogonality of the Chebyshev polynomials or,

alternatively, use a Gaussian quadrature.

The situation with the nonlinear part is worse. Here we have the

entries on the form

Shkn(û(t)) =
2

�

Z 1

�1

�k(x)�n(x)
N�1X
l=1

ûl(t)
d�l(x)

dx

1p
1� x2

dx :

By invoking the de�nition of �n(x) and the identity

2Tn(x)Tl(x) = Tjn+lj(x) + Tjn�lj(x) ;

this matrix may be simpli�ed. However, it depends on ûl(t) due to the

nonlinearity and will need to be computed whenever ûl(t) changes. The

computation of the integrals involved in the sti�ness-matrix is expensive.

One could use a Gaussian quadrature to simplify matters but that would

introduce aliasing error due to the nonlinear term and would be costly.

Hence, apart from the considerable complexity involved in deriving the

Chebyshev Galerkin scheme for Burgers equations, it also appears to be

computationally intensive.

Nevertheless, once the two components of the sti�ness-matrix are

obtained, we have the N � 1 equations for the N � 1 unknowns, û =

(û1; : : : ; ûN�1)
T ,

dû

dt
= M�1

��Sh(û) + �Sp
�
û(t) ;

and the initial conditions

8n 2 [1; N � 1] : ûn(0) =
2

�

Z 1

�1

f(x) (Tn+1(x)� Tn�1(x))
1p

1� x2
dx :

As illustrated in the above, the application of polynomial Galerkin meth-

ods for the solution of partial di�erential equations takes one through

considerable complexity, analytically as well as computationally. Al-

though the mass-matrix depends only on the basis being used, the com-

putation of the entries of the sti�ness-matrix has to be completed for
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each individual problem and is by no means simple, even for linear prob-

lems such as the constant coeÆcient hyperbolic and parabolic problems.

Moreover, as we saw for Burgers equation, the schemes for dealing with

nonlinear terms become very complex and computationally intensive.

Finally, we have only discussed Galerkin methods for problems with

homogeneous boundary conditions which constitutes a special class of

problems. More complicated boundary conditions results in a more com-

plicated Galerkin scheme. For problems with time dependent boundary

conditions the development of a polynomial Galerkin scheme lead to

signi�cant problems and it may in many cases not be possible to derive

such schemes. In light of this, it is hardly surprising that polynomial

Galerkin methods are used only in those cases where the sti�ness- and

mass-matrix may be obtained on a closed and simple form, e.g., for lin-

ear problems with constant or simple variable coeÆcient, and the bound-

ary conditions are suÆciently simple. For such problems, however, the

Galerkin scheme is fast as well as accurate.

7.1.2 Tau Methods

The problems encountered when formulating polynomial Galerkin meth-

ods can be attributed to the requirement that the basis functions, �n(x),

obey the boundary conditions individually. This requires us to form

polynomials with this property at the loss of orthogonality. In the poly-

nomial tau method this problem is overcome by modifying the de�nition

of the projection operator.

We seek solutions, uN(x; t) 2 BN , to Eq.(7.1) of the form

uN (x; t) =

NX
n=0

ûn(t)�n(x) ;

where the polynomial space, BN , can be characterized as

BN = span
n
�n(x) 2 span

�
xk
	n
k=0

jB�uN (�1; t) = 0 ; B+uN (1; t) = 0
oN
n=0

:

If we now de�ne

PN = span f�n(x)gNn=0 ;

then the de�nition of the projection operator consists of two parts. The

�rst part is the projection of the residual onto PN�l rather than BN
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as for the Galerkin method. Here l signi�es the number of boundary

conditions. Hence, we require that the �rst N � l+1 components of the

residual be orthogonal to PN�l in L
2
w[�1; 1] as

8k 2 [0; N � k] :
1

k

Z 1

�1

�
@uN
@t

�LuN
�
P
(�)
k (x)w(x) dx = 0 ;

The remaining l equations are recovered as

NX
n=0

ûn(t)B��n(�1) = 0 ;
NX
n=0

ûn(t)B+�n(1) = 0 ;

to ensure that uN(�1; t) obeys the boundary conditions. Although the

formulation of the general scheme is slightly more complicated than the

straightforward Galerkin method, the separation of the equation and

boundary conditions leads to signi�cantly simpler schemes. Moreover,

it allows for dealing with general time dependent boundary conditions

as we shall see in the following examples.

Example 32. Consider the linear hyperbolic problem

@u

@t
=
@u

@x
;

where u(x; t) 2 L2[�1; 1]. The boundary condition is

u(1; t) = h(t) ;

and the initial condition, u(x; 0) = f(x).

We consider a Legendre tau method and seek solutions, uN(x; t) 2
BN , of the form

uN (x; t) =

NX
n=0

ûn(t)Pn(x) ;

with the additional constraint that

NX
n=0

ûn(t)Pn(1) =

NX
n=0

ûn(t) = h(t) ;

to ensure that the solution obeys the boundary condition. To compare

with the Galerkin method, let us assume that h(t) = 0 and introduce
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the boundary operator into the expansion for uN (x; t) as

uN (x; t) =

N�1X
n=0

ûn(t)Pn(x)� PN (x)

N�1X
n=0

ûn =

N�1X
n=0

ûn(t)�n(x) ;

where �n(x) = Pn(x) � PN (x), which satisfy �n(1) = 0. Thus, the

method is somewhat akin to a Galerkin method of order N with the

exception that �N (x) � 0 and an additional equation is needed to ob-

tain ûN (t). Note, that we can not in general give the explicit form of

�n(x) since it is a nontrivial combination of the polynomial basis and

the boundary conditions.

The �rst N equations are found by requiring that the residual

RN (x; t) =
@uN
@t

� @uN
@x

;

is L2-orthogonal to PN�1 as

8k 2 [0; N � 1] :
2k + 1

2

Z 1

�1

RN (x; t)Pk(x) dx = 0 :

This yields the �rst N equations

8n 2 [0; N � 1] :
@ûn
@t

= (2n+ 1)

NX
p=n+1

p+n odd

ûp(t) :

Here we recall the identity, Eq.(6.65),

û(1)n (t) = (2n+ 1)

NX
p=n+1

p+n odd

ûp(t) :

The equation to obtain ûN(t) appears directly as a constraint

ûN (t) = �
N�1X
n=0

ûn(t)� h(t) :

This reects the ease by which time dependent boundary conditions are

introduced into the tau method.

The initial conditions are recovered directly as
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8n 2 [0; N � 1] : ûn(0) =
2n+ 1

2

Z 1

�1

f(x)Pn(x) dx ;

with the �nal coeÆcient, ûN (0), being

ûN (0) = �
N�1X
n=0

ûn(0)� h(0) :

Since we project onto PN�1 rather than BN the mass matrix remains

diagonal due to orthogonality and the sti�ness matrix is obtained di-

rectly from the properties of the polynomial basis, typically resulting in

schemes being much simpler than the Galerkin approximation.

Example 33. Let us again consider the linear parabolic problem as

@u

@t
=
@2u

@x2
;

where u(x; t) 2 L2
w[�1; 1]. We ask that the solution obeys the general

boundary conditions

B�u(�1; t) = �1u(�1; t)� �1
@u(�1; t)

@x
= g(t)

B+u(1; t) = �2u(1; t) + �2
@u(1; t)

@x
= h(t) ;

which leads to a wellposed problem for the constants, �1; �1; �2; �2, all

being positive and related as 2�1�2 � �1�2+�2�1 [?]. As initial condi-

tion we have u(x; 0) = f(x).

We consider a Chebyshev tau method and seek solutions, uN (x; t) 2
BN , of the form

uN(x; t) =
NX
n=0

ûn(t)Tn(x) ;

with the additional constraints from the boundary conditions that
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NX
n=0

ûn(t) (�1Tn(�1)� �1T
0
n(�1)) = g(t)

NX
n=0

ûn(t) (�2Tn(1) + �2T
0
n(1)) = h(t) :

Using the boundary values of Tn(x) and its derivative as

Tn(�1) = (�1)n ; T 0n(�1) = (�1)n+1n2 ;

the constraints become

NX
n=0

ûn(t)
�
�1(�1)n � �1(�1)n+1n2

�
= g(t) ; (7.2)

NX
n=0

ûn(t)
�
�2 + �2n

2
�
= h(t) ;

to ensure that the solution obey the boundary conditions.

We now require that the residual

RN (x; t) =
@uN
@t

� @2uN
@x2

;

is orthogonal to PN�2 in L
2
w[�1; 1] as

8k 2 [0; N � 2] :
2

�ck

Z 1

�1

RN (x; t)Tk(x)
1p

1� x2
dx = 0 :

This yields the �rst N � 1 equations

8n 2 [0; N � 2] :
@ûn
@t

=
1

cn

NX
p=n+2

p+n even

p(p2 � n2)ûp(t) ;

using the identity

û(2)n (t) =
1

cn

NX
p=n+2

p+n even

p(p2 � n2)ûp(t) ;

which relates the expansion coeÆcients for the function with those of
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the second derivative. The �nal 2 equations required to obtain ûN�1(t)

and ûN(t) appear by solving the linear 2-by-2 system of Eq.(7.2).

The initial conditions are obtained directly as

8n 2 [0; N � 2] : ûn(0) =
2

cn�

Z 1

�1

f(x)Tn(x)
1p

1� x2
dx ;

with the �nal two coeÆcient being obtained from Eq.(7.2) at t = 0.

Even though we considered very general time dependent boundary con-

ditions, the resulting Chebyshev tau method remains simple as the e�ect

of the boundary conditions are separated from the approximation of the

operator, L.
While the emphasis in this text is on schemes for the solution of time-

dependent problems we would like to take a small detour to illustrate

the eÆcacy of tau methods for the solution of elliptic problems which is

where they enjoy particular interest.

Example 34. Consider the elliptic problem

@2u

@x2
= f(x) ;

where u(x) 2 L2
w[�1; 1] and the solution is subject to the general bound-

ary conditions

�1u(�1) + �1
@u(�1)
@x

= c�

�2u(1) + �2
@u(1)

@x
= c+ ;

where �1; �2; �1; �2 are constants and the boundary values are given

through c�.

We now seek a solution, uN (x) 2 BN , on the form

uN(x; t) =

NX
n=0

ûn(t)Tn(x) ;

with the additional constraints from the boundary conditions that
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NX
n=0

ûn
�
�1(�1)n + �1(�1)n+1n2

�
= c� (7.3)

NX
n=0

ûn
�
�2 + �2n

2
�
= c+ ;

similar to the approach taken in Example 33.

The residual is given as

RN (x) =
@2uN
@x2

� fN�2(x) ;

where fN�2(x) 2 PN�2 as

fN�2(x) =

N�2X
n=0

f̂nTn(x) ;

where

f̂n =
2

cn�

Z 1

�1

f(x)Tn(x)
1p

1� x2
dx :

The introduction of fN�2(x) is consistent with uN(x) being a polynomial

of orderN , i.e. the approximation to f(x) must be a polynomial of order

N � 2.

Requiring that the residual to be L2
w-orthogonal to PN�2 yields the

�rst N � 1 equations

8n 2 [0; N � 2] : û(2)n =
1

cn

NX
p=n+2

p+n even

p(p2 � n2)ûp = f̂n :

At this point the solution to the problem is undetermined as we have

N + 1 unknowns, ûn, but only N � 1 equations. However, introducing

the two boundary conditions, Eq.(7.3), as the remaining two rows into

the matrix completes the speci�cation of the scheme. Apart from the

two equations appearing from the boundary conditions, the matrix is

fairly sparse and upper triangular.

We observe that the complex boundary conditions do not pose a prob-

lem. The use of tau methods for solving linear elliptic problems or eigen-
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value problems may well be the most eÆcient way to solve such problems

using spectral methods as the resulting matrices typically are sparse and

very eÆcient preconditioners can be developed citeCoutsias95.

Let us �nally consider the formulation of a tau method for the solu-

tion of Burgers equation.

Example 35. Consider Burgers equation

@u

@t
+ u

@u

@x
= �

@2u

@x2
;

where u(x; t) 2 L2
w[�1; 1] and the boundary condition are

u(�1; t) = u(1; t) = 0 ;

with the initial conditions, u(x; 0) = f(x).

We wish to solve Burgers equation using a Chebyshev tau method,

and seek solutions, uN(x; t) 2 BN , of the form

uN(x; t) =

NX
n=0

ûn(t)Tn(x) ;

with the constraints

NX
n=0

ûn(t)(�1)n =

NX
n=0

ûn(t) = 0 :

Considering the residual

RN (x; t) =
@uN
@t

+ uN
@uN
@x

� �
@2uN
@x2

;

we require that the �rst N � 1 components are L2
w-orthogonal to PN�2

as

8k 2 [0; N � 2] :
2

ck�

Z 1

�1

RN (x; t)Tk(x)
1p

1� x2
dx = 0 :

to recover

8k 2 [0; N � 2] :
@ûk
@t

+
2

ck�

Z 1

�1

uN
@uN
@x

Tk(x)
1p

1� x2
dx = �û

(2)
k (t) :

Recall that
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û
(2)
k (t) =

1

ck

NX
p=n+2

p+k even

p(p2 � k2)ûp(t) :

The speci�cation of the nonlinear term requires a little more work. In-

troducing the expansions for uN(x; t) and its derivative we obtain

2

ck�

Z 1

�1

uN
@uN
@x

Tk(x)
1p

1� x2
dx =

2

ck�

Z 1

�1

NX
n;l=0

ûn(t)û
(1)
l (t)Tn(x)Tl(x)Tk(x)

1p
1� x2

dx :

The identity for Chebyshev polynomials

Tn(x)Tl(x) =
1

2

�
Tn+l(x) + Tjn�lj(x)

�
;

yields

2

ck�

Z 1

�1

uN
@uN
@x

Tk(x)
1p

1� x2
dx =

1

2

2

ck�

Z 1

�1

NX
n;l=0

ûn(t)û
(1)
l (t)

�
Tn+l(x) + Tjn�lj(x)

�
Tk(x)

1p
1� x2

dx =

1

2

0
B@ NX

n;l=0
n+l=k

ûn(t)û
(1)
l (t) +

NX
k;l=0
jn�lj=k

ûn(t)û
(1)
l (t)

1
CA ;

where

û
(1)
l (t) =

2

cl

NX
p=l+1

p+l odd

pûp(t) :

This establishes the equations for the �rst N � 1 expansion coeÆcients,

ûk(t). The remaining two are found by enforcing the boundary condi-

tions as
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NX
n=0

ûn(t)(�1)n =

NX
n=0

ûn(t) = 0 ;

and the initial conditions are given as

8n 2 [0; N � 2] : ûn(0) =
2

cn�

Z 1

�1

f(x)Tn(x)
1p

1� x2
dx :

Although the tau method avoids some of the problems of the Galerkin

methods and allows for the development of fairly simple and eÆcient

methods for solving the partial di�erential equation it is primarily being

used for the solution of linear elliptic equations. Th e main reason

is that the tau method still su�ers from the need to derive equations

for the expansion coeÆcients for each individual problem. For variable

coeÆcient or nonlinear problems this process may be very complicated

and in many cases impossible. However for linear constant coeÆcient or

special cases of variable coeÆcient/non-linear problems the resulting tau

method is as good as any other polynomial based approach for solving

partial di�erential equations.

7.1.3 Collocation Methods

The problems involved in deriving Galerkin and tau schemes for partial

di�erential equations can be attributed to the need to obtain equations

that describe the temporal development of the expansion coeÆcients as

a function of the expansion coeÆcients themselves. This involves the

projection of the residual onto a polynomial space, resulting in a need

to evaluate one or several integrals which may well be very complicated.

This is in particular true when one considers variable coeÆcient or non-

linear problems.

The collocation method, on the other hand, deals with linear, vari-

able coeÆcient and nonlinear problems with equal ease, however, at the

expense of introducing a grid and, thus, the associated aliasing error.

The appropriate choice of the grid on which to satisfy the equation

depends on the actual problem being considered. However, as we are

considering initial boundary value problems it seems natural to require

that the grid includes the boundary points to allow the enforcement of

the boundary conditions. This requirement suggests that the Gauss-
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Lobatto quadrature points is the most natural set of grid points to be

used with polynomial collocation methods and this set of grid points is

indeed the choice in the vast majority of spectral schemes developed to

date.

We wish to reiterate that there are generally two sets of grid points

to choose in connection with formulating a collocation scheme. One set

is associated with the polynomial space, BN , and are the grid points

on which the polynomial solution, uN , is based. For accuracy these are

often taken to be some set of Gauss quadrature points. The other set, on

which we require the equation to be satis�ed, is generally independent

of the former grid and can be chosen with other objectives that accuracy

in mind, e.g., stability. However, they are often taken to be the same

and we shall also restrict the attention to this case in the following. We

stress that this in one among many choices only.

Let us assume that we choose to construct our collocation method

based on the Gauss-Lobatto quadrature points for the polynomial family,

P
(�)
n (x), given as

8j 2 [0; N ] : xj =
n
xj(1� x2)(P

(�)
N )0(x) = 0

o
:

The nodes, xj , are assumed ordered such that �1 = x0 < x1 < : : : <

xN�1 < xN = 1. Note that although the present discussion is centered

around the use of Gauss-Lobatto points, the development of collocation

methods based on other grid points, e.g., the Gauss or Gauss-Radau

quadrature points, follows an equivalent route.

We shall seek solutions, uN (x; t) 2 BN , to Eq.(7.1) of the form

uN (x; t) =

NX
n=0

~un(t)�n(x) =

NX
j=0

uN(xj ; t)lj(x) ;

where the space, BN , in which we seek solutions is given as

BN =
n
span flj(x)gNj=0 jB�uN(�1; t) = 0 ; B+uN(1; t) = 0

o
:

We assume that the discrete expansion coeÆcients, ~un(t), are found

using the Gauss-Lobatto quadrature rule

~un(t) =
1

~n

NX
j=0

uN(xj ; t)P
(�)
n (xj)wj ;
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where wj refers to the Gauss-Lobatto weights, Chapter 6.3.2. We re-

call that using the Gauss-Lobatto quadrature rule we may also express

the polynomial, uN (x; t), using the interpolating Lagrange polynomial,

lj(x), based on the Gauss-Lobatto quadrature points

Introducing the residual

RN (x; t) =
@uN
@t

�LuN(x; t) ;

we proceed by requiring this to vanish exactly at the interior grid points,

xj , as

8j 2 [1; N � 1] : INRN (xj ; t) = 0 ;

leading to the N � 1 equations

8j 2 [1; N � 1] :
@uN
@t

����
xj

= (LuN )jxj ;

with the additional requirements that

B�u(x0; t) = 0 ; B+u(xN ; t) = 0 :

This results in N + 1 equations for the N + 1 unknowns which are the

grid point values. The initial conditions are obtained as uN(xj ; 0) =

INf(xj).
It is instructive to reiterate the di�erences between the Galerkin/tau

methods and the collocation method. In the former two cases we require

the residual to be orthogonal to some speci�c polynomial space and the

unknowns are the expansion coeÆcients. In the latter case we request

that the residual vanishes at all interior collocation points and the un-

knowns are in this case the value of the solution at the grid points. As

interpolation is much easier than projection, the collocation schemes are

derived in a more straightforward manner.

Let us now consider a few examples similar to those discussed in detail

for the Galerkin and the tau methods.

Example 36. Consider �rst the linear hyperbolic problem

@u

@t
=
@u

@x
;

where we assume that u(x; t) 2 L2
w[�1; 1] and the solution is subject to
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the boundary condition

u(1; t) = h(t) ;

with the initial condition u(x; 0) = f(x).

We shall solve the problem using a Chebyshev collocation method

and choose to use the Gauss-Lobatto quadrature points

8j 2 [0; N ] : xj = � cos
� �
N
j
�
;

to de�ne the polynomial space as well as those points on which to satisfy

the equation.

We seek a solution, uN (x; t) 2 BN , of the form

uN(x; t) =
NX
n=0

~un(t)Tn(x) =
NX
j=0

uN (xj ; t)lj(x) ;

where the discrete expansion coeÆcients are given as

~un(t) =
2

cnN

NX
j=0

1

cj
uN (xj)Tn(xj) ;

where c0 = cN = 2 and cn = 1 otherwise. Alternatively, the polynomial

solution can be expressed through the interpolating Lagrange polyno-

mial as

lj(x) =
(�1)j+1(1� x2)T 0N (x)

cjN2(x� xj)
:

We now require that the residual

RN (x; t) =
@uN
@t

� @uN
@x

;

vanish at all interior grid points as

8j 2 [0; N � 1] : INRN (xj ; t) =
@uN
@t

����
xj

� IN @uN
@x

����
xj

= 0 ;

yielding N equations

8j 2 [0; N � 1] :
duN
dt

����
xj

= IN @uN
@x

����
xj

:
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The computation of the derivative at the quadrature points can be ac-

complished in two di�erent ways. One can use

IN @uN
@x

����
xj

=

NX
j=0

~u(1)n (t)Tn(xj) ;

where the discrete expansion coeÆcients are found through a backward

recursion relation

cn�1~u
(1)
n�1(t) = ~u

(1)
n+1(t) + 2n~un�1(t) :

Alternatively, we may compute the derivative through the introduction

of the di�erentiation matrix, D, as

IN @uN
@x

����
xj

=

NX
i=0

DjiuN (xi; t) :

The �nal equation is simply given through the boundary condition as

uN (xN ; t) = h(t) ;

with the initial condition becoming

uN(xj ; 0) = INf(xj) = f(xj) :

The hyperbolic problem is one of the cases where the Gauss-Radau

quadrature points are useful as the boundary condition need to be en-

forced at one boundary only. The development of such a scheme follows

the approach for the Gauss-Lobatto method exactly with the only dif-

ference being in the computation of the discrete expansion coeÆcients

and the entries of the di�erentiation matrix.

Let us consider another example of a polynomial collocation method for

the solution of a partial di�erential equation.

Example 37. Consider the linear parabolic problem

@u

@t
=
@2u

@x2
;

where u(x; t) 2 L2[�1; 1]. We ask that the solution obeys the boundary
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conditions

B�u(�1; t) = �1u(�1; t)� �1
@u(�1; t)

@x
= g(t)

B+u(1; t) = �2u(1; t) + �2
@u(1; t)

@x
= h(t) ;

where the necessary bounds for well posedness on �1; �1; �2; �2 are dis-

cussed in Ex. 33. As initial condition we have u(x; 0) = f(x).

We consider a Legendre Gauss-Lobatto collocation method suitable

for solving this problem and seek solutions, uN (x; t) 2 BN , of the form

uN(x; t) =

NX
j=0

uN(xj ; t)lj(x) ;

where lj(x) signi�es the interpolating Lagrange polynomial based on the

Legendre Gauss-Lobatto quadrature points given as

8j 2 [0; N ] : xj = fxj(1� x2)P 0N (x) = 0g :

We choose the points to constrain the solution on and require that the

residual

RN (x; t) =
@uN
@t

� @2uN
@x2

;

vanishes at interior points, yielding the N � 1 equations

8j 2 [1; N � 1] :
duN(xj)

dt
=

NX
i=0

D
(2)
ji uN (xi; t) :

Here D(2) represents the second order di�erentiation matrix based on

the Legendre Gauss-Lobatto quadrature points.

The �nal two equations needed to obtain the full solution has to be

obtained from the boundary conditions. If we introduce the �rst order

di�erentiation matrix, D, and requiring the boundary condition to be

obeyed exactly we have

�1uN(x0; t)� �1

NX
j=0

D0juN (xj ; t) = g(t) ;
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�2uN(xN ; t) + �2

NX
j=0

DNjuN(xj ; t) = h(t) :

This yields a 2-by-2 system for the computation of the boundary values

as

(�1 � �1D00)uN (x0; t)� �1D0NuN(xN ; t) = g(t) + �1

N�1X
j=1

D0juN (xj ; t)

�2DN0uN (x0; t) + (�2 + �2DNN )uN(xN ; t) = h(t)� �2

N�1X
j=1

DNjuN (xj ; t) :

In this way the boundary conditions are enforced exactly. Note that in

the case of Dirichlet boundary conditions, i.e. �1 = �2 = 0, the scheme

becomes equivalent to the approach discussed for the hyperbolic problem

in the previous example.

Example 38. Consider Burgers equation

@u

@t
+ u

@u

@x
= �

@2u

@x2
;

where u(x; t) 2 L2
w[�1; 1] and the boundary condition are

u(�1; t) = u(1; t) = 0 :

The initial conditions are u(x; 0) = f(x).

We solve the problem using a Chebyshev collocation method based

on the Gauss-Lobatto quadrature points

8j 2 [0; N ] : xj = � cos
� �
N
j
�
;

and seek a solution, uN (x; t) 2 BN , of the form

uN(x; t) =

NX
n=0

~un(t)Tn(x) =

NX
j=0

uN (xj ; t)lj(x) ;

where the discrete expansion coeÆcients, ~un, and the interpolating La-

grange polynomials, lj(x), are discussed in Ex. 36.

We require that the residual
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RN (x; t) =
@uN
@t

+ uN
@uN
@x

� �
@2uN
@x2

;

vanish at all interior points of the Gauss-Lobatto grid as

8j 2 [1; N�1] : INRN (xj ; t) =
@uN
@t

����
xj

+INuN @uN
@x

����
xj

�� @
2uN
@x2

����
xj

= 0 :

This yields the N � 1 equations

8j 2 [1; N � 1] :
duN
dt

����
xj

= �uN(xj ; t) @uN
@x

����
xj

+ �
@2uN
@x2

����
xj

;

where the spatial derivatives are obtained in one of two ways as

@uN
@x

����
xj

=

NX
n=0

~u(1)n (t)Tn(xj) =

NX
i=0

DjiuN (xi; t) ;

and

@2uN
@x2

����
xj

=
NX
n=0

~u(2)n (t)Tn(xj) =
NX
i=0

D
(2)
ji uN (xi; t) :

Here D and D(2) signi�es the di�erentiation matrices of �rst and second

order, respectively, and the expansion coeÆcients for the �rst, ~u
(1)
n (t),

and second order, ~u
(2)
n (t), derivative are obtained by the repeated appli-

cation of the backward recursion

cn�1~u
(1)
n�1(t) = ~u

(1)
n+1(t) + 2n~un�1(t) :

The �nal two equations are obtained from the boundary conditions as

uN(x0; t) = uN (xN ; t) = 0 :

This last example illustrated the ease by which collocation methods are

developed for solving nonlinear problems, contrary to the case for the

Galerkin and tau methods which both required considerable work just

to be derived. The price for choosing the collocation method is the

requirement of a grid and the introduction of the associated aliasing

error. However, for many problems there is no real alternative to using

the collocation method as the equations for the expansion coeÆcients
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required for the Galerkin and tau methods are impossible to obtain.

7.2 Polynomial Methods on the Unbounded Interval

7.2.1 Laguerre Based Methods on [0;1].

7.2.2 Hermite Based Methods on [�1;1].

7.3 Connecting the Methods

When seeking approximate solutions to partial di�erential equations an

interesting question to raise is what equation is actually being solved,

i.e., consider the equation of which the obtained solution is an exact

solution in a pointwise sense. Such results sheds some light on the con-

nection between the Galerkin, the Tau and the Collocation methods.

The di�erential equation we aim to solve is given on the form

@u

@t
= Lu(x; t) ;

while the numerical solution is obtained by solving the equation

@uN
@t

= LNuN (x; t) ;

where LN = PNLPN is the approximation of the operator, L. The

residual, or the error equation, is de�ned as

RN (x; t) =
@uN
@t

�LuN (x; t) = (LN �L) uN(x; t) :

In the literature of �nite di�erences this equation is frequently referred

to as the modi�ed equation. Our interest is here to derive explicit forms

of RN (x; t).

In the following we shall, as an illustration, derive this residual on

explicit form for Chebyshev approximation of linear hyperbolic and

parabolic problems. The process for other schemes and choice of ba-

sis is equivalent.

7.3.1 The Hyperbolic Problem.

Consider the linear hyperbolic problem

@u

@t
=
@u

@x
;
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subject to the boundary condition, u(1; t) = 0, and with the initial

condition, u(x; 0) = f(x).

We begin by considering solution of the problem using a Chebyshev

Galerkin method as discussed in Ex. 29, i.e., we require the residual to

vanish as

8k 2 [0; N ] :

Z 1

�1

RN (x; t)(Tk(x) � 1)
1p

1� x2
dx = 0 :

It is easily veri�ed that

1

2
+

NX
n=1

Tn(x) ;

satis�es this equation. Since RN (x; t) 2 BN is must be proportional

to this sum. To determine the constant we observe that as uN (1; t) is

constant we obtain

RN (1; t) = � @uN
@x

����
x=1

;

and the error equation for the Chebyshev Galerkin method becomes

@uN
@t

=
@uN
@x

� 2

2N + 1

@uN
@x

����
x=1

"
1

2
+

NX
n=1

Tn(x)

#
: (7.4)

This is the equation being solved exactly. This emphasizes that PNu 6=
uN , i.e., the computed solution is generally not the projection of the

exact solution, even for a problem as simple as the wave equation.

Let us also consider the Chebyshev tau method, for which the error

equation becomes

@uN
@t

� @uN
@x

= �(t)TN (x) ;

since uN(x; t) 2 BN . Again using that

RN (1; t) = � @uN
@x

����
x=1

;

we recover the error equation for the Chebyshev tau method as

@uN
@t

=
@uN
@x

� @uN
@x

����
x=1

TN(x) :



7.3 Connecting the Methods 267

Recall that the Chebyshev Gauss quadrature points of order N � 1 are

the roots of TN (x), i.e., the Chebyshev tau method is equivalent to some

Chebyshev collocation method of orderN�1 based on the Gauss points.
Let us �nally consider the error equation for the Chebyshev colloca-

tion method. If we �rst consider the Chebyshev Gauss-Lobatto method

we obtain the error equation as

@uN
@t

� @uN
@x

= �(t)(1 + x)T 0N (x) ;

since the remainder must vanish at all interior nodal points. Using

RN (1; t) = � @uN
@x

����
x=1

;

we immediately recover the error equation for the Chebyshev Gauss-

Lobatto method as

@uN
@t

=
@uN
@x

� 1

2N2

@uN
@x

����
x=1

(1 + x)T 0N (x) :

Let us instead consider the Chebyshev Gauss-Radau method, where the

quadrature points are given as

8j 2 [0; N ] : yj = � cos

�
(2j + 1)�

2N + 1

�
;

i.e., yN = 1 is included in the nodal set. If we now consider the polyno-

mial

pN(x) =
1

2
+

NX
n=1

Tn(x) =
sin
��
N + 1

2

�
cos�1 x

�
2 sin 1

2 cos
�1 x

;

then it may be veri�ed that pN(yj) = 0 at all the interior points, while

pN (1) = N + 1
2 . Hence, it follows directly that the error equation for

the Chebyshev Gauss-Radau method is given as

@uN
@t

=
@uN
@x

� 2

2N + 1

@uN
@x

����
x=1

"
1

2
+

NX
n=1

Tn(x)

#
:

It is thus equivalent to the error equation for the Chebyshev Galerkin

method, Eq.(7.4). In other words, the Chebyshev Galerkin method and

the Chebyshev Collocation method based on the Gauss-Radau quadra-

ture points are identical as they are solving the same equation exactly.
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7.3.2 The Parabolic Problem.

Let us also consider the error equation when solving parabolic problems

of the type

@u

@t
=
@2u

@x2
;

subject to the boundary condition

u(�1; t) = u(1; t) = 0 ;

and the initial conditions, u(x; 0) = f(x).

We begin by considering the error equation for the Chebyshev Galerkin

method with a basis as �n(x) = Tn+1(x)�Tn�1(x). Proceeding exactly
as for the hyperbolic problem we realize that the remainder can be writ-

ten as (N assumed even, but similar for odd)

RN (x; t) = A(t)

NX
n=0

n even

1

cn
Tn(x) +B(t)

N�1X
n=1
n odd

Tn(x) ;

which is orthogonal to �n(x) for n 2 [1; N � 1]. The two constants are

recovered by enforcing the boundary conditions as

RN (�1; t) = � @2uN
@x2

����
�1

:

This yields the error equation for the Chebyshev Galerkin method as

@uN
@t

=
@2uN
@x2

� 1

N + 1

 
@2uN
@x2

����
1

+
@2uN
@x2

����
�1

!
NX
n=0

n even

1

cn
Tn(x)

� 1

N

 
@2uN
@x2

����
1

� @2uN
@x2

����
�1

!
N�1X
n=1
n odd

Tn(x) :

The error equation for the Chebyshev collocation method based on the

Gauss-Lobatto quadrature points is recovered by exploiting that the

remainder must vanish at all the interior collocation points. This allows

us to recover

RN (x; t) = A(t)(1 + x)T 0N (x) +B(t)(1� x)T 0N (x) :
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Applying the boundary conditions directly yields the error equation for

the Chebyshev Gauss-Lobatto method as

@uN
@t

=
@2uN
@x2

� 1

2N2

 
(1 + x)T 0N (x)

@2uN
@x2

����
1

+ (�1)N+1(1� x)T 0N (x)
@2uN
@x2

����
�1

!
:

Unlike the case for the hyperbolic problem, there is no direct relation

between the di�erent methods.

7.4 Stability of Polynomial Methods

7.4.1 Polynomial Methods on a Finite Interval

7.4.1.1 Stability of Galerkin and Tau Methods

7.4.1.2 Stability of Collocation Methods

7.4.2 Polynomial Methods on an Unbounded Interval

7.4.2.1 Stability of Galerkin and Tau Methods

7.4.2.2 Stability of Collocation Methods

Exercises

1. Consider

@u

@t
+ (2 + x)

@u

@x
= 0 ; x 2 [�1; 1] ;

with

u(1; t) = 0 ; u(x; 0) = f(x) :

Construct a Legendre-Galerkin method for the problem.

2. (Continued) Construct a Legendre-Tau method for this problem.

3. (Continued) Construct a Legendre-Collocation method based on this us-
ing Legendre-Gauss-Lobatto quadrature points for both approximating
the solution and satisfying the equation.

4. (Continued) Construct a Legendre-Collocation method using the Legendre-
Gauss quadrature points to represent the solutions and the Legendre-
Gauss-Radau points to satisfy the equation.

5. Consider

@u

@t
=

@3u

@x3
; x 2 [�1; 1] :
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Assume the general boundary conditions take the form

��u(�1; t) + ��
@u

@t

���
x=�1

+ �
@2u

@x2

����
x=�1

= f�(t) ;

where the constants ��, �� and � are chosen to ensure wellposedness.

Formulate a Chebyshev-Tau scheme to solve this problem.

6. (Continued) Formulate Chebyshev-Collocation methods to solve this prob-
lem.

7. Consider

@u

@t
=

@u

@x
; x 2 [�1; 1] ;

and

u(1; t) = 0 ; u(x; 0) = f(x) :

Assume that we seek solutions uN 2 BN of the form

uN (x; t) = (1� x)

N�1X
j=0

uN (xj ; t)lj(x) ;

where xj are the Chebyshev-Gauss points of order N � 1.

If we require that the residual vanishes at the Chebyshev-Gauss points,
show that the resulting scheme is equivalent to a Chebyshev-Tau method
of order N .
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Spectral Methods for Non-Smooth Problems

So far we have focused almost exclusively on problems with a minimal

degree of smoothness, i.e., at least continuous in a classical sense. Indeed,

as spectral methods are centered around the use of expansions of the

unknown solutions in terms of smooth polynomials, one could think

that such high-order methods are less interesting when one attempts to

solve problems containing genuinely discontinuous solutions.

While it is true that the straightforward use of spectral methods works

best when considering smooth problems there are a number of important

reasons for considering the use of spectral methods for truly discontin-

uous problems. To illustrate this, let us consider an example.

Example 39. Consider the scalar hyperbolic equation

@u

@t
= �2�@u

@x
; (8.1)

u(0; t) = u(2�; t) ;

and assume that we wish to advance the initial conditions using an odd

Fourier collocation method with N = 64 grid points in space and a

4'th order Runge-Kutta method in time with a time-step well below the

stability limits.

Let us also take the initial condition as

u(x; 0) =

�
x 0 � x � �

x� 2� � < x � 2�
;

and assume that it is periodically extended. Clearly, u(x) has a sharp
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analysis of the above example. In particular we shall discuss in detail

the appearance of the oscillations, known as the Gibbs phenomenon, and

the non-uniform convergence that appears as a result of this. This dis-

cussion shall consider not only the Gibbs phenomenon in trigonometric

and polynomial expansions but also the implications of the oscillations

on the stability of general spectral methods.

The second part of this chapter is devoted to techniques that will

allow us to overcome or at least decrease the e�ect of the Gibbs phe-

nomenon when solving general partial di�erential equations. A very

powerful tool in this respect is the use of �lters and we shall discuss

these techniques in detail before we turn to the development of a gen-

eral theory that shall allow us to recover exponentially convergent series

for piecewise continuous problems such as to completely overcome the

Gibbs phenomenon.

8.1 Trigonometric Approximation of Non-Smooth

Problems

Let us begin by considering the behavior of trigonometric expansions of

piecewise continuous functions. Prior to obtaining estimates for the con-

vergence of the Fourier series for the approximation of such problems,

let us return to Ex. 39 and consider solely the initial approximation

problem.

Example 40. Consider again the function

u(x) =

�
x 0 � x � �

x� 2� � < x � 2�
;

and assume that it is periodically extended. The continuous Fourier

series expansion coeÆcients are found as

ûn =

�
i(�1)jnj=n n 6= 0

0 n = 0
:

In Fig. 8.2 we show the Fourier series approximation to u(x) and

observe strong oscillations around the discontinuity while the approxi-

mation converges, albeit slowly, away from the discontinuity. Note that

the oscillations around the point of discontinuity persists when increas-

ing the resolution. The convergence of the approximation away from the
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�gure 8.2. On the left we show the continuous Fourier series approximation of
a discontinuous function illustrating the appearance of the Gibbs phenomenon.
The �gure on the right displays the pointwise error of the continuous Fourier
series approximation for increasing resolution. Note that the value of the
pointwise error at the discontinuity corresponds exactly to (u(�+)+u(��))=2.

discontinuity is also con�rmed in Fig. 8.2 where we plot the pointwise

error. We �nd linear convergence at most in correspondence with the

decay of the expansion coeÆcients.

As we clearly observe from Fig. 8.2 the error at the discontinuity does

not disappear as we increase the resolution. Thus, the approximation

is no longer pointwise convergent although it remains convergent in the

mean as a result of completeness as discussed in Chapter 4. This may

also be seen by directly estimating the L2-error using Parseval's identity,

Eq.(4.1.5), as

ku�PNukL2[0;2�] =
0
@ X
jnj>N

1

n2

1
A

1=2

' 1p
N

;

i.e., the approximating is convergent but at an extremely slow rate. Al-

though the function is smooth and periodic away from the discontinuity,

the global rate of convergence is dominated by the presence of the discon-

tinuity. It is this characteristic oscillatory behavior in the neighborhood

of a discontinuity of a truncated Fourier series of a non-smooth function,

u(x), that is known as the Gibbs phenomenon.
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8.1.1 The Gibbs Phenomenon.

Let us in the following consider the phenomenon in a little more detail.

We introduce the truncated symmetric Fourier series sum as

PNu(x) =
N=2X

n=�N=2

ûn exp(inx) ;

where the continuous expansion coeÆcients are recovered as

ûn =
1

2�

Z 2�

0

u(x) exp(�inx) dx :

The behavior of the truncated approximation for a piecewise continuous

function is given as follows

Theorem 64. Every piecewise continuous function, u(x) 2 L2[0; 2�],

has a Fourier series which is pointwise convergent as

PNu(x)! u(x+) + u(x�)

2
as N !1 :

Proof: We begin by writing the truncated series as

PNu(x) = 1

2�

N=2X
n=�N=2

�Z 2�

0

u(y) exp(�iny) dy
�
exp(inx)

=
1

2�

Z 2�

0

u(y)

0
@ N=2X
n=�N=2

exp(in(x� y))

1
A dy

=
1

2�

Z x

x�2�

DN (t)u(x� t) dt ;

where we have introduced the Dirichlet kernel

DN (t) =

N=2X
n=�N=2

exp(int) =
sin((N + 1)t=2)

sin(t=2)
: (8.2)

The Dirichlet kernel can be viewed as the projection of a delta function

onto the space spanned by the Fourier basis and is an even function in



276 8. Spectral Methods for Non-Smooth Problems

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

t

N=8

N=16

N=32

Sin[ (N+1)t/2 ]

(N+1)Sin[t/2 ]

�gure 8.3. The normalized Dirichlet kernel for various values of N .

t which oscillates while changing signs at tj = 2�j=(N + 1). The kernel

is shown for illustration in Fig. 8.3 for increasing values of N .

Due to the strong oscillatory behavior away from the origin, we may

also assume that the main contribution of the integral originates from a

narrow region around zero, i.e.,

PNu(x) ' 1

2�

Z "

�"

DN(t)u(x � t) dt ;

where " � 1. Since u(x) is at least piecewise continuous we may also

assume that u(x � t) ' u(x�) for 0 � t � " and u(x � t) ' u(x+) for

0 � t � �" with at most a jump at t = 0. If we in addition assume

sin(t=2) ' t=2 we recover the result

PNu(x) ' 1

�
(u(x+) + u(x�))

Z "

0

sin[(N + 1)t=2]

t
dt :

However, since

1

�

Z "

0

sin[(N + 1)t=2]

t
dt =

1

�

Z (N+1)"=2

0

sin s

s
ds

' 1

�

Z 1

0

sin s

s
ds =

1

2
as N !1 ;

this implies the asymptotic result
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PNu(x)! u(x+) + u(x�)

2
;

thereby concluding the proof. QED

Thus, pointwise convergence to the average is ensured. However, the

important point is that the convergence rate is non-uniform close to a

discontinuity. To see that, let us consider the behavior of the approx-

imation in the neighborhood of a discontinuity at x0 and express the

limit of PNu(x) as

PNu
�
x0 +

2z

N + 1

�
' 1

2�

Z "

�"

DN(t)u

�
x0 +

2z

N + 1
� t

�
dt :

Again utilizing the local nature of the Dirichlet kernel as in the proof of

Theorem 64 we arrive at the asymptotic result for N !1

PNu
�
x0 +

2z

N + 1

�
' u(x+0 )

�

Z z

�1

sin s

s
ds+

u(x�0 )

�

Z 1

z

sin s

s
ds

' 1

2
(u(x+0 ) + u(x�0 )) +

1

�
(u(x+0 )� u(x�0 ))Si(z) :

Here we have introduced the Sine integral function, Si(z), which we recall

is de�ned

Si(z) =

Z z

0

sin s

s
ds ; lim

z!1
Si(z) =

�

2
; Si(�z) = �Si(z) ;

and is plotted in Fig. 8.4 for the purpose of illustration. Clearly, for a

smooth function we recover the pointwise convergence result. However,

for a piecewise smooth function with a jump at x0 we have PNu(x) �
1
2 (u(x

+
0 ) + u(x�0 )) = O(1) provided x � x0 = O(N�1), i.e., z is con-

stant such that Si(z) ' �=2. Consequently, in the neighborhood of the

point of discontinuity we must expect non-uniform convergence, while

the convergence is linear away from x0.

The maximum size of the overshoot occurs where the Sine integral

has its maximum as happens for z = � where

1

�
Si(�) = 0:58949 :

Thus, the maximum overshoot/undershoot at a point discontinuity asymp-

totically approaches
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�gure 8.4. The Sine integral function, Si(z).

uN(x) � u(x�0 ) ' 0:08949(u(x+0 )� u(x�0 )) :

Hence, it is approximately 9% of the magnitude of the jump, and hap-

pens approximately for x = x0�2�=(N+1). Let us conclude this section

with a few examples.

Example 41. Consider again the function from Ex. 40

u(x) =

�
x 0 � x � �

x� 2� � < x � 2�
;

and assume that it is periodically extended. Clearly, u(x) has a sharp

discontinuity at x = � and using the theory just developed we recover

that the maximum overshoot around x0 = � should be

jPNu(x)� u(��)j ' 0:08949ju(�+)� u(��)j = 0:08949 2� ' 0:5623 ;

which corresponds well with the results displayed in Fig. 8.2.

Example 42.

Consider the unit step function, u(x), de�ned as
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u(x) =

�� 1
2 �� < x < 0
1
2 0 < x < �

;

and assume that it is periodically extended. The continuous Fourier

series expansion is found as

u(x) =
2

�

1X
k=0

sin(2k + 1)x

2k + 1
:

The simpleminded approach would be to look for the extremum of the

truncated expansion,

PNu(x) = 2

�

NX
k=0

sin(2k + 1)x

2k + 1
;

found through the derivative

PNu0(x) = 2

�

NX
k=0

cos(2k + 1)x =
sin 2(N + 1)x

� sinx
;

which is zero for z = �=(2(N + 1)). If we insert this into the trun-

cated expansion one obtains, through the use of the Riemann sum, the

asymptotic result

PNu(z) = 1

�(N + 1)

NX
k=0

sin (2k+1)�
2(N+1)

2k+1
2(N+1)

' 1

�

Z 1

0

sin�t

t
dt =

1

�
Si(�) = 0:58949 ;

which is exactly what we would expect from the more general analysis,

since x approaches x0 = 0 linearly and the size of the jump is one.

So far we have only considered the Gibbs phenomenon and its behav-

ior in the continuous expansions. However, as we have discussed exten-

sively in Chapter 4, the convergence behavior of the discrete expansion

is very similar, if not in quantitative terms, then certainly in qualitative

terms. Indeed, the Gibbs phenomenon appears in the discrete expan-

sions with characteristics similar to those discussed above. This is most

easily understood by recalling that the sole di�erence between the dis-

crete and the continuous expansions comes in through the aliasing error.
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While we are unable to directly quantify this for non-smooth problems

it is clear that one should expect the two types of expansions to yield

similar results in the asymptotic limit, which is where we arrived at the

results discussed above.

8.2 Filters

The slow and nonuniform convergence of PNu(x) for a piecewise contin-
uous function can be traced to two facts

� The linear decay of the expansion coeÆcients.

� The global nature of the polynomial approximation where the expan-

sion coeÆcients are obtained by integration/summation over the full

domain, including the point(s) of discontinuity.

These two factors are clearly not independently contributing to the

Gibbs phenomenon but rather two di�erent manifestations of the same

phenomenon. However, in trying to resolve the Gibbs phenomenon, two

di�erent approaches can be taken each associated with one of the inter-

pretations of the source of the oscillations.

Let us �rst consider the truncated continuous polynomial approxima-

tions as

PNu(x) = u�N(x) =

NX
n=0

�(�)ûn�n(x) ; (8.3)

where ûn are the usual continuous expansion coeÆcients and the pa-

rameter �(�) with � = n=N represents the �lter. Utilizing the de�nition

of the continuous expansion coeÆcients, we obtain the physical space

approximation as

u�N(x) =

Z
D

u(y)w(y)S(x; y) dy ;

where we have introduced the �lter function

S(x; y) =

NX
n=0

�(�)
1

n
�n(x)�n(y) : (8.4)

If we assume that �(�) = 1, the �lter function can be summed exactly

using the Christo�el-Darboux identity for polynomials in which case

we realize that S(x; y) is nothing more than the polynomial Dirichlet
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kernel. This also emphasizes that the Dirichlet kernel is nothing more

than the continuous equivalent of the cardinal functions, or Lagrange

polynomials, discussed thoroughly in Chapter 4 for Fourier series and in

Chapter 6 for the general case of orthogonal polynomials. Hence, any

action taken on the behavior of the Dirichlet kernel can be expected to

have a similar impact on the cardinal functions.

In the case of trigonometric expansions this simpli�es considerably

since

S(x) =

N=2X
n=�N=2

�(�) exp(inx) ; (8.5)

which we recall as the very oscillatory Dirichlet kernel shown in Fig. 8.3.

For reasons that will become apparent in Sec. 8.2.2, the �lter, �(�),

is de�ned as follows

De�nition 8. A real and even function �(�) 2 Cq�1[�1;1] is called

a �lter of order q if it has the following properties

a)

�(�) = 0 for j�j > 1 :

b)

�(0) = 1 and �(1) = 0 :

c)

8m 2 [1; : : : ; q � 1] : �(m)(0) = �(m)(1) = 0 :

Equations (8.3)-(8.4) suggest, as mentioned briey in the above, that we

can think of at least two di�erent ways of designing and implementing

�ltering. Equation (8.3) suggests that by enhancing the decay of the

expansion coeÆcients, e.g., by choosing �(�) decaying for increasing �,

would result in a faster convergent series. This line of argumentation,

however, is not without traps as modifying the expansion coeÆcients

has global consequences. Hence, the aim of the analysis is devise �lter

functions, �(�), that has only a localized e�ect on the approximation

which otherwise must remain unchanged in smooth parts of the function.

One way to attempt to overcome this apparent problem with localized

modi�cations of a global expansion is to turn the attention to direct
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modi�cations of the physical space Dirichlet kernel, Eq.(8.4). Since the

highly oscillatory behavior of the Dirichlet kernel is a representation of

the global nature of the approximation, one could attempt to specify

�(�) with the aim of localizing the inuence of S(x; y). This, however,

requires one to specify �(�) in a very delicate fashion such as to minimize

the oscillations of S(x; y) away from x = y in some prescribed manner.

Moreover, localizing the kernel too dramatically essentially reduces the

order af the scheme thereby counteracting the e�ort of devising high-

order methods. As it turns out, proper localization of the Dirichlet

kernel is at least as complex as that of increasing the decay rate and it

is indeed the latter procedure that has received most of the attention in

the past.

In the following we shall therefore mainly utilize the �rst interpre-

tation although deriving the modi�ed associated Dirichlet kernel, as is

possible in a few cases, will be seen to yield additional information about

the observed behavior of the �lter functions.

8.2.1 A First Look at Filters and Their Use.

As we have realized, the Gibbs phenomenon results in very slow decay

of the expansion coeÆcients. Thus, it seems natural to apply �lters

in an attempt to attenuate the high order coeÆcients with the aim of

increasing the rate of convergence away from the discontinuity. However,

care has to be taken when doing so. The high order expansion coeÆcients

carry important information concerning the behavior of the function

close to the discontinuity, and this information should not be wasted.

Too strong a smoothing procedure results in a strongly smeared function,

thus rendering the approximation less useful.

In this section we shall take a �rst practical look at the use of �l-

ters and the associated implications. For the sake of simplicity we shall

restrict the examples to continuous Fourier series. While the results cer-

tainly are quantitatively di�erent from those obtained when considering

�ltering of polynomial expansions, the results are nevertheless qualita-

tively similar and provides a good background for understanding the

central implications of using �lters in general cases.

Example 43 (Ces�aro Filter). This �lter represents an arithmetic mean

of the truncated series as
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�gure 8.5. E�ects on the smoothness of the approximation when applying
various �lters to a Fourier approximation of a discontinuous function. Upper
left) Un-�ltered approximation. Upper right) Ces�aro �ltered approximation.
Lower left) Raised cosine �ltered approximation. Lower right) Lanczos �ltered
approximation.

�(�) = 1� � ;

and is only a linear �lter. In Fig. 8.5 we have plotted the Ces�aro �ltered

Fourier series approximation of the discontinuous function introduced

in Ex. 40 and compare it with the un-smoothed approximation. We

observe that the Ces�aro �lter inhibit the Gibbs phenomenon close to

the discontinuity, however, it also produces a heavily smeared approx-

imation to the original function. In Fig. 8.6 we plot the point-wise

error of the �ltered approximation, and note that only little is gained

in accuracy away from the discontinuity as compared to the un-�ltered

approximation.

A further understanding of the e�ect of the Ces�aro �lter can be ob-

tained by considering the modi�ed Dirichlet kernel, Eq.(8.5), as
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S(x) =
2

N + 2

(
sin((N=2+1)x=2)

sin(x=2) x 6= 2�p

1 x = 2�p
p = 0;�1;�2; : : : :

We observe, among other things, that S(x) � 0, i.e., the Ces�aro �ltered
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�gure 8.6. Pointwise errors of the approximation when applying various
�lters to a Fourier approximation of a discontinuous function. Upper left)
Un-�ltered approximation (Note di�erent scale than the rest). Upper right)
Ces�aro �ltered approximation. Lower left) Raised cosine �ltered approxima-
tion. Lower right) Lanczos �ltered approximation.

Fourier series approximation can be expected to be non-oscillatory in

physical space as observed in Fig. 8.5. However, if we consider the

�rst zero of the modi�ed kernel it appears at x = 4�=(N + 2) while

the original Dirichlet kernel has it �rst zero at x = 2�=(N + 1). A

consequence of this is that we should expect a signi�cant smearing of

the discontinuity as we observe in Fig. 8.5. Indeed, the smearing is so

severe that we loose the ability to accurately identify the location of the

discontinuity, in reality reducing the Ces�aro �lter to a tool of analysis

only.
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Example 44 (Raised Cosine Filter). This �lter is given as

�(�) =
1

2
(1 + cos (��)) ;

and is formally of second order. In fact the application of this �lter is

equivalent to taking the spatial average as

uj ' uj+1 + 2uj + uj�1
4

;

as is realized by deriving the modi�ed kernel, Eq.(8.5), on the form

S(x) =
1

4

�
DN

�
x� 2�

N

�
+ 2DN(x) +DN

�
x+

2�

N

��
;

where the Fourier kernel, DN(x), is given in Eq.(8.2).

From Fig. 8.5 we observe that the Cosine �lter does not inhibit the

Gibbs phenomenon, although compared to the un-�ltered approximation

the oscillations are severely reduced. Also, from Fig. 8.6 we �nd that

away from the discontinuity the approximation error is clearly reduced

by applying the �lter.

Example 45 (Lanczos Filter). The Lanczos �lter has a �lter func-

tion as

�(�) =
sin��

��
;

and is formally only of �rst order, although we observe that for � = 0

the �lter does satisfy the conditions for being a second order �lter. As

is evident from Fig. 8.5, applying a Lanczos �lter does not inhibit the

Gibbs phenomenon, although it clearly results in a strong reduction.

From Fig. 8.6 we note that the pointwise error indeed decreases as

compared to the un-�ltered approximation. However, the error is slightly

larger than that obtained by using the Raised Cosine �lter.

The classical �lters being considered so far all lead to a signi�cant re-

duction of the Gibbs phenomenon. However, the convergence of the

pointwise error remains algebraic in N away from the discontinuity.

We could choose to value recovery of exponential convergence away
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�gure 8.7. E�ects on the smoothness of the approximation when applying
exponential �lters of increasing order to a Fourier approximation of a dis-
continuous function. In all cases we used � = � log "M � 35. Upper left)
Un-�ltered approximation. Upper right) Exponential �lter of order 2. Lower
left) Exponential �lter of order 6. Lower right) Exponential �lter of order 10.

from discontinuity higher than actual removal of the Gibbs phenomenon.

This can be accomplished by applying exponential �lters.

Example 46 (Exponential Filters). This family of �lters are de-

�ned as

�(�) =

(
1 j�j � �c

exp
�
��
�
���c
1��c

�p�
� > �c

;

where � is a measure of how strong the modes should be �ltered and

p signi�es the order of the �lter. Note, that the exponential �lter does

not conform with the de�nition of a �lter as put forward in Def. 8

as �(1) = exp(��). However, in practice will we chose � such that

�(1) ' O("M ) where "M represents the machine accuracy of the actual

machine.
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In Fig. 8.7 and Fig. 8.8 we illustrate the e�ect of applying an expo-

nential �lter of various order to the discontinuous function introduced in

Ex. 40. We have chosen � = � log "M , where "M is the machine accu-

racy, such that mode jnj = N=2, i.e., � = 1, is completely removed. This

is by no means a unique choice and results in a fairly strong �ltering.

We observe that eventhough the Gibbs phenomenon remains, we recover

exponential convergence in N away from the discontinuity. The recovery
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�gure 8.8. Pointwise error of the approximation when applying exponen-
tial �lters of increasing order to a Fourier approximation of a discontinuous
function. In all cases we used � = � log "M � 35. Upper left) Un-�ltered
approximation. Upper right) Exponential �lter of order 2. Lower left) Expo-
nential �lter of order 6. Lower right) Exponential �lter of order 10.

of the exponential convergence has made the exponential �lter a popu-

lar choice when performing simulations of non-linear partial di�erential

equations, where the Gibbs phenomenon may drive an otherwise stable

scheme unstable due to ampli�cation of oscillations appearing from the

Gibbs phenomenon.
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8.2.1.1 The Use of Filters in Fourier Methods.

We may gain a little intuition on the impact of �ltering through a simple

analogy. The �ltered function, u�N(x), is found as

u�N (x) =

N=2X
n=�N=2

�(�)ûn exp(�inx) :

Let us now assume that the �lter function, �(�), can be approximated

as

�(�) ' 1 + c1�
q ;

which is a reasonable approximation for all the �lters considered in the

above provided only that � is not too large. Here c1 is some constant,

speci�c to the �lter.

Let us introduce a new function, v(x), de�ned as

v(x) = u(x) + c2
@qu

@xq
;

and continue by expanding v(x) in a Fourier series as

PNv(x) '
N=2X

n=�N=2

ûn(1 + c2(�in)p) exp(�inx) ;

such that by de�ning

c2 =
c1

(�iN=2)p � 1 ;

we have that ûn = v̂n. Hence, the e�ect of applying a �lter in the

Fourier expanded function is to modify the function by a small term

proportional to a high order derivative of the function. Consequently,

in point space it will only have a very localized e�ect around the point

of discontinuity. This corresponds well with what we may observe from

the many numerical experiments shown in the last section.

Let us �nally consider the details of how �lters can be applied and

implemented in connection with Fourier spectral methods. As we recall,

the use of continuous and discrete expansion coeÆcients leads to di�er-

ent methods and di�erent implementations when computing derivatives.

A similar situation appears for the �ltering of Fourier expanded func-

tions.
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Filtering of the Continuous Expansion. The practical use of �lter in

connection with the continuous expansions is straightforward as it only

involves summing the �ltered series as

u�N =

N=2X
n=�N=2

�

� jnj
N=2

�
ûn exp(inx) ;

and likewise for the �ltered di�erentiation operators as

dq

dxq
u�N =

N=2X
n=�N=2

�

� jnj
N=2

�
û(q)n exp(inx) :

Filtering of the Discrete Expansion. As we have seen previously, there

are two mathematically equivalent but computationally di�erent method

of expressing the discrete expansions, leading to two di�erent ways of

�ltering the expansions.

The �rst method is equivalent to the approach used for the continuous

expansion with the only di�erence being the use of the discrete expansion

coeÆcients rather than the continuous ones.

For the second method, involving matrices rather than summation of

series, the scenario is slightly di�erent. Let us �rst consider the case of

an even number of points as

xj =
2�

N
j ; j 2 [0; : : : ; N � 1] ;

with the corresponding approximation

INu(x) =
N�1X
j=0

u(xj)gj(x) ;

where gj(x) signi�es the interpolating Lagrange polynomial given in

Theorem 4.2.2. To recover the �ltered approximation

u�N(x) =

N�1X
j=0

u(xj)g
�
j (x) ;

we need to obtain the �ltered version of interpolating Lagrange polyno-

mial. For a general choice of �lter and since �(�) is even we may express

these as
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g�j (x) =
2

N

N=2X
n=0

1

c�n
�

�
n

N=2

�
cos [n(x� xj)] ;

where we have introduced the constants c�0 = c�N=2 = 2 and c�n = 1

otherwise.

This allows for expressing the �ltering as a matrix operation

u�N(xl) =

N�1X
j=0

uN(xj)g
�
j (xl) ;

where we note that the �lter matrix is a symmetric, Toeplitz matrix.

Likewise, we may obtain matrix forms for the combination of �ltering

and di�erentiation where the matrices have the entries

D
(q);�
lj =

2

N

N=2X
n=0

1

c�n
�

�
n

N=2

��
(in)q cos [n(xl � xj)] q even

i(in)q sin [n(xl � xj)] q odd
;

such that the �ltered and di�erentiated approximation is recovered di-

rectly as

dq

dxq
u�N(xl) =

N�1X
j=0

uN(xj)D
(q);�
lj :

We note that D(q);� has the same properties as D(q), i.e., it is a circulant

Toeplitz matrix that is symmetric for q being even and skew-symmetric

for q being odd.

For completeness we note that the �ltered versions of the interpola-

tion Lagrange polynomials and the di�erentiation matrices for an odd

number of collocation points as

yj =
2�

N + 1
j ; j 2 [0; : : : ; N ] ;

are obtained for the above results by setting c�n = 1 for all values of n.

8.2.1.2 The Use of Filters in Polynomial Methods.

As for the trigonometric expansions, let us attempt to gain a little un-

derstanding of the impact of �lters in polynomial expansions. As we

shall see there is a small but very important di�erence between the two
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cases.

Let us begin by recalling that the expansion coeÆcients is given as

ûn =
1

n
(u; �n)w ;

and that �n is the solution to a singular Sturm-Liouville eigenvalue

problem as

L�n = � d

dx
p(x)

d

dx
�n = �nw(x)�n ;

where p(x) is singular at x = �1 and w(x) signi�es the weight.
We consider the �ltered approximation

u�N (x) =

NX
n=0

�(�)ûn�n(x) ;

and assume that the �lter function, �(�), may be approximated as

�(�) ' 1 + c1�
q :

We also recall from Section 6.2 that the expansion coeÆcients in general

decay as

ûn =
1

n�
q
n

�
u(q); �n

�
w

;

where

u(q) =
1

w
Lu(q�1) ;

and u(0) = u(x). Using that �n � n2 for the ultraspherical polynomials

we have the leading term approximation as

n2qûn ' 1

n

�
u(q); �n

�
w

;

or, in other words, an approximate relation as

NX
n=0

n2qûn�n(x) ' 1

nwq
dq

dxq
p(x)

du

dx
:

This implies, as in the case of �ltering on trigonometric expansions, that

u(x) and its �ltered version is related through a high-order derivative as
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u�N (x) ' uN (x) +
1

nwq
dq

dxq
p(x)

du

dx
;

where 2q is the order of the �lter. At �rst, this seems �ne. However, by

recalling that p(x) is singular we realize that �ltering of the expansion

coeÆcients in general has no e�ect on the approximation at the bound-

aries of the domain as the smoothing high derivative vanishes exactly at

x = �1. Hence, �ltering of the polynomial expansions only has an e�ect
in the interior of the computational domain.

Let us �nally consider the practical aspects of employing �lters in

polynomial expansions, be they based on the continuous or the discrete

expansion coeÆcients.

Filtering of the Continuous Expansion. As for the Fourier expansions,

the �ltering of the continuous expansions is straightforward as it involves

the summation of the �ltered series as

u�N =

NX
n=0

�
� n
N

�
ûn�n(x) ;

and likewise for the �ltered di�erentiation operators as

dq

dxq
u�N =

NX
n=0

�
� n
N

�
û(q)n �n(x) ;

where the expansion coeÆcients of û
(q)
n can be recovered by using the

backward recurrence relation discussed in Sec. 6.3.1.

Filtering of the Discrete Expansion. As we have two equivalent formu-

lations of the discrete polynomial approximation we may also formulate

two equivalent ways in which to apply a �lter.

Utilizing the discrete expansion coeÆcients rather than the continu-

ous ones yields a method of �ltering equivalent to the one discussed in

the above.

However, if we choose to employ the interpolating Lagrange polyno-

mials as the basis of our scheme, the scenario is slightly di�erent. In

this case we have
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INu(x) =
NX
j=0

u(xj)lj(x) ;

where xj signi�es a chosen set of grid points and lj(x) represents the

associated Lagrange polynomials. Let us for simplicity assume that

the Gauss-Lobatto quadrature points associated with the ultraspheri-

cal polynomials, P
(�)
n (x), in which case the Lagrange polynomials take

the general form

lj(x) = wj

NX
n=0

P
(�)
n (x)P

(�)
n (xj)

~n
;

where wj represents the Gauss-Lobatto quadrature weights given in Eq.

(6.3.17). As we recall from Chapter 6, these polynomials may be ex-

pressed on closed form by introducing the Christo�el-Darboux formula.

To obtain the �ltered approximation

u�N(x) =

NX
j=0

u(xj)l
�
j (x) ;

we must form the �ltered Lagrange polynomials as

l�j (x) = wj

NX
n=0

�
� n
N

� P (�)
n (x)P

(�)
n (xj)

~n
;

which we can not in general express on a simple form. However, in

this formulation, the action of the �lter at the grid points is expressed

through a �lter matrix as

u�N(xi) =
NX
j=0

Fiju(xj) ;

where Fij = l�j (xi). It should be noted that Fij is centro-symmetric as a

consequence of the symmetry of the quadrature points and that a similar

approach can be taken in case Gauss quadrature points is chosen.

Likewise, we may obtain matrix forms for the combination of �ltering

and di�erentiation where the matrices have the entries
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D
(q);�
ij = wj

NX
n=0

�
� n
N

� P (�)
n (xj)

~n

dqP
(�)
n

dxq

�����
xi

;

such that the �ltered and di�erentiated approximation is recovered di-

rectly as

dq

dxq
u�N(xi) =

NX
j=0

D
(q);�
ij u(xj) :

The �ltered matrices, D
(q);�
ij , share the properties of the un�ltered ver-

sions, i.e., they are centro-antisymmetric for q odd and centro-symmetric

when q is even.

8.2.2 Approximation Theory for Filters.

In the previous section we saw that by applying a �lter of a given order

p we may improve the convergence of the expansions away from the

discontinuity. In this section we shall prove this result in a more rigorous

sense and, during the development of the proof, attempt to obtain an

understanding of what factors, associated with the �lter, are important

in order to obtain an a priori speci�ed convergence rate away from the

point of discontinuity.

For the sake of simplicity we shall restrict the attention to an analysis

of the trigonometric expansions and we shall assume that we have the

�rst 2N � 1 expansion coeÆcients of a piecewise analytic function, u,

given and that the function is known to have a point of discontinuity at

x = �. The aim is to recover the value of the function, u, at any point

in the interval [0; 2�]. For this purpose we introduce a �lter �(�) with

the hope that the modi�ed approximation

u�N(x) =
NX

n=�N

�(�)ûn exp(inx) ;

where � = n=N , converges faster than the original series

uN (x) =
NX

n=�N

ûn exp(inx) :
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Note that we have changed the notation for reasons of simplicity. Fol-

lowing the de�nition, Def. 8, of the �lter, �(�), we have that �(�) = 0

for � > N , such that we equally well may express the modi�ed approxi-

mation as

u�N(x) =

1X
n=�1

�(�)ûn exp(inx) ;

to obtain

u�N(x) =
1

2�

Z 2�

0

S(x� y)u(y) dy ; (8.6)

where the �lter function is given as

S(z) =

1X
n=�1

�(�) exp(inz) ; (8.7)

which is obtained directly by inserting the de�nition of the continuous

expansion coeÆcients and rearranging the terms. We remind that z 2
[0; 2�]. Note that this expression is equivalent to Eq. (8.5) provided the

�lter is properly de�ned. Note also that we in Eq. (8.6) have replaced

the truncated series with the actual function, u, thus eliminating the

e�ect of the truncation.

Prior to continuing, let us introduce the concept of a �lter function

family

De�nition 9. We de�ne a family of periodic �lter functions, Sl(z), as

S0(z) = S(z)

S0l(z) = Sl�1(z)Z 2�

0

Sl(z) dz = 0 ; l � 1 :

The �lter function de�ned in Eq.(8.7) leads to several equivalent repre-

sentations of the corresponding �lter family as stated in the following

lemma.

Lemma 9. Assume that �(�) represents a �lter of order p, as de�ned in

Def. 8, with the associated �lter function
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S(z) = S0(z) =

1X
n=�1

�(�) exp(inz) ;

where � = n=N . The corresponding �lter family, Sl(z), as de�ned in

Def. 9, has the following equivalent representations (1 � l � p);

a)

Sl(z) =
1

N l

1X
n=�1

Gl(�)i
l exp(inz) ;

where

Gl(�) =
�(�)� 1

�l
:

b)

Sl(z) =
1

N l�1

1X
m=�1

Z 1

�1

exp (iN(z + 2�m)�)Gl(�)i
l dz :

c)

l = 1 : S1(z) = z � � +

n=1X
n=�1
n6=0

�(�)(in)�1 exp(inx)

l � 2 : Sl(z) = Bl(z) +

n=1X
n=�1
n6=0

�(�)(in)�l exp(inx) ;

where Bl(z) represents the Bernoulli polynomial of order l.

The importance of the properties of the �lter family and its integrals

becomes evident in the following theorem

Theorem 65. Let u(x) be a piecewise Cp[0; 2�] function with a single

point of discontinuity at x = �. Then we have

u�N (x)�u(x) =
1

2�

p�1X
l=0

Sl+1(c)
�
u(l)(�+)� u(l)(��)

�
+

1

2�

Z 2�

0

Sp(x�y)u(p)(y) dy
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where c = x� � for x > � and c = 2� + x� � for x < �.

Proof: To establish the proof, let us �rst realize that an immediate

consequence of the actual de�nition of the �lter family as given in Def.

9 is

S1(2�)� S1(0) = 2� (8.8)

Sl(2�)� Sl(0) = 0 ; l � 2 ;

as can be seen by using expression c) for Sl(z) given in Lemma 9 for

l = 1 and the integral condition on Sl(z) for l > 1.

We continue by considering the case of x > �. Integrating Eq. (8.6)

by parts p times, being careful not to integrate over the point of discon-

tinuity, yields

2�u�N (x) =

Z ��

0

S(x� y)u(y) dy +

Z 2�

�+
S(x� y)u(y) dy

=

p�1X
l=0

(Sl+1(2�)� Sl+1(0))u
(l)(x)

+

p�1X
l=0

Sl+1(x� �)
�
u(l)(�+)� u(l)(��)

�

+

Z 2�

0

Sp(x� y)u(p)(y) dy

= 2�u(x) +

p�1X
l=0

Sl+1(x� �)
�
u(l)(�+)� u(l)(��)

�

+

Z 2�

0

Sp(x� y)u(p)(y) dy ;

where the last reduction follows from Eq.(8.8) and we have used that u

as well as Sl are assumed to be periodically extended. Also note that

we use the notation thatZ 2�

0

dy =

Z ��

0

dy +

Z 2�

�+
dy :
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Likewise, we obtain for x < � the result

2�u�N(x) =

Z ��

0

S(x� y)u(y) dy +

Z 2�

�+
S(x� y)u(y) dy

=

p�1X
l=0

(Sl+1(2�)� Sl+1(0)) u
(l)(x)

+

p�1X
l=0

Sl+1(2� + x� �)
�
u(l)(�+)� u(l)(��)

�

+

Z 2�

0

Sp(x� y)u(p)(y) dy

= 2�u(x) +

p�1X
l=0

Sl+1(2� + x� �)
�
u(l)(�+)� u(l)(��)

�

+

Z 2�

0

Sp(x� y)u(p)(y) dy ;

which proves the theorem. QED

The result stated in Theorem 65 provides a precise estimate of the

error between the unknown point value of u(x) and its �ltered and trun-

cated approximating series, u�N(x). The goal of the following is to esti-

mate the two terms on the right hand side of the expression in Theorem

65.

Let us �rst consider the last term in Theorem 65. The estimation of

this is classic. Indeed, if u(x) 2 Cp�1[0; 2�] the �rst term of Theorem

65 vanishes and we are left with the last term only. Thus, this last term

is really the error term for smooth functions as stated in the following

lemma.

Lemma 10. Let Sl(x) be de�ned as in Eq. (8.5) and Def. 9 then

1

2�

����
Z 2�

0

Sp(x � y)u(p)(y) dy

���� � C

p
N

Np

�Z 2�

0

���u(p)���2 dx�1=2

;

where C is independent of C and u.

Proof: Applying the Cauchy-Schwartz inequality yields

1

2�

����
Z 2�

0

Sp(x� y)u(p)(y) dy

���� � 1

2�

�Z 2�

0

S2p(x) dx

�1=2�Z 2�

0

���u(p)(x)���2 dx�1=2
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using that Sp is periodic. To estimate the �rst term we express Sp using

a) of Lemma 9 to obtain

1

2�

Z 2�

0

S2p(x) dx =
1

2�

Z 2�

0

1X
n=�1

�
1

Np

�(�) � 1

�p
ip exp(inx)

�2

=
1X

n=�1

1

N2p

�
�(�) � 1

�p

�2

=
1

N2p�1

NX
n=�N

2

2N

�
�(�) � 1

�p

�2

+
X
jnj>N

1

n2p

� 1

N2p�1

Z 1

�1

�
�(�) � 1

�p

�2

d� +
1

N2p�1

� C
N

N2p
;

where we have used the orthogonality of exponential function and bounded

the Riemann sum by its integral which is convergent under condition c)

of De�nition 8 as can be proved by partial integration. QED

Let us now turn to the estimate for the �rst term of the expression

given in Theorem 65. We will show that the conditions given in Lemma

9 implies that this is bounded.

Lemma 11. Let Sl(x) be de�ned as in Eq.(8.5) and Def. 9 for l � 1,

then

jSl(x)j � C
1

Np�1

�
1

jxjp�l +
1

j2� � xjp�l
�Z 1

�1

jG(p�l)
l (�)j d� ;

where Gl(�) is de�ned in Lemma 9.

Proof: Consider representation b) in Lemma 9 of Sl(x). Since Gl(x)

is p� 1 times di�erentiable and the �lter is de�ned such that �(l)(0) =

�(l)(1) = 0, we obtain by p� l times partial integration that

jSl(x)j = 1

N l�1

�����
1X

m=�1

Z 1

�1

exp[iN(x+ 2�m)�]

Np�l(x+ 2�m)p�l
G
(p�l)
l (�) d�

����� :

Since x 2 [0; 2�], the dominating terms are found form = 0 andm = �1,
such that, using the triangle inequality and taking these two contribu-
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tions outside the integral we obtain the result. QED

We are now in a position to state the main theorem as

Theorem 66. Let u(x) be a piecewise Cp[0; 2�] function with only one

point of discontinuity at x = �. Assume also that the �lter �(�) satis�es

Def 8. Let us now denote the distance between a point x 2 [0; 2�] and

the discontinuity as d(x) = jx��j and de�ne the �ltered truncated series
approximation to u(x) as

u�N(x) =

NX
n=�N

�(�)ûN exp(inx) :

The pointwise di�erence between u(x) and u�N(x) at all x with the ex-

ception of � is then bounded as

ju(x)�u�N (x)j � C1
1

Np�1

1

d(x)p�1
K(u)+C2

p
N

Np

�Z 2�

0

���u(p)���2 dx�1=2

;

where

K(u) =

p�1X
l=0

d(x)l
���u(l)(�+)� u(l)(��)

��� Z 1

�1

���G(p�l)
l (�)

��� d� :

Proof: The second part of the estimate follows directly from Lemma

10. From Lemma 11 we know that the �rst part of the expression in

Theorem 65 is bounded.

Since c = x� � for x > � and c = 2�+x� � for x < � in Theorem 65

we have that

1

jcjp�l +
1

j2� � cjp�l �
2

d(x)p�l
:

Combining this with the estimate of Lemma 11 yields the proof. QED

Note that for u(x) 2 Cp[0; 2�] we recover the result of Theorem 66

as expected.

This theorem proves that the �ltering process works away from the

discontinuity as all terms can be bounded by O(N1�p), such that pro-

vided d > 0 convergence depends only on the regularity of the piecewise

continuous function away from the discontinuity and the order of the

�lter.
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In Examples 43-45 we considered classical types of �lters that all fall

under the appropriate de�nition of a �lter as put forward in Def. 8, such

that the expected convergence rate away from the point of discontinuity

may be predicted using Theorem 66. Indeed, remembering that the

Ces�aro and the Lanczos are both �rst order �lter, we should expect no

more than �rst order convergence as is also seen in Fig. 8.6. Likewise,

for the case of the Raised Cosine �lter, being a second order �lter, we

�nd in Fig. 8.6 the expected second order convergence away from the

point of discontinuity.

The case for the exponential �lter is somewhat di�erent in the sense

that this �lter does not conform with De�nition 8, thereby introducing

an additional error term into the above analysis. However, in most

computations we will set the parameter � such that �(1) ' "M making

it plausible that the conclusions from the above analysis carries over

which is also con�rmed from Example 46 where we see that convergence

is achieved away from the discontinuity and with a convergence rate

being close to spectral.

8.3 The Resolution of the Gibbs Phenomenon

8.3.1 General Theory.

8.3.2 Reconstruction for Trigonometric Expansions.

8.3.3 Reconstruction for Polynomial Expansions.
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9

Computational Aspects

The purpose of the previous chapters has been the development of spec-

tral methods from a theoretical point of view, a second and equally

important issue when solving partial di�erential equations is the ques-

tion of eÆcient implementations of the methods for problems of a more

general character than we have discussed hitherto.

This chapter is devoted to a discussion of tools that allows for eÆcient

implementations of spectral methods based on trigonometric as well as

polynomial expansions. We shall also discuss the problems, and quite

signi�cant they are, of round-o� errors in spectral methods and address

the issues of aliasing in connection with quadratic nonlinearities and how

to remove the aliasing errors in such cases.

Finally, we address problem requiring the use of mappings before

we turn to the important discussion of how to extend the general one-

dimensional framework to problems in multiple dimensions.

9.1 Fast Computation of Interpolation and

Di�erentiation

Only at very rare instances does a numerical algorithm appear that in a

few year revolutionizes entire �elds within science and engineering. It is,

however, fair to say that the appearance of the Fast Fourier Transform in

1965 did exactly that. By establishing a fast way of evaluating discrete

Fourier series and their inverses, this single algorithm opened up for

the use of methods that were hitherto considered less interesting due to

excessive computational requirements.

Among methods that bene�ted enormously from the development

303
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of the Fast Fourier Transforms (FFT) are the spectral methods and

a signi�cant part of the fundamental theory of spectral methods were

developed in the years immediately following the introduction of the

FFT.

Unfortunately, the idea behind the FFT is valid only when dealing

with trigonometric polynomials in some form. Hence, these methods

are not in general applicable to the expansions based on orthogonal

polynomials.

In the following we shall briey discuss the idea behind the FFT

and its relatives. However, since the polynomials play such an impor-

tant role in spectral methods we shall continue by discussing alternative

fast methods for the computation of interpolation and di�erentiation

for such methods. We conclude by including a brief section on how to

compute the general Gaussian quadrature points and weights necessary

to compute the discrete polynomial expansion coeÆcients.

9.1.1 Fast Fourier Transforms.

Let us �rst recall the discrete Fourier series expansion of a function,

u 2 L2[0; 2�], using an even number of points

xj =
2�

N
j ; j 2 [0; N � 1] ;

given as

INu(x) =
N=2X

n=�N=2

~un exp (�inx) ; ~un =
1

cnN

N�1X
j=0

u(xj) exp (inxj) :

If we now restrict the attention to x = xj , i.e. interpolation at the col-

location points and recall that ~u�N=2 = ~uN=2 is assumed for uniqueness,

we arrive at the discrete Fourier expansion on the form

INu(xj) =
N=2�1X
n=�N=2

~un exp

�
�i2�

N
jn

�
; ~un =

1

N

N�1X
j=0

u(xj) exp

�
i
2�

N
jn

�
;(9.1)

i.e. we have N terms in both summations. Direct evaluation of the

expansion coeÆcients or interpolation to the grid, xj , requires O(8N2)

real operations since ~un in general is a complex number.

Let us now assume that N is a power of two, i.e. N = 2M , and

introduce the new index, j1, as
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j =

�
2j1 j even

2j1 + 1 j odd
; j1 2 [0; N=2� 1] :

Using this new index, we express the discrete expansion coeÆcients

~un =
1

N

0
@N=2�1X

j1=0

u(x2j1 ) exp

�
i
2�

N
(2j1)n

�
+

N=2�1X
j1=0

u(x2j1+1) exp

�
i
2�

N
(2j1 + 1)n

�1A
Introducing N1 = N=2, we obtain

~un =
1

N

0
@N1�1X

j1=0

u(x2j1 ) exp

�
i
2�

N1
j1n

�
+

exp

�
i
2�

N
n

�N1�1X
j1=0

u(x2j1+1) exp

�
i
2�

N1
j1n

�1A :

At this point we realize that the two sums, each of half the length of the

original sum, have exactly the same form as the original sum, Eq.(9.1).

Thus, we may repeat the process and break the computation down to 4

sums each of length N=4. Repeating this process results in an algorithm

that computes the discrete expansion coeÆcients in O(5N log2N) real

operations provided the twiddle factors, exp(2�n=N), exp(2�n=N1) and

so on, are precomputed. This decomposition is precisely the Fast Fourier

Transform and the reduction, as we saw, in computations are signi�cant.

The application of the FFT for computing the interpolating follows

the same line of thought. Indeed, if we consider

u(xj) =

N=2�1X
n=�N=2

~un exp

�
�i2�

N
jn

�
;

and introduce the new index, n1, as

n =

�
2n1 n even

2n1 + 1 n odd
; n1 2 [�N=4; N=4� 1] ;

we recognize the exact same structure that made the fast computation

of the expansion coeÆcients possible. Hence, the FFT is applicable for

computing the discrete expansion coeÆcients as well as the interpolation
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at the collocation points.

At this point in time numerous highly eÆcient and accurate imple-

mentations of the FFT algorithm exists and it is in general safe to say

that when considering Fourier methods one should always use the FFT

if possible. The brief account for the idea behind the FFT presented

above introduces the assumption that N is a power of 2. However, it is

easy to see that also if N is a power a 3 can one design a fast transform,

by splitting the original sum into three sums each of length 1=3N - such

an algorithm being known as a radix-3 transform. Indeed, the algorithm

can be formulated for any prime-decomposition of a given number, al-

lowing for the use of a very wide range of values of N .

It should also be clear that choosing the alternative and very appeal-

ing grid set

yj =
2�

N + 1
; j 2 [0; N ] ;

inhibits the use of the FFT as the decomposition into smaller sums is

impossible with this choice of grid points.

In many applications of spectral methods the direct use of the complex

FFT is unnecessarily expensive, e.g., u(x) is in many case a real function.

If we consider a real function of length N we may construct a complex

function, v, of half the length as

vj = u(x2j) + iu(x2j+1) ; j 2 [0; N=2� 1] :

Applying the FFT yields the complex expansion coeÆcients of v as

~vn = ~ven+i~v
o
n =

1

N

N=2�1X
j=0

u(x2j) exp

�
2�

N=2
nj

�
+i

1

N

N=2�1X
j=0

u(x2j+1) exp

�
2�

N=2
nj

�
;

for n 2 [0; N=2� 1]. Recalling the development of the FFT algorithm,

the �rst level of decomposition establishes the relationship

8n 2 [�N=2; N=2� 1] : ~un = ~ven + exp

�
i
2�

N
n

�
~von :

Moreover, since u(x) is real we have that ~un = ~u�n, i.e. we need only

compute the elements n 2 [0; N=2] complex numbers. Using ~v0 = ~vN=2,

implies that these two components are purely real, and we obtain that

only N=2 complex numbers need to be stored, i.e. the transformation

can be done in place. Using the decomposition, we recover the discrete
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expansion coeÆcients as the sum of the even and odd parts of ~v as

~un =
1

2

�
~vn + ~vN=2�n

�� i

2
exp

�
i
2�

N
n

� �
~vn � ~vN=2�n

�
:

To obtain the interpolation at the grid points we assemble the two com-

ponents of ~vn as

~vn =
1

2

�
~un + ~uN=2�n

�
+
i

2
exp

�
�i2�

N
n

� �
~un � ~uN=2�n

�
:

which recovers the exact same structure as for the forward transform.

The fast transformation using the complex FFT yields an algorithm as

O( 52N log2N) for the radix-2 scheme, i.e. twice as fast as just performing

the complex FFT with all imaginary components being zero.

The FFT may also be applied for the fast computation of Sine trans-

formations although it requires a little additional work. If we �rst con-

sider the discrete Sine expansion coeÆcients given as

~un =
1

n

N�1X
j=1

u(xj) sin
� �
N
nj
�

;

it is clear that there is a factor of 2 di�erence in the argument of the

Sine transformation compared to Eq.(9.1). However, let us extend the

function, u(x), around j = N and introduce a new odd function as

8k 2 [0; 2N � 1] : v(xk) =

8<
:
u(xk) k < N

0 k = N

�u(x2N�k) k > N

:

Doing an FFT on v(x) yields

~vn =
1

2N

2N�1X
k=0

v(xk) exp

�
i
2�

2N
kn

�
;

which we may rewrite as

~vn =

N�1X
k=0

u(xk) exp

�
i
2�

2N
kn

�
�

2N�1X
k=N

u(x2N�k) exp

�
i
2�

2N
kn

�
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=

N�1X
j=1

u(xj) exp

�
i
2�

2N
kn

�
�

N�1X
j=1

u(xj) exp

�
i
2�

2N
(2N � j)n

�

= 2i

N�1X
j=1

u(xj) sin
� �
N
nj
�

;

i.e. the FFT of the function v exactly results in the discrete Sine expan-

sion coeÆcients, although, at �rst it seems at the expense of computing

an expansion of twice the length. However, since u(x) is real the expan-

sion can be performed using of FFT of half length for real functions.

The exact same trick can be applied for computing the discrete Cosine

expansion coeÆcients given as

~un =

NX
j=0

u(xj) cos
� �
N
nj
�

;

although in this case we must form a new even function as

8k 2 [0; 2N � 1] : v(xk) =

�
u(xk) k � N

u(x2N�k) k > N
;

such that the Cosine expansion coeÆcients are obtained as

~vn =

2N�1X
k=0

v(xk) exp

�
i
2�

2N
kn

�
= 2

NX
j=0

u(xj) cos
� �
N
nj
�

:

Again we can use the complex transform of a real function to minimize

the computational workload. Thus, we have fast transforms for the Sine

series, and, much more importantly, for the Cosine series which is very

close to the Chebyshev expansion. Indeed, if we recall the Chebyshev

Gauss-Lobatto quadrature rule and expansion

INu(xj) =
NX
n=0

~un cos
� �
N
nj
�

; ~un =
1

cnN

NX
j=0

1

cj
u(xj) cos

� �
N
nj
�

;

it is immediate that the FFT can be used to compute both sums in

O( 52N log2N + 4N), where the latter contribution appears from the

packing and unpacking required to utilize the FFT. The option of us-

ing the FFT for computing the Chebyshev Gauss-Lobatto expansion is

yet another reason for the wide use of Chebyshev polynomials for the

construction of eÆcient spectral methods.
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It should be noted that implementations of the Cosine transforms are

of very varying quality and it is in general not possible to estimate when

a fast Cosine transform should be used at a speci�c machine rather than

applying a matrix multiply directly. However, a good rule of thump is

that if N > 64 it is most certainly worth to consider the use of a fast

Cosine transform.

9.1.2 The Even-Odd Decomposition.

Unfortunately, the approach that leads to the Fast Fourier Transform

does not extend to orthogonal polynomials beyond the Chebyshev poly-

nomials. Hence, if one insists on using expansion coeÆcients, ~un, to

compute the derivative at the collocation points, there is in general no

way around summing the series directly.

However, using the interpolating Lagrange polynomials and the asso-

ciated di�erentiation matrices, there is still room for improvement. Let

us consider the vector, u = (u(x0); : : : ; u(xN )), and the di�erentiation

matrix, D, associated with the chosen set of collocation points, xj . We

recall that the derivative of u at the grid points, u0, is obtained as

u0 = Du :

Using ultraspherical polynomials as the basis for the approximation we

have previous established that

Dij = �DN�i;N�j ;

i.e. that D is centro-antisymmetric. This property shall allow us to

develop a fast algorithm for the computation of u0.

We shall decompose u into its even, e, and odd parts, o, as u = e+o

where the two new vectors have the entries

ej =
1

2
(uj + uN�j) ; oj =

1

2
(uj � uN�j) ;

where uj signi�es entry j in u and similarly for ej and oj . We observe

that

ej = eN�j ; oj = �oN�j :

By linearity of the di�erentiation operation we have
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u0 = Du = De+Do = e0 + o0 :

Let us now �rst consider the case where N is odd such that we in total

have an even number of collocation points.

If we compute the di�erentiation of e we obtain

e0j =
NX
i=0

Djiei =

(N�1)=2X
i=0

Djiei +Dj;N�ieN�i

=

(N�1)=2X
i=0

(Dji +Dj;N�i) ei :

Moreover, e0 is odd as

e0N�j =

NX
i=0

DN�j;iei =

(N�1)=2X
i=0

(DN�j;i +DN�j;N�i) ei

=

(N�1)=2X
i=0

� (Dj;N�i +Dji) ei = �e0j :

Hence, it is only necessary to compute the �rst half of e0. If we introduce

the matrix, De, with the entries

8i; j 2 [0; (N � 1)=2] : De
ij = Dij +Di;N�j ;

the computation is simply a matrix multiply as

~e0 = De~e ;

where ~e = (e0; : : : ; e(N�1)=2)
T and similarly for ~e0.

The computation of o0 yields

o0j =

NX
i=0

Djioi =

(N�1)=2X
i=0

Djioi +Dj;N�ioN�i

=

(N�1)=2X
i=0

(Dji �Dj;N�i) oi ;
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and o0 is even as

o0N�j =

NX
i=0

DN�j;ioi =

(N�1)=2X
i=0

(DN�j;i �DN�j;N�i) oi

=

(N�1)=2X
i=0

(�Dj;N�i +Dji) oi = o0j ;

i.e. also in this case is it suÆcient to compute one half of the elements

in the vector. Introducing the matrix, Do, with the entries

8i; j 2 [0; (N � 1)=2] : Do
ij = Dij �Di;N�j ;

we recover the matrix multiplication as

~o0 = Do~o ;

where ~o = (o0; : : : ; o(N�1)=2)
T and similarly for ~o0.

Finally, we can reconstruct u0 as

u0 = e0 + o0 ;

using

u0j = ~e0j + ~o0j ; u0N�j = e0N�j + o0N�j = �~e0j + ~o0j ;

for j 2 [0; (N � 1)=2].

Consequently, to compute the derivative of u at the collocation points

we need to construct ~e and ~o, perform two matrix-vector product of

length N=2 and reconstruct u0. The total operation count for this pro-

cess becomes

2
N

2
+ 2

 
2

�
N

2

�2

� N

2

!
+ 2

N

2
= N2 +N ;

provided the di�erentiation matrices are precomputed. This should be

contrasted to the direct computation of u0 which requires 2N2 �N op-

erations. Hence, utilizing the centro-antisymmetry of the di�erentiation

matrix allows for decreasing the computational work with close to a

factor of 2 which is very important for N being large.

Let us �nally consider the case where N is even. If we �rst consider
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di�erentiation of the even part of u and follow the outlined approach we

obtain

e0j =

NX
i=0

Djiei =

N=2X
i=0

Djiei +Dj;N�ieN�i ;

i.e. the term from i = N=2 is computed twice. This, however, is easily

�xed by de�ning De slightly di�erent as

8i 2 [0; N=2� 1]; j 2 [0; N=2] : De
ij =

�
Dij +Di;N�j j 6= N=2

Di;N=2 j = N=2
:

Note that De is rectangular rather than quadratic. This is a consequence

of e0 being odd, i.e. e0N=2 = 0 and need not be computed.

In the same way we de�ne a modi�ed Do as

8i 2 [0; N=2]; j 2 [0; N=2� 1] : Do
ij = Dij �Di;N�j ;

since o is odd such that the problem of counting the last entry twice

does not appear in this case. This also implies that Do is rectangular,

since o0 is even and therefore o0N=2 needs to be computed.

In the situation where D is centro-symmetric as

Dij = DN�i;N�j ;

the exact same even-odd splitting can be applied with the only di�erence

being that e0 is even and o0 is odd such that the �nal reconstruction

becomes

u0j = ~e0j + ~o0j ; u0N�j = e0N�j + o0N�j = ~e0j � ~o0j :

Indeed, all even order di�erentiation matrices appearing from the ul-

traspherical polynomials share the property of centro-symmetry, thus

allowing for applying the splitting technique directly.

9.2 Computation of Gaussian Quadrature Points and

Weights

When using polynomial methods the �rst requirement is to establish

the position of the collocation points, these being the quadrature points

of some chosen Gauss quadrature rule. However, with the exception

of a few special cases, like the Chebyshev polynomials, no closed form
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expression for the quadrature nodes are known. Nevertheless, as we shall

discover in the following, there is a simple and elegant way of computing

these nodes as well as the corresponding weights, although these are

known on explicit form and can be computed using these.

We shall, as usual, restrict the attention to the case of ultraspherical

polynomials, P
(�)
n (x), although we note that everything generalizes to

the case of Jacobi polynomials as well as Laguerre and Hermite polyno-

mials.

Let us begin by recalling the three-term recurrence relation for ultra-

spherical polynomials as

xP (�)
n (x) = an�1;nP

(�)
n�1(x) + an+1;nP

(�)
n+1(x) ; (9.2)

where the recurrence coeÆcients are given as

an�1;n =
n+ 2�

2n+ 2�+ 1
; an+1;n =

n+ 1

2n+ 2�+ 1
:

Let us now normalize the polynomials slightly di�erent and introduce

the modi�ed polynomials

~P (�)
n (x) =

1p
n
P (�)
n (x) ;

such that ( ~P
(�)
n ; ~P

(�)
k )w = Ænk. With this normalization, the recurrence

coeÆcients of the three-term recurrence relation, Eq.(9.2), becomes

~an�1;n =

r
n�1
n

an�1;n =

s
n(n+ 2�)

(2n+ 2�+ 1)(2n+ 2�� 1)
;

and

~an+1;n =

r
n+1
n

an+1;n =

s
(n+ 1)(n+ 2�+ 1)

(2n+ 2�+ 3)(2n+ 2�+ 1)
:

The key observation to make is that

�n = ~an+1;n = ~an;n+1 ;

such that Eq.(9.2) reduces to

x ~P (�)
n (x) = �n�1 ~P

(�)
n�1(x) + �n ~P

(�)
n+1(x) : (9.3)
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If we now introduce the vector ~P
(�)

(x) = ( ~P
(�)
0 (x); : : : ; ~P

(�)
N (x))T , and

the symmetric bi-diagonal matrix

JN =

2
666666666664

0 �1 0 0 0 � � � 0

�1 0 �2 0 0 � � � 0

0 �2 0 �3 0 � � � 0

0 0 �3 0 �4 � � � 0

0 0 0 �4 0
. . . 0

...
...

...
...
. . .

. . . �N�1
0 0 0 0 0 �N�1 0

3
777777777775

;

we may express Eq.(9.3) as

x ~P
(�)

(x) = JN ~P
(�)

(x) + �N ~P
(�)
N+1(x) :

However, since the Gauss quadrature points, zj , are de�ned as the roots

of P
(�)
N+1(x), and therefore also of ~P

(�)
N+1 we realize that the real grid

points, zj , appear as the eigenvalues of the symmetric bi-diagonal ma-

trix, JN . The eigenvalue problem may be solved using the QR-algorithm

and the corresponding weights may be computed using the exact formu-

las. However, we may in fact recover the weights from the eigenvectors of

JN . To realize that we recall the formula for the interpolating Lagrange

polynomial associated with the Gauss quadrature points given as

~lj(z) = uj

NX
n=0

P�
n (z)P

�
n (zj)

n
= uj

�
~P
(�)

(z)
�T

~P
(�)

(zj) :

Using the Christo�el-Darboux identity we established that

~lj(zj) = uj

�
~P
(�)

(zj)
�T

~P
(�)

(zj) = 1 :

In other words, the normalized eigenvector, Q(zj), corresponding to the

eigenvalue, zj , of JN is given as

Q(zj) =
p
uj ~P

(�)
(zj) ;

from which, by equating the �rst components of the two vectors, we

obtain the expression of the weight as
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uj =

 
Q0(zj)

~P
(�)
0 (zj)

!2

= 0 (Q0(zj))
2
=
p
�

�(�+ 1)

�(�+ 3=2)
(Q0(zj))

2
;

since ~P
(�)
0 (zj) = 1=

p
0. Here Q0(zj) signi�es the �rst component of the

eigenvector, Q(zj). Hence, the quadrature points as well as the weights

may be obtained directly by computing the N + 1 eigenvalues and the

�rst component of the corresponding eigenvectors.

The algorithm for computing the Gauss-Radau quadrature points and

weights is very similar, the main di�erence being due to the de�nition

of the Gauss-Radau quadrature points, which are found as the roots of

the polynomial

q(y) = P
(�)
N+1(y) + �NP

(�)
N (y) = 0 ;

where �N is chosen such that q(y) vanish at one of the two boundaries

as

�N = �P
(�)
N+1(�1)
P
(�)
N (�1)

= (�1)N + 1 + 2�

N + 1
;

where the upper sign corresponds to g(1) = 0 while the lower sign yields

�N for g(�1) = 0.

The three-term recurrence relation, Eq.(9.3), yields

y ~P
(�)

(y) = JN ~P
(�)

(y) + �N ~P
(�)
N+1(y) :

Utilizing the de�nition of the Gauss-Radau quadrature points, we ex-

press

~P
(�)
N+1(�1) = ~�N ~P

(�)
N (�1) ;

where

~�N = �
r

N
N+1

�N = (�1)
s

(N + 1 + 2�)(2N + 2�+ 3)

(N + 1)(2N + 2�+ 1)
:

Thus, the last row of JN may be modi�ed as

(�1) ~P (�)
N (�1) = �N�1 ~P

(�)
N�1(�1) + �N ~P

(�)
N+1(�1)
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= �N�1 ~P
(�)
N�1(�1) + �N ~�N ~P

(�)
N (�1) ;

i.e. only the element (i; j) = (N;N) of JN needs to be modi�ed while

the remaining part of the algorithm follows. Hence, the Gauss-Radau

quadrature points are found by solving the modi�ed eigenvalue problem

while the corresponding weights, vj , are found from the �rst components

of the corresponding eigenvectors as discussed in connection with the

Gauss quadratures.

Let us �nally consider the modi�cations necessary to compute the

Gauss-Lobatto quadrature points and weights. In this case, the quadra-

ture points are given as the roots of the polynomial

q(x) = P
(�)
N+1(x) + �NP

(�)
N (x) + �N�1P

(�)
N�1(x) ;

where the coeÆcients, �N�1 and �N , are found such that q(�1) = 0,

i.e. by solving the system

�NP
(�)
N (�1) + �N�1P

(�)
N�1(�1) = �P (�)

N+1(�1)
�NP

(�)
N (1) + �N�1P

(�)
N�1(1) = �P (�)

N+1(1) :

If we then normalize the polynomials as usual, these constants are mod-

i�ed as

~�N =

r
N
N+1

�N ; ~�N�1 =

r
N�1
N+1

�N�1 ;

and we recover the equation for the quadrature points as

~P
(�)
N+1(x) + ~�N ~P

(�)
N (x) + ~�N�1P

(�)
N�1(x) = 0 :

This may be enforced on the eigenvalue problem by changing two ele-

ments of JN as

(JN )N;N�1 = �N�1 � �N ~�N�1 ; (JN)N;N = ��N ~�N ;

while the remaining part of the algorithm remains unchanged. Unfortu-

nately, using this approach for computing the Gauss-Lobatto quadrature

points, JN looses its symmetry, thereby making the solution of the re-

sulting eigensystem slightly harder.

A di�erent approach can be taken by recalling that
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dP
(�)
N (x)

dx
= (2�+ 1)P

(�+1)
N�1 (x) ;

i.e., the interior Gauss-Lobatto quadrature point for P
(�)
N (x) can be

recovered as the roots of the polynomial P
(�+1)
N�1 (x) Gauss quadrature

points of the polynomial P
(�+1)
N�2 (x) which be may recover directly using

the symmetric approach discussed above.

9.3 Finite Precision E�ects.

In the ideal world of approximation and stability theory, the accuracy

of spectral methods depends, as we have seen, only on the regularity

of the function being approximated and the operators being involved.

However, in the non-ideal world of computation, the �nite precision

of the computer has a very signi�cant e�ect on any algorithm being

implemented.

For spectral methods the e�ect of round-o� errors is most pronounced

when derivatives are computed, with a very signi�cant di�erence be-

tween the behavior of derivatives computed using continuous expansion

coeÆcients and discrete expansion coeÆcients/interpolating Lagrange

polynomials.

In the following we shall address this problem in detail and discover

that for polynomial spectral methods in particular, the e�ects of the

�nite precision can have very signi�cant consequences for the overall

accuracy of the scheme, indeed, for certain problems the results are

essentially useless due to overwhelming an ampli�cation of round-o�

errors.

9.3.1 Finite Precision E�ects in Fourier Methods.

Let us begin by considering any given function, u(x) 2 L2[0; 2�], being

approximated using a continuous Fourier series

PNu(x) =
N=2X

n=�N=2

ûn exp(inx) ; ûn =
1

2�

Z 2�

0

u(x) exp(�inx) dx :

As we have discussed in detail previously, the approximation to the m-

derivative of u(x) is then given exactly as
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N m = 1 m = 2 m = 3 m = 4

8 0.438E+00 0.575E+01 0.119E+02 0.255E+03
16 0.477E-01 0.105E+01 0.522E+01 0.106E+03
32 0.360E-03 0.139E-01 0.114E+00 0.434E+01
64 0.104E-07 0.778E-06 0.119E-04 0.873E-03
128 0.222E-14 0.160E-13 0.524E-13 0.335E-11
256 0.311E-14 0.160E-13 0.782E-13 0.398E-12
512 0.355E-14 0.160E-13 0.782E-13 0.568E-12
1024 0.355E-14 0.195E-13 0.853E-13 0.568E-12

Accuracy O("M (N0=2)) O("M (N0=2)2) O("M (N0=2)3) O("M (N0=2)4)

PNu(m)(x) =

N=2X
n=�N=2

(in)mûn exp(inx) ;

which naturally means that the highest modes are being ampli�ed. Let

us study the e�ect of this phenomenon through an example.

Example 47. Let us consider the C1[0; 2�] and periodic function

u(x) =
3

5� 4 cos(x)
;

with the continuous expansion coeÆcients being

ûn = 2�jnj ;

from which we directly obtain the approximation to the m-derivative as

PNu(m)(x) =

N=2X
n=�N=2

(in)m2�jnj exp(inx) :

In Table 9.1 we show the maximum pointwise error of this approximation

to u(m)(x) with increasing number of modes, N , being used.

We observe that once the function is well resolved the error approaches

machine zero, "M , faster than any algebraic order of N . However, a

close inspection reveals that the accuracy of the approximation decays

with increasing order of the derivative as
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max
x2[0;2�]

���u(m)(x)�PNu(m)(x)
��� � O("M (N0=2)

m) as N !1 :

Here N0 corresponds to the number of modes required to approximate

the function, u(x), to O("M ). For N � N0 we have ûn � "M and, since

ûn decays exponentially in this limit, û
(m)
k � "M , i.e. the last term that

contributes to the accuracy is ûN0=2 � O("M ), being the limiting factor

on accuracy.

The main observation to make is that the e�ect of the �nite precision

is independent of N once the function is well resolved and only a slight

dependency of the order of the derivative on the accuracy is observed.

Unfortunately, such behavior does not carry over to the discrete case.

Let us now consider the case where the function, u(x) 2 L2[0; 2�], is

approximated using the discrete expansion coeÆcients as

INu(x) =
N=2X

n=�N=2

~un exp(inx) ; ~un =
1

Ncn

N�1X
j=0

u(xj) exp(�inxj) ;

where we use the even grid

xj =
2�

N
j ; j 2 [0; N � 1] :

The actual computation of the expansion coeÆcients may be performed

using the FFT or by simply summing the series. Once the expansion

coeÆcients are obtained, computation of the approximation to the m-

derivative of u(x) is obtained as for the continuous expansion like

INu(m)(x) =

N=2X
n=�N=2

(in)m~un exp(inx) :

Let us consider the accuracy of this approach in the following example.

Example 48. Consider again the C1[0; 2�] and periodic function

u(x) =
3

5� 4 cos(x)
:

The expansion coeÆcients are now found using an FFT, from which we

immediately obtain the expansion coeÆcients for the m'th derivative as
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N m = 1 m = 2 m = 3 m = 4

8 0.654E+00 0.402E+01 0.134E+02 0.233E+03
16 0.814E-01 0.500E+00 0.618E+01 0.770E+02
32 0.648E-03 0.391E-02 0.173E+00 0.210E+01
64 0.198E-07 0.119E-06 0.205E-04 0.247E-03
128 0.380E-13 0.216E-11 0.116E-09 0.715E-08
256 0.657E-13 0.705E-11 0.680E-09 0.954E-07
512 0.272E-12 0.605E-10 0.132E-07 0.110E-05
1024 0.447E-12 0.253E-09 0.844E-07 0.157E-04

Accuracy O("M (N=2)) O("M (N=2)2) O("M (N=2)3) O("M (N=2)4)

~u(m)
n = (in)m~un :

In Table 9.2 we show the maximum pointwise error of this approximation

to u(m)(x) with increasing number of modes, N , being used.

We note a pronounced di�erence in the accuracy of the derivatives as

compared to the results quoted in Table 9.1, where the error is constant

for a given m once the function is well resolved. Using the FFT we �nd

that the accuracy deteriorates with increasing order of the derivative, as

in Table 9.1, but also for increasing N . Indeed, we observe a scaling of

the error like

max
x2[0;2�]

���u(m)(x)� INu(m)(x)
��� � O("M (N=2)m) as N !1 ;

i.e. a signi�cant reduction in the accuracy, in particular for high or-

der derivatives. This is a consequence of the uniform error of O("M )

introduced by the numerical computation of the discrete expansion co-

eÆcients. As a result we have that ~un � O("M ) even for N � N0, where

we expect the expansion coeÆcients to decay exponentially. However,

due to the �nite accuracy, it is impossible to obtain these very small

numbers. Thus, the maximum error is obtained from the maximum

mode number, N=2, and the manifestation of this term, introduced by

the uniform noise-level, is clearly seen in Table 9.2.

One way to reduce the e�ect of the round-o� error in the calcula-

tion of the expansion coeÆcients, as there is no way of avoiding it, is to

always compute the FFT with the highest possible accuracy and in gen-

eral attempt to formulate the di�erential equations using as low order
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derivatives as possible.

Although we have only illustrated the problem of round-o� errors

using the FFT and the discrete expansion coeÆcients, the general pic-

ture remains the same in the case where di�erentiation matrices are

used. Indeed, it is usually found that using the FFT and the expansion

coeÆcients results in the numerically most stable algorithm, i.e. the al-

gorithm which su�ers least from e�ects of the �nite precision. However,

if the entries of the di�erentiation matrices are carefully computed, i.e.

the exact entries are computed for high order derivatives rather than

obtained by multiplying several �rst order di�erentiation matrices, the

two di�erent algorithms yield a comparable accuracy.

9.3.2 Finite Precision in Polynomial Methods

The situation for polynomial methods is even worse than what we saw

for the case of the discrete Fourier expansion and, as we shall see, great

care has to be exercised when approximating high order derivatives using

polynomial methods.

For reasons of simplicity, we shall restrict the discussion to the case

of Chebyshev expansions and derivatives. However, most of the results

carry directly over to the case of general ultraspherical polynomials un-

less otherwise stated.

As for the Fourier expansion we begin by considering the continuous

Chebyshev expansion of u(x) 2 L2
w[�1; 1] as

PNu(x) =
NX
n=0

ûnTn(x) ; ûn =
2

cn�

Z 1

�1

u(x)Tn(x)
1p

1� x2
dx :

The approximation to the m-derivative of u(x) is directly obtained as

PNu(m)(x) =

NX
n=0

û(m)
n Tn(x) ;

where the continuous expansion coeÆcients for u(m)(x) are found by

repeated use of the backward recursion formula

8n 2 [1; N ] : cn�1û
(m)
n�1 = û

(m)
n+1 + 2nû(m�1)n ;

with the assumption that û
(m)
N = û

(m)
N+1 = 0. Let us examine the accu-

racy of this transform-recurrence-transform method through an exam-
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N m = 1 m = 2 m = 3 m = 4

8 0.273E+02 0.136E+04 0.552E+05 0.237E+07
16 0.232E+01 0.295E+03 0.247E+05 0.168E+07
32 0.651E-02 0.268E+01 0.678E+03 0.126E+06
64 0.164E-07 0.245E-04 0.221E-01 0.143E+02
128 0.568E-13 0.125E-11 0.582E-10 0.931E-09
256 0.568E-13 0.296E-11 0.873E-10 0.349E-08
512 0.568E-13 0.341E-11 0.873E-10 0.442E-08
1024 0.853E-13 0.341E-11 0.873E-10 0.442E-08

Accuracy O("MN0) O("MN2
0 ) O("MN3

0 ) O("MN4
0 )

ple.

Example 49. Consider the function, u(x) 2 C1[�1; 1], as

u(x) =
1

x+ a
; a > 1 ;

for which the continuous expansion coeÆcients are given as

ûn =
2

cn

1p
a2 � 1

(
p
a2 � 1� a)n :

As the function is smooth we �nd, as expected, that the expansion

coeÆcients decay exponentially fast in n. Note that when a approaches 1

the function develops a strong gradient at x = �1 and becomes singular

in the limit. In this example we used a = 1:1.

Using the backward recursion formula for Chebyshev polynomials we

have calculated the expansion coeÆcients for higher derivatives and in

Table 9.3 we list the maximum pointwise error of the expansion as a

function of the order, N , of the approximating polynomial.

As for Fourier series we �nd that once the function, u(x), is well approx-

imated the error is close to machine zero, "M . However, a closer look

shows that the maximum pointwise error approximately as

max
x2[�1;1]

���u(m)(x) �PNu(m)(x)
��� � O("MNm

0 ) as N !1 ;

where N0 corresponds to the maximum mode number required to ap-

proximate u(x) to O("M ). Due to the rapid decay of the expansion
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coeÆcients, we know that for N � N0 ûn � "M , i.e. the last term

that contributes to the accuracy is 2N0ûN0 which is O("M ). Contrary

to Fourier series, the expansion coeÆcient, û
(m)
n , depends on all coeÆ-

cients with higher n. However, due to the rapid decay of the coeÆcients

the backward recursion is extremely stable, i.e. the last term of order

O("M ) is carried backwards in the recursion without being ampli�ed,

thus leading to the observed scaling.

The situation for the discrete expansion is rather di�erent. Let us

consider the Chebyshev Gauss-Lobatto expansion as

INu(x) =
NX
n=0

~unTn(x) ; ~un =
2

cnN

NX
j=0

1

cj
u(xj)Tn(xj) ;

where the Gauss-Lobatto quadrature points are given as

xj = � cos
� �
N
j
�

; j 2 [0; N ] :

The discrete approximation to the m-derivative of u(x) is obtained as

for the continuous expansion using the backward recursion repeatedly.

In the following example we consider the accuracy of this approach.

Example 50. Let us again consider the function, u(x) 2 C1[�1; 1],
being de�ned as

u(x) =
1

x+ a
; a > 1 ;

where we now compute the discrete Chebyshev expansion coeÆcients

using a standard Fast Cosine Transform algorithm and use the analytic

backward recursion formulas to calculate the expansion coeÆcients for

the higher derivatives. In Table 9.4 we list the maximum pointwise error

as obtained for increasing resolution and order of derivative for a = 1:1.

The results should be compared with those in Table 9.3.

The e�ect of using the discrete Chebyshev expansion coeÆcients as com-

pared to the continuous coeÆcients is very pronounced and quite dis-

couraging. We note that the error increases rapidly with the number of

modes as well as with the order of the derivative and �nd that the error

scales approximately as
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N m = 1 m = 2 m = 3 m = 4

8 0.571E+01 0.403E+02 0.276E+04 0.119E+06
16 0.485E+00 0.936E+01 0.436E+04 0.443E+06
32 0.912E-03 0.771E-01 0.129E+03 0.404E+05
64 0.130E-08 0.514E-06 0.289E-02 0.333E+01
128 0.154E-09 0.474E-06 0.104E-02 0.179E+01
256 0.527E-08 0.636E-04 0.560E+00 0.390E+04
512 0.237E-08 0.374E-03 0.203E+02 0.723E+06
1024 0.227E-07 0.362E-01 0.458E+04 0.457E+09

Accuracy O("MN3) O("MN5) O("MN7) O("MN9)

max
x2[�1;1]

���u(m)(x) � INu(m)(x)
��� � O("MN2m+1) as N !1 :

As we observe in Table 9.4, this strong dependence on N implies that

for high values of N and/or m it becomes impossible to approximate

the derivative of the function to any reasonable error. The problem lies

in the combination of the cosine transform and the backward recursion

used to determine the expansion coeÆcients for the higher derivatives.

The backward recursion leads to an O(N2) ampli�cation of the initial

round-o� error of O("MN) resulting from the transform. This last term

could be avoided by using a direct summation, which, however, may be

prohibitively expensive for largeN . The ill-conditioning of the backward

recursion has the sad consequence that the approximation of high order

derivatives remains a non-trivial task when using polynomial methods

and great care has to be taken when attempting to do so. Comparing

the results illustrated in Ex. 49 and Ex. 50 it becomes clear that the

most important issue here is the accuracy by we compute the discrete

expansion coeÆcients, i.e. this should always be done with the highest

possible accuracy.

Although using the expansion coeÆcients and backward recursion

is mathematically equivalent to using the di�erentiation matrices, the

two methods are numerically very di�erent as we shall observe shortly.

Let us again consider the discrete Chebyshev approximation using the

interpolating Lagrange polynomials as

INu(x) =
NX
j=0

u(xj)lj(x) =

NX
j=0

u(xj)
(�1)j+1(1� x2)T 0N(x)

cjN2(x� xj)
;
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where we have chosen to consider the approximation based on the Cheby-

shev Gauss-Lobatto quadrature points

xj = � cos
� �
N
j
�

; j 2 [0; N ] :

Di�erentiation is then accomplished through a matrix vector product as

dINu
dx

����
xj

=

NX
i=0

Djiu(xi) ;

where the entries of the di�erentiation matrix are given as

Dij =

8>>>><
>>>>:

� 2N2+1
6 i = j = 0

ci
cj

(�1)i+j

xi�xj
i 6= j

� xi
2(1�x2

i
)
i = j 2 [1; N � 1]

2N2+1
6 i = j = N

: (9.4)

Let us consider the accuracy of this approach in the following example.

Example 51. Consider the function, u(x) 2 C1[�1; 1], being de�ned

as

u(x) =
1

x+ a
; a > 1 ;

where we compute derivatives using the di�erentiation matrix, D, im-

plemented exactly as in Eq.(9.4) while higher derivatives are computed

by repeatedly multiplying with the di�erentiation matrix as

u(1) = Du ; u(m) = Dmu :

In Table 9.5 we list the maximum pointwise error as obtained for in-

creasing resolution and order of derivative for a = 1:1.

This is clearly very disappointing. The direct implementation of the

di�erentiation matrices indicates an accuracy like

max
x2[�1;1]

���u(m)(x)� INu(m)(x)
��� � O("MN2m+2) as N !1 :

Fortunately, there are several things that can be done to improve on

this result. Let us �rst attempt to understand what causes the strong
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N m = 1 m = 2 m = 3 m = 4

8 0.201E+02 0.127E+04 0.545E+05 0.237E+07
16 0.116E+01 0.221E+03 0.218E+05 0.160E+07
32 0.191E-02 0.134E+01 0.441E+03 0.956E+05
64 0.276E-08 0.741E-05 0.917E-02 0.731E+01
128 0.633E-08 0.458E-04 0.161E+00 0.386E+03
256 0.139E-06 0.406E-02 0.589E+02 0.578E+06
512 0.178E-05 0.178E+00 0.983E+04 0.379E+09
1024 0.202E-04 0.837E+01 0.200E+07 0.325E+12

Accuracy O("MN4) O("MN6) O("MN8) O("MN10)

inuence of the �nite precision.

All o�-diagonal entries of the matrix, D, are given like

Dij � C
1

xi � xj
:

Close to the boundary, x = �1, this term scales like

Dij � 1

xi � xj
� 1

1� cos(�=N)
� 1

O(N�2) + "M

� O(N2)

1 +O("MN2)
� O(N2)(1�O("MN2))

� O(N2) +O("MN4) ;

i.e. the di�erentiation matrix has a condition number as O("MN4) re-

ecting the observed scaling in Tabel 9.5. The question to address is

what can be done about this. The subtraction of almost equal numbers

can be avoided by using trigonometric identities such that the entries of

D are initialized like

Dij =

8>>>><
>>>>:

� 2N2+1
6 i = j = 0

ci
2cj

(�1)i+j

sin( i+j2N �) sin( i�j2N �)
i 6= j

� xi
2 sin2( �N i)

i = j 2 [1; N � 1]

2N2+1
6 i = j = N

:

Doing a direct implementation of this matrix reduces the error making

the accuracy scale like
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max
x2[�1;1]

���u(m)(x)� INu(m)(x)
��� � O("MN2m+1) as N !1 ;

similar to that using the Fast Cosine Transform and the backward recur-

sion. However, it is in fact possible to make the matrix-vector multiply

method perform even better. The solution lies hidden in the computa-

tion of the elements for i � j � N . In that case we need to compute

function like sin(� � Æ), where Æ � �, i.e. this operation is sensitive to

round-o� error e�ects. Indeed, by doing an estimate of the condition

number like above we obtain

Dij � 1

sin(Æ) sin(� � Æ)
� 1

O(N�1)(O(N�1) + "M )

� O(N2)

1 +O("MN)
� O(N2) +O("MN3) ;

i.e. we arrive at a condition number as O("MN3) as expected. This

analysis also suggests a way to avoid this problem since it happens only

for i � j � N . The remedy is to use the centro-antisymmetry of D such

that the entries of the di�erentiation matrix should be initialized as

Dij =

8>>>><
>>>>:

� 2N2+1
6 i = j = 0

ci
2cj

(�1)i+j

sin( i+j2N �) sin( i�j2N �)
i 2 [0; N=2] 6= j 2 [0; N ]

� xi
2 sin2( �N i)

i = j 2 [1; N=2]

�DN�i;N�j i 2 [N=2 + 1; N ]; j 2 [0; N ]

; (9.5)

i.e. only the upper half of the matrix is computed while the lower half

is obtained by using the centro-antisymmetry. Let us illustrate the ac-

curacy of the di�erentiation at this point.

Example 52. Consider the function, u(x) 2 C1[�1; 1], being de�ned

as

u(x) =
1

x+ a
; a > 1 ;

where we compute derivatives using the di�erentiation matrix, D, imple-

mented using the trigonometric identities and the centro-antisymmetry,

Eq.(9.5). Higher derivatives are computed by repeatedly multiplying
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N m = 1 m = 2 m = 3 m = 4

8 0.201E+02 0.127E+04 0.545E+05 0.237E+07
16 0.116E+01 0.221E+03 0.218E+05 0.160E+07
32 0.191E-02 0.134E+01 0.441E+03 0.956E+05
64 0.262E-08 0.721E-05 0.901E-02 0.721E+01
128 0.203E-10 0.467E-07 0.437E-04 0.196E+00
256 0.554E-10 0.113E-05 0.128E-01 0.109E+03
512 0.354E-09 0.201E-04 0.871E+00 0.304E+05
1024 0.182E-08 0.744E-03 0.153E+03 0.214E+08

Accuracy O("MN2) O("MN4) O("MN6) O("MN8)

with the di�erentiation matrix as

u(1) = Du ; u(m) = Dmu :

In Table 9.6 we list the maximum pointwise error as obtained for in-

creasing resolution and order of derivative for a = 1:1.

From Table 9.6 we recover an estimate of the accuracy like

max
x2[�1;1]

���u(m)(x) � INu(m)(x)
��� � O("MN2m) as N !1 ;

which is even better than what is obtained using a standard Cosine

transform and the backward recursion. It also illustrates well the care

that has to be exercised when initializing the entries of di�erentiation

matrices for polynomial methods.

For methods other than the Chebyshev methods the situation is

slightly more bleak. Certainly, the use of trigonometric identities can

only be used for the Chebyshev case. The centro-antisymmetry of D, on

the other hand, is shared among all the di�erentiation matrices. How-

ever, the e�ect of using this for more general polynomials remains un-

known. Nevertheless, using the even-odd splitting for computing deriva-

tives results in an error that scales somewhat like that seen in Ex. 52

also for Legendre di�erentiation matrices provided care is exercised in

computing the entries of D. This suggests that the use of the centro-

antisymmetry, which is implicit in the even-odd splitting, does indeed

result in a smaller condition number of the di�erentiation matrices. We

also emphasize that, whenever available, the exact entries of D(m) should

be used rather than computed by multiplying matrices.

For the general polynomial, but not for Chebyshev polynomials as
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the above techniques are far superior, one could also use the assumption

that the di�erentiation of a constant has to vanish, i.e.

NX
j=0

Dij = 0 :

One may then compute the diagonal elements of the di�erentiation ma-

trix as

8i 2 [0; N ] : Dii = �
NX
j=0
j 6=i

Dij ;

such that the round-o� errors incurred in the computation of the entries

are somehow accounted for in the diagonal elements. This technique,

however, should only be used when nothing more speci�c is available.

9.4 Convolution Sums and Dealiasing

The computation of nonlinear terms is a trivial task when using colloca-

tion methods as everything is performed in point-space. However, when

using a Galerkin or a tau method the situation is quite di�erent. In this

section we shall briey discuss methods for eÆciently computing convo-

lution sums appearing from Galerkin or tau approximations of second

order nonlinearities and address the issue of aliasing introduced by such

techniques.

As we have seen previously, the use of Galerkin methods is essentially

restricted to Fourier methods, where, however, they play an important

role for e.g. studies of homogeneous, isotropic hydrodynamic turbulence.

Let us therefore consider the quadratic nonlinearity

w(x) = u(x)v(x) ;

where u(x) 2 L2[0; 2�] and v(x) 2 L2[0; 2�], such that the usual contin-

uous Fourier expansions exist as

u(x) =

1X
n=�1

ûn exp(inx) ; v(x) =

1X
n=�1

v̂n exp(inx) ;

where ûn and v̂n represent the continuous Fourier expansion coeÆcients.

If we also introduce the continuous Fourier expansion coeÆcients
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ŵn =
1

2�

Z 1

�1

w(x) exp(�inx) dx ;

the three sets of expansion coeÆcients are related through the convolu-

tion

ŵn =

1X
k;l=�1
k+l=n

ûkv̂l :

In the case of u(x), v(x) and w(x) being approximated by �nite sums

only, the convolution sum becomes

n 2 [�N=2; N=2� 1] : ŵn =

N=2�1X
k;l=�N=2
k+l=n

ûkv̂l :

The computational e�ort, however, involved in the computation of the

convolution is O(N2), which becomes prohibitive even for moderate N .

This should be contrasted with the collocation methods where the com-

putation of the nonlinear term is only O(N), however, the computation

of the derivative at the grid points is of O(N log2N). Thus, to be com-

petitive, an O(N log2N) method for computing the convolution sum is

required.

Such an approach is known as the transform method and involves the

use of the Fast Fourier Transform and therefore also a grid. Hence, even

though the Galerkin as such is grid free, we need to introduce a grid for

computational eÆciency and with the grid comes the aliasing error.

The transform method relies on the speed of the FFT by transforming

ûn and v̂n into physical space, i.e. point values of u(x) and v(x), multi-

plying the two functions in point space and transform the product back

to spectral space using the FFT. Thus, this approach requires three FFT

and one point space multiplication, in total yielding an O(N log2N) al-

gorithm. However, this approach also introduces an additional source of

error. To see this, assume that we use the even Fourier grid as

xj =
2�

N
j ; j 2 [0; N � 1] ;

such that grid point value of u(x) and v(x) are given as
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u(xj) =

N=2�1X
n=�N=2

ûn exp(inxj) ; v(xj) =

N=2�1X
n=�N=2

v̂n exp(inxj) :

Computing the expansion coeÆcients for the product, w(x), using the

FFT yields

ŵn =
1

N

N�1X
j=0

u(xj)v(xj) exp(�inxj)

=
1

N

N�1X
j=0

0
@ N=2�1X
k=�N=2

ûk exp(ikxj)

1
A
0
@ N=2�1X
l=�N=2

v̂l exp(ilxj)

1
A exp(�inxj)

=

N=2�1X
k=�N=2

N=2�1X
l=�N=2

ûkv̂l

0
@ 1

N

N�1X
j=0

exp(i(k + l � n)xj)

1
A

=

1X
m=�1

N=2�1X
k;l=�N=2
k+l=n+mN

ûkv̂l = ŵn +

N=2�1X
k;l=�N=2
k+l=n�N

ûkv̂l ;

where the last reduction results from the orthogonality of the discrete

exponential function and m = f�1; 0; 1g only since k; l � jN=2j. Hence,
not only do we obtain the required expansion coeÆcients for ŵk , but

we get an extra contribution due to the introduction of the grid. This

extra contribution is known as the dynamic aliasing error and implies

that the scheme no longer is a pure Galerkin scheme.

The removal of this extra term has been a source of considerable

discussion in the past, i.e. is it necessary to remove this error. At this

point in time it is safe to say it is in general not necessary to remove this

aliasing if the functions involved are well resolved. However, in special

marginally resolved cases and for very sensitive problems where extreme

care has to be exercised it may be necessary to remove this error and we

shall briey discuss two ways of doing so.

The transform method is clearly only of interest for methods based on

series expansions for which there exists a fast transform, which in essence

limits the attention to the trigonometric polynomials and Chebyshev

polynomials. Indeed, using the fast Cosine transform, convolution sums

for Chebyshev expansions may also be computed eÆciently through the

transform method. In this case the transformed variable involves the
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terms

ŵn =
1

2

1X
m=�1

0
B@ NX

k;l=0
k+l=n+2mN

ûkv̂l +

NX
k;l=0

jk�lj=n+2mN

ûkv̂l

1
CA :

The aliasing error only becomes relevant for m = f�1; 0; 1g and the

methods of removing the aliasing errors developed for the Fourier meth-

ods carries directly over to the Chebyshev case.

9.4.1 Dealiasing by Truncation.

Due to its simplicity, dealiasing by truncation is the most widely used.

The technique has it origin in using the FFT at M points rather than

N point where M > N . Let us introduce the M -grid as

~xj =
2�

M
j ; j 2 [0;M � 1] ;

such that the discrete expansions of u(x) and v(x) are given as

u(~xj) =

M=2�1X
n=�M=2

ûn exp(in~xj) ; v(~xj) =

M=2�1X
n=�M=2

v̂n exp(in~xj) :

However, the expansion coeÆcients, ûn and v̂n, are de�ned as

ûn =

�
ûn �N=2 � n � N=2� 1

0 otherwise
; v̂n =

�
v̂n �N=2 � n � N=2� 1

0 otherwise
;

i.e. only the �rst �N=2 expansion coeÆcients are considered while the

remaining are set to zero. We then consider the expansion coeÆcients

for w(x) as

ŵn =
1

M

M�1X
j=0

u(~xj)v(~xj) exp(�in~xj)

=

1X
m=�1

M=2�1X
k;l=�M=2
k+l=n+mM

ûkv̂l = ŵn +

N=2�1X
k;l=�N=2
k+l=n�M

ûkv̂l ;

by explicitly using that ûn and v̂n are padded with zeros. We are only

interested in ŵn for jnj � N=2 and we wish to choose M such that the
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aliasing term vanishes for these coeÆcients. This is ensured for all n by

requiring it to be the case for the worst case

�N
2
� N

2
� N

2
� 1�M ;

yielding the condition on M as

M � 3

2
N � 1 ;

explaining why this method also is known as the 3=2-rule.

A consequence of using truncation for dealiasing is that a signi�cant

amount of extra work has to be done. Indeed, we see that M has to be

50% larger thanN to ensure no aliasing and make the method equivalent

to a Galerkin method for the �rst N=2 modes.

The technique is most easily implemented by takingM to be a number

that allows for using the FFT. Prior to transforming ûn and v̂n into real

space, the highest 1/3 of the modes are then forced to zero. Transform-

ing to real space, performing the multiplication and transforming w(x)

back to spectral space produces the M expansion coeÆcients for w(x)

and again the highest 1/3 of these modes are forced to zero before con-

tinuing. Hence, only 2/3 of the modes are active in the approximation,

making the application of the method of truncation rather expensive, in

particular in more than one dimension.

We would like to comment that the dealiasing using truncation is

nothing more than applying a �lter as discussed previously, albeit with

a step-function as the �lter function. Thus, dealiasing in a collocation

method can be implemented using the �lter matrix with the special �lter

function as

�

�
n

M=2

�
=

�
1 jnj � N=2

0 otherwise
:

Thus �ltering u(x) and v(x) prior to the multiplication and also the �nal

product w(x) ensures that no aliasing error remains and the collocation

method is equivalent to the Galerkin method.

9.4.2 Dealiasing by Phase Shift.

A second method of dealiasing employs the properties of Fourier trans-

forms associated with phase shifts. Rather than using a larger grid as in
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the method of truncation this method is based on computing the inter-

polation of u(x) and v(x) at two grids, shifted by half a grid cell. Thus,

in addition to computing the usual polynomials at xj we also compute

the polynomials at the grid points

~xj =
(2j + 1)�

N
j 2 [0; N � 1] ;

as

u(~xj) =

N=2�1X
n=�N=2

ûn exp(in~xj) = exp
�
i
�

N

� N=2�1X
n=�N=2

ûn exp(inxj) ;

and likewise for v(~xj). Note that both these transformations may still

be computed using the FFT since the phase shift only results in a mul-

tiplicative constant. If we now consider the expansion coeÆcients for w

we obtain

ŵn =
1

N

N�1X
j=0

u(~xj)v(~xj) exp(�in~xj)

=
1X

m=�1

exp
�
imN

�

N

� N=2�1X
k;l=�N=2
k+l=n+mN

ûkv̂l = ŵn �
N=2�1X
k;l=�N=2
k+l=n�N

ûkv̂l :

Hence, the dealiased ŵn are obtained directed by adding the aliased ŵn
and the shifted ŵn as

ŵn =
1

2

�
ŵn + ŵn

�
:

Using the method of phase shifting thus requires an additional FFT as

also ŵn needs to be computed besides the aliased ŵn. However, the

transforms are only of length N rather than 3=2N as for the truncation

method. Nevertheless, in one dimension the method of truncation is

cheaper than phase shifting, while in more than one dimension it be-

comes harder to decisively choose among the two di�erent approaches.

9.5 On the Use of Mappings

Change of variables remains a very important tool in all branches of

physics and engineering and plays an equally important role in the ap-
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plication of spectral methods, in particular those based on expansions

in orthogonal polynomials.

The variety of useful mappings is large and we will only cover those

most often used, with the emphasis on one-dimensional methods. In

most cases, mappings are used to allow for treating problems in geome-

tries di�erent from the standard interval. However, in the last section

we will discuss the use of mappings for improving on the accuracy of

high-order derivatives.

Let us consider the function, u(x) 2 L2[a; b], where a < b while a

and/or b may both be in�nite. If we make a change of variables through

the mapping function,  (�), as

 (�) : I! [a; b] as x =  (�) ;

where I = [�min; �max] represents the interval [0; 2�] when dealing with

Fourier methods while it becomes [�1; 1] in the case of polynomial ex-

pansions, we have the di�erential

dx =  0(�)d� :

Hence the magnitude of  0 supplies a measure of how the nodes are

distorted relative to the standard grid given in I. For  0 being less than

one the grid is compressed whereas it is dilated when  0 is larger than

one. This provides a rough guide to which mapping may be appropriate

for a particular problem.

When using mapping in connection with spectral methods one must

compute derivatives in x, while the methods of computing the derivatives

hitherto were computed using the standard interval, I, only, i.e. with

respect to �. However, using the chain rule for di�erentiation we directly

obtain

d

dx
=

1

 0
d

d�
;

d2

dx2
=

1

( 0)3

�
 0

d2

d�2
�  00

d

d�

�
;

and in a similar fashion for higher derivatives.

The simplest example of a suitable mapping function is for a situation

where one needs to map the �nite interval, [a; b], onto I, in which case

we have the well known result

x =  (�) = a+
�max + �

�max � �min
(b� a) ;  0(�) =

b� a

2
:
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As expected we �nd that all parts of the interval is mapped with the

same factor,  0(�).

Before discussing more general mapping functions let us briey touch

on the subject of implementation. Let us for simplicity restrict the

attention to the case of polynomial expansions but note that everything

carries straight over to Fourier methods.

In the case of Galerkin or tau methods, we consider approximations

of the form

PNu( (�)) =
NX
n=0

ûnP
(�)
n (�) ;

where

ûn =
1

n

Z 1

�1

u( (�))P (�)
n (�)w(�) d� :

Within this formulation, we wish now to obtain an approximation of the

derivative of the mapped function, u(x), as

PNu(1)( (�)) = 1

 0(�)

NX
n=0

û(1)n P (�)
n (�) ;

where û
(1)
n signi�es the expansion coeÆcients for the �rst derivative ob-

tained through the backward recursion. Now, in the case of Galerkin

and tau methods the unknowns are the expansion coeÆcients, ûn, for

which we need to obtain equations. Hence, we also need to expand the

mapping function,  0(�), as

PN 1

 0(�)
=

NX
n=0

 ̂nP
(�)
n (�) ;

such that

PNu(1)( (�)) =
NX

n;l=0

 ̂lûnP
(�)
l (�)P (�)

n (�) ;

being a convolution sum. Although the expression for the convolution

of the polynomials in general is available it is very complicated with the

exception of a few special cases, e.g. for Chebyshev polynomials. How-

ever, the expression for the expansion coeÆcients in general becomes



9.5 On the Use of Mappings 337

very complicated and general mappings are, for this reason, rarely used

in Galerkin and tau methods except in cases where the mapping is par-

ticularly simple, e.g. the linear mapping where the mapping derivative

becomes a constant and the convolution reduces to a multiplication.

Another example where the mapping is reasonably simple is the case

where the mapping function, 1= 0(�), is a non-singular rational function

in �, in which case the convolution operator becomes a banded and very

sparse matrix operator as a consequence of the three-term recurrence

relations valid for orthogonal polynomials.

Let us now turn towards the use of mapping in Collocation methods,

where it becomes much simpler. In this case we seek approximations of

the form

INu( (�)) =
NX
n=0

~unP
(�)
n (�) =

NX
j=0

u( (�j))lj(�) ;

where �j signi�es the standard grid in I, the discrete expansion coeÆ-

cients, ~un, are found using a quadrature formula and lj(�) represents

the interpolating Lagrange polynomial associated with the grid points.

In this case we wish to compute derivatives of u(x) at the grid points as

INu(1)( (�i)) = 1

 0(�i)

NX
n=0

~u(1)n P (�)
n (�i) =

1

 0(�i)

NX
j=0

u( (�j))Dij ;

where D represents the di�erentiation matrix associated with lj(�) and

the grid points, �i. However, since everything is done in point-space the

mapping just corresponds to multiplying with a constant at each grid

point. Hence, introducing the diagonal matrix

M
(m)
ii =  (m)(�i) ;

the mapping is accomplished by multiplying the inverse of this matrix

onto the solution vector following the computation of the derivative at

the grid points. Indeed, when using the m-order di�erentiation matrix,

D(m), for the computation of the derivative we simply obtain

u(1) =
1

M(1)
Du ; u(2) =

1

(M(1))3

�
M(1)D(2) �M(2)D(1)

�
u ;

where u represents the solution vector at the grid points and similarly

for u(1) and u(2) for the �rst and second derivative at the nodal points,
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respectively. Clearly, mapped higher derivatives may be obtained in

similar manner illustrating the particular ease by which mappings can

be introduced in this formulation. One should also that since M(m) is

diagonal very little computational overhead is introduced.

9.5.1 Local Re�nement Using Fourier Methods.

We shall �rst consider the use of mappings in connection with Fourier

collocation methods. However, prior to discussing useful mapping func-

tions, let us briey concern ourselves with general properties that have to

be shared among the mapping functions such that the mapped functions

retain the spectral accuracy.

If we consider the general function, u(x) 2 L2[a; b] and the mapping,

 (�) : I! [a; b], the continuous expansion coeÆcients become

2�ûn =

Z 2�

0

u( (�)) exp(�in�)d�

=
�1
in

[u( (2�))� u( (0))] +
1

in

Z 2�

0

 0(�)u0( (�)) exp(�in�)d� :

Hence, to maintain spectral accuracy we have to put requirements on

 (�) similar to those on u(x), i.e.  (�) and its derivatives has to be

periodic and smooth to allow for spectral accuracy.

This said, let us now consider two mappings useful in connection with

Fourier methods. Many problems have solutions which are localized in

space, however, remain periodic. For such problems one may apply a

standard Fourier method, although it seems natural to cluster the grid

points around the steep gradients of the solution. This can be done by

mapping the equidistant grid to increase the local resolution.

One choice of a mapping function having this e�ect on a periodic

function de�ned on the interval � 2 [��; �], is the Arctan-mapping given
as

x =  (�) = 2 arctan(L tan
� � �0
2

) ;  0(�) =
L(1 + tan2 ���0

2 )

1 + L2 tan2 ���0
2

;

where L � 1 is a control parameter for the amount of clustering that is

required around �0. Clearly, for L = 1 the mapping reduced to a unity

mapping. The best way to understand the e�ect of this mapping is to

recall that
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�gure 9.1. Illustration of clustering of grid points around �0 = 0 using the
Arctan-mapping for di�erent values of the mapping parameter, L.

dx =  0(�)d� ;

i.e. since d� is a constant on the equidistant grid we obtain clustering

where  0(�) < 1 and stretching of the grid where  0(�) > 1. This is

illustrated in Fig. 9.1 where we plot the value of  0(�) for di�erent

values of the mapping parameter, L.

We observe a clear clustering of the grid points around �0 = 0 and

�nd that the size L controls the amount of clustering with increasing

clustering around �0 for decreasing L.

Since  0(�) consists of trigonometric functions periodicity of u(x) is

preserved through the mapping. This holds for arbitrary order of dif-

ferentiation. Moreover, the mapping function is smooth and introduces

no singularities in the domain. Consequently, we may expect that the

mapping preserves spectral accuracy of the approximation of a smooth

function.

An alternative to this mapping, which, however, has similar proper-

ties, is given as

x =  (�) = arctan

�
(1� �2) sin(� � �0)

(1 + �2) cos(� � �0) + 2�

�
;
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�gure 9.2. Illustration of clustering of grid points around � = 0 di�erent
values of the mapping parameter, �.

 0(�) =
1� �2

1 + �2 + 2� cos(� � �0)
;

where j�j < 1 controls the clustering around �0 2 [��; �]. For reasons

of comparison we plot in Fig. 9.2 the mapping derivative for several

values of �. Note that the mapping becomes singular for � = 1, while

� = 0 corresponds to a unity mapping. This mapping also preserves

periodicity and spectral accuracy of the approximation. Comparing the

two schemes as illustrated in Fig. 9.1 and Fig. 9.2 we observe that the

latter mapping leads to a less localized clustering around �0 which in a

many cases is a desirable property.

9.5.2 Mapping Functions for Polynomial Methods.

Considering mapping functions for polynomial methods we shall con-

cern ourselves with problems utilizing the ultraspherical polynomials as

the Laguerre and Hermite polynomials are restricted to problems on an

in�nite interval and only the linear mapping is of interest in these cases.

Let us therefore consider a function, u(x) 2 L2
w[a; b], expanded in

ultraspherical polynomials as
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INu( (�)) =
NX
n=0

~uNP
(�)
n (�) =

NX
j=0

u( (�j))lj(�) :

Performing the usual integration by parts procedure to study the rate

of decay of the expansion coeÆcients, it is easily established that  (�)

must be a smooth function to maintain spectral convergence and  (�1)
must be bounded to avoid e�ects from the boundary.

In the following we shall discuss mappings that allowing for the use of

ultraspherical polynomials, and in particular Chebyshev polynomials, for

the approximation of problems in the semi-in�nite and in�nite interval.

However, we shall also discuss a di�erent use of mappings that results

in an increased accuracy by which derivatives may be computed.

9.5.2.1 Treatment of Semi-In�nite Intervals.

The straightforward way of approximating problems in the semi-in�nite

interval is to use expansions of Laguerre polynomials. However, the lack

of fast Laguerre transforms and the poor convergence properties of these

polynomials suggests that alternative methods should be sought after.

The existence of the fast transform methods for Chebyshev methods

makes the use of this polynomial family very appealing. However, atten-

tion has to be paid to the approximation of the mapped function since

we have to impose a singular mapping in order to map in�nity into a

�nite value. An appropriate guideline is that uniform spectral conver-

gence may be maintained if the function, u(x) and the mapping function

x =  (�), both are suÆciently smooth and the function, u(x), decays

fast enough without severe oscillations towards in�nity.

A widely used mapping is the exponential mapping,  (�) : I! [0;1[,

as

x =  (�) = �L ln
�
1� �

2

�
;  0(�) =

L

1� �
;

where L is a scale length of the mapping. We note that the grid is

distorted with a linear rate towards in�nity and that no singular be-

havior at x = 0 is introduced. This mapping has been given signi�cant

attention due to its rather complicated behavior. It has been shown

that only for functions that decay at least exponentially towards in�n-

ity may one expect to maintain the spectral convergence. This result,

however, is based on asymptotic arguments and good results have been
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reported by other researchers. The reason is the logarithmic behavior

which results in a strong stretching of the grid. This may behave well in

many cases, while in other situations it may result in a slowly convergent

approximation.

An alternative to the exponential map is the algebraic mapping given

as

x =  (�) = L
1 + �

1� �
;  0(�) =

2L

(1� �)2
;

where L again plays the role of a scale length. This mapping has been

studied in great detail and, used in Chebyshev approximations, the

mapped basis functions has been dubbed rational Chebyshev polynomials

de�ned as

TLn(x) = Tn

�
x� L

x+ L

�
:

This family is de�ned for x 2 [0;1[ and orthogonality as well as com-

pleteness may be established. Consequently, we may expect spectral

accuracy for approximation of smooth functions. On the other hand,

this is not a great surprise as the rational Chebyshev polynomials are

simply mapped Chebyshev polynomials. The advantage of using the

algebraic mapping is that the function, u(x), only needs to decay alge-

braicly towards in�nity or asymptote towards a constant value in order

for the approximation to maintain spectral accuracy. This is contrary

to the exponential mapping which requires at least exponential decay.

Several authors have found that algebraic mappings are more accurate

and robust than exponential mappings, which is the reason for their

wide use.

One should observe that when applying a singular mapping it is

not always convenient to chose the Gauss-Lobatto points as collocation

points as they include the singular point. The proper choice may be the

Gauss-Radau points for the polynomial family.

As an alternative to using a singular mapping, one may truncate the

domain and apply a mapping. At �rst it may seem natural to just apply

a linear mapping after the truncation. However, this has the e�ect of

wasting a signi�cant amount of resolution towards in�nity where only

little is needed. If this is not the case, truncation becomes obsolete.

The idea behind domain truncation is that if the function decays expo-

nentially fast towards in�nity, then we will only make an exponentially
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small error by truncating the interval. This approach yields spectral

convergence of the approximation for increasing resolution.

An often used mapping is the logarithmic mapping function,  (�) :

I! [0; Lmax], de�ned as

x =  (�) = Lmax
exp(a(1� �))� exp(2a)

1� exp(2a)
;  0(�) = �a (�) ;

where a is a tuning parameter.

One thing should be noted though. There is a complication about

using domain truncation in that for increasing resolution we need to

increase the domain size in order to avoid that the error introduced by

truncating the domain will dominate over the error of the approximation.

9.5.2.2 Treatment of In�nite Intervals.

When approximating functions de�ned on the in�nite interval it may

seem natural to employ expansions based on Hermite polynomials. How-

ever, no fast Hermite transforms are known and the convergence rate of

Hermite expansions is rather slow suggesting that alternatives could be

useful.

As on semi-in�nite intervals, we wish to develop singular mappings

which may be used to map the in�nite interval into the standard interval

such that ultraspherical polynomials can be applied for approximating

the function. Similar to the guidelines used for choosing the mapping

function on the semi-in�nite interval we can expect that spectral con-

vergence is conserved under the mapping provided the function, u(x),

is exponentially decaying and non-oscillatory when approaching in�nity.

Clearly, the mapping function needs to be singular at both endpoints

to allow for mapping of the in�nite interval onto the �nite standard

interval.

As for the semi-in�nite case, we may also construct an exponential

mapping function,  (�) : I!]�1;1[ as

x =  (�) = L tanh�1 � ;  0(�) =
L

1� �2
;

where L plays the role of a scale length. This mapping requires expo-

nential decay of the function towards in�nity to yield spectral accuracy.

Alternatively, one may use an algebraic mapping as

x =  (�) = L
�p

1� �2
 0(�) =

Lp
(1� �2)3

;
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where L again plays the role of a scale length. This mapping has been

given signi�cant attention and, used in Chebyshev approximations, a

special symbol has been introduced for the rational Chebyshev polyno-

mials as

TBn(x) = Tn

�
xp

L2 + x2

�
;

for which one may prove orthogonality as well as completeness. The

advantage of applying this mapping is that spectral accuracy of the

approximation may be obtained even when the function decays only

algebraicly or asymptotes towards a constant value at in�nity.

We note that the proper choice of collocation points on the in�nite

interval may, in certain cases, not be the usual Gauss-Lobatto points

but rather the Gauss quadrature points.

9.5.2.3 Mappings for Accuracy Improvement.

As a �nal example of the use of mappings we shall now turn to a

slightly di�erent, however important, problem of pseudospectral meth-

ods. In many problems in physics the partial di�erential equation in-

cludes derivatives of high order, e.g., 3rd order derivatives in the Korteweg-

de Vries equation and 4th order derivatives in the Kuramoto-Shivashinsky

equation. Additionally, such equations often introduces very complex

behavior, thus requiring a large number of modes in the polynomial ex-

pansion. For problems of this type the e�ect of roundo� error becomes

a signi�cant problem as the polynomial di�erential operators are ill con-

ditioned as discussed in detail in Sec. 9.3.2. Even for moderate values of

m and N can this problem be disastrous and ruin the numerical scheme.

To overcome this problem, at least partially, one may apply the fol-

lowing mapping,  (�) : I! I, as

x =  (�) =
arcsin(��)

arcsin�
;  0(�) =

�

arcsin�

1p
1� (��)2

;

where � controls the mapping. It may be shown that the error, ",

introduced by applying the mapping, which is singular for � = ���1, is
related to � as

� = cosh�1
� j ln "j

N

�
;

i.e. by choosing " � "M the error introduced by the mapping is guaran-
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�gure 9.3. Illustration of the e�ect of the mapping used for accuracy im-
provement when evaluating spatial derivatives at increasing resolution.

N m = 1 m = 2 m = 3 m = 4

8 0.155E-03 0.665E-02 0.126E+00 0.142E+01
16 0.316E-12 0.553E-10 0.428E-08 0.207E-06
32 0.563E-13 0.171E-10 0.331E-08 0.484E-06
64 0.574E-13 0.159E-09 0.174E-06 0.111E-03
128 0.512E-12 0.331E-08 0.124E-04 0.321E-01
256 0.758E-12 0.708E-08 0.303E-03 0.432E+01
512 0.186E-10 0.233E-05 0.143E+00 0.587E+04
1024 0.913E-10 0.361E-04 0.756E+01 0.109E+07

teed to be harmless.

The e�ect of the mapping is to stretch the grid close to the boundary

points. This is easily realized by considering the two limiting values of

�;

�! 0 �minx! 1� cos �
N

�! 1 �minx! 2
N

;

where �minx represents the minimum grid spacing. We observe that

for � approaching one the grid is mapped to an equidistant grid. In

the opposite limit, the grid is equivalent to the well known Chebyshev

Gauss-Lobatto grid. One should note that the limit of one is approached

when increasing N , i.e. is it advantageous to evaluate high order deriva-
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N � m = 1 m = 2 m = 3 m = 4

8 0.0202 0.154E-03 0.659E-02 0.124E+00 0.141E+01
16 0.1989 0.290E-13 0.383E-11 0.236E-09 0.953E-08
32 0.5760 0.211E-13 0.847E-11 0.231E-08 0.360E-06
64 0.8550 0.180E-12 0.225E-09 0.118E-06 0.436E-04
128 0.9601 0.138E-12 0.227E-09 0.334E-06 0.282E-03
256 0.9898 0.549E-12 0.201E-08 0.262E-05 0.521E-02
512 0.9974 0.949E-11 0.857E-07 0.467E-03 0.180E+01
1024 0.9994 0.198E-10 0.379E-06 0.433E-02 0.344E+02

tives with high resolution at an almost equidistant grid. In Fig. 9.3

we plot the mapping derivative for di�erent resolution with the optimal

value of �. This clearly illustrates that the mapping gets stronger for

increasing resolution.

Example 53.

Let us consider the function

u(x) = sin(2x) ; x 2 [�1; 1] :

We wish to evaluate the �rst four derivatives of this functions using

a standard Chebyshev collocation method with the entries given in

Eq.(9.5). In Table 9.7 we list the maximum pointwise error that is

obtained for increasing resolution.

We clearly observe the e�ect of the round-o� error and it is obvious

that only very moderate resolution can be used in connection with the

evaluation of high order derivatives.

As previously, we apply the singular mapping in the hope that the

accuracy of the derivatives improve. In Table 9.8 we list the maximum

pointwise error for derivatives with increasing resolution. For informa-

tion we also list the optimal value for � as found for a machine accuracy

of "M ' 1:0E � 16.

The e�ect of applying the mapping is to gain at least an order of

magnitude in accuracy and signi�cantly more for high derivatives and

large N .
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Discrete Stability and Time Integration

Until now we have concerned ourselves with the spectral approximation

of the solution and the operator in the general initial value problem

@u(x; t)

@t
= Lu(x; t) ; x 2 [�1; 1] ; t � 0 ;

B�u(�1; t) = g(t) ; t � 0

B+u(1; t) = h(t) ; t � 0

u(x; 0) = f(x) ; x 2 [�1; 1] ; t = 0 :

where B� represents the boundary operator at x = �1, g(t) and h(t)
the possibly time dependent boundary conditions and f(x) signi�es the

initial condition.

Assuming that the boundary operator, B�, is included in the spa-

tial operator, L, we consider in this chapter the properties of the semi-

discrete approximation

duN
dt

= LN (uN(x; t); x; t) ;

with appropriate initial conditions, and shall discuss a number of prob-

lems central to the solution of the semi-discrete set of coupled ordinary

di�erential equations.

We shall con�ne the theoretical discussion to the case of linear oper-

ators yielding the semi-discrete, linearized and localized problem

duN
dt

= LNuN (x; t) :

349
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We recall that in the semi-discrete situation, uN (x; t), represents a vector

of length N + 1, containing the expansion coeÆcients when a Galerkin

or a tau method is used and the grid point values in case a collocation

method is applied, while LN is a matrix of order N + 1. Thus, in the

following we write the semi-discrete problem as

du

dt
= Lu(x; t) ;

also known as the method of lines. This equation may naturally be

solved exactly as

u(x; t) = exp [Lt]u(x; 0) = exp [Lt]f (x) ;

through the introduction of the matrix exponential. However, it is,

with the exception of very simple operators, L, impracticable to apply

the matrix exponential for solving the time-dependent problem. Thus,

one often introduces an approximation to the matrix exponential with

the most frequent schemes being based on an explicit or implicit �nite

di�erence scheme to approximate the solution over some time step �t.

Essentially, the exponential, exp(z), is approximated either as a �nite

Taylor series

exp(L�t) ' K(L;�t) =
mX
i=0

(L�t)i

i!
;

or through a Pade approximation

exp(L�t) ' K(L;�t) =

Pm
i=0 ai(L�t)

iPn
i=0 bi(L�t)

i
;

with the expansion coeÆcients, ai and bi, being found such that the

approximation agrees with the Taylor expansion. Certainly, for �t being

suÆciently small such an approximation is expected to be valid.

At �rst it may appear strange that, while using a spectrally accu-

rate spatial approximation in space, we choose to use a �nite di�erence

approximation in time with the plausible result that the global error is

going to be dominated by this latter term and, hence, the total scheme

becomes only accurate to some algebraic order of �t. However, there

are several reasons for using such an approach. The simplicity of the

�nite di�erence approximations to the matrix exponential is certainly

appealing. Moreover, using explicit methods the maximum time step is
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typically restricted in size and this bound often depends in a nonlinear

way of the spatial discretization thereby causing the temporal error to

become much smaller that the spatial error thereby recovering the spec-

tral accuracy. Additionally, since we are often solving problems with

several spatial variables, any reduction in memory requirements is most

pronounced in space as we only have one temporal variable. We shall

note that when applying a fully implicit scheme, which in some cases

have no restriction on the maximum allowable time step, signi�cant care

has to be exercised to ensure that the time di�erencing error does not

dominate over the spatial approximation error. We should also note

that methods, being spectrally accurate in time, have been developed

but they are generally available only for the solution of simple linear

problems or require the solution of large, non-symmetric sparse linear

problems.

Let us now assume that the matrix exponential is approximated in

some appropriate way such that advancing from t to t+�t amount to

u(x; t+�t) = un+1 = K(L;�t)un ;

where t = n�t, with �t being the time step, and the matrix K(L;�t)

represents the approximation to the matrix exponential. Applying K(L;�t)

repeatedly yields the solution at t = n�t as

un+1 = [K(L;�t)]
n
f :

Following the discussion on the Lax-Richtmeyer Equivalence Theorem

we say that the fully discrete scheme is strongly stable provided

k [K(L;�t)]n kL2w � K(�t) ;

where the matrix norm is de�ned in the usual manner. As suÆcient,

but not necessary, condition for strong stability is that

kK(L;�t)kL2w � 1 + ��t ;

for some bounded � and all suÆciently small values of �t.

In the special case where K = K(L;�t) is a normal matrix, i.e.

KTK = KKT , strong stability is ensured in L2 through the von Neu-

mann stability condition

max j�K j � 1 + ��t ;
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where �K represents the eigenvalues of K(L;�t). In case K(L;�t) is

non-normal, which is the case for most spectral approximations, von

Neumann stability is still a necessary condition for strong stability but

no longer suÆcient.

Stability within this framework is also known as Lax stability, since it

represents the fully discrete version of the Equivalence theorem ensuring

convergence provided stability and consistency is given. However, al-

though playing an important role in the analysis of numerical methods,

is it impractical for long-time integration since it allows for exponen-

tially growing solutions and only ensures that the spatial and temporal

approximation can be re�ned suÆciently to ensure convergence at any

give time.

A more practical notion of stability is known as asymptotic stability

which amounts to requiring that for suÆciently small �t we may obtain

that

kK(L;�t)kL2w � 1 ;

i.e. � = 0.

10.1 Eigenvalue Spectra of Fundamental Operators

Although in general only supplying necessary conditions, it is clear from

the above discussion that the eigenvalues of K(L;�t) play an important

role in the understanding of the stability of the fully discrete approxi-

mation to the initial boundary value problem.

Let us therefore consider the similarity transform of K(L;�t) as

K(L;�t) = S�1�KS ;

where �K represents the diagonal eigenvalue matrix while S and S�1 are

the matrices of the left and right eigenvectors of K(L;�t), respectively.

Provided K(L;�t) is normal S and S�1 are bounded independent of �t

and L, establishing the suÆciency of the von Neumann stability in this

case. In the more general case where K(L;�t) is non-normal we can no

longer guarantee boundedness of S and S�1 and conditions beyond the

von Neumann stability has to be considered.

However, if we restrict the attention to the von Neumann criteria it

is clear that

�K = K(�L;�t) ;
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using the Cayley-Hamilton theorem for the matrix polynomial, K, where

�L represents the eigenvalues of the discrete approximation of the spatial

operator, L. Hence, the eigenvalues of the discrete approximation of

various operators plays an important role as they appear directly in �K
and in the following we shall discuss the eigenvalue spectrum of various

discrete operators obtained using Fourier or polynomial methods.

10.1.1 Fourier Methods.

Obtaining the eigenvalue spectrum for Fourier approximations of linear

operators is simple. If we consider the Galerkin approximations, we

immediately get

L(1) = diag(�iN=2; : : : ;�i; 0; i; : : : ; N=2) ;

and

L(2) = diag(�N2=4; : : : ;�1; 0;�1; : : : ;�N2=4) ;

for the �rst and second order operator, respectively, directly supplying

the eigenvalue spectrum. Clearly, the spectrum for higher order deriva-

tives are obtained in an equivalent manner. We note in particular that

the maximum eigenvalue for the m-order di�erentiation is given as

max j�(m)j =
�
N

2

�m
:

Since L(m) is normal the von Neumann stability criteria is both necessary

and suÆcient to ensure stability.

The situation for the Fourier collocation method is the almost the

same, although slightly more complicated. Introducing the di�erentia-

tion matrix, D(m), or alternatively using the discrete expansion coeÆ-

cients, ~un, for the computation of L we �nd that the eigenfunctions for

D(m) are given as  n(x) = exp(inx) since

8n 2 [�N=2 + 1; N=2� 1] : D(m) n(x) = (in)m n(x) :

However, this leaves us with the �nal two eigenfunctions for n = �N=2
for which we obtain for, e.g. the �rst order operator D, that

D �N=2(x) = IN d

dx
IN
�
cos

�
N

2
x

�
� i sin

�
N

2
x

��
= 0 :
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Hence, these two most extreme modes picks up two extra zero eigen-

values making the spectrum di�erent from that of the Galerkin method

due to the use of the slightly di�erent space in which we seek solutions.

However, in practice the Galerkin and the collocation methods perform

in exactly the same way and it is safe to assume that the eigenvalue

spectra for the di�erent methods are identical in any practical situation.

We note that in case the odd number of grid points, yj , is used that

eigenvalue spectrum becomes identical to that of the Galerkin method.

10.1.2 Polynomial Methods.

Contrary to what we found for the Fourier methods, it is no longer

possible to obtain simple and analytic expressions for the eigenvalue

spectrum when using polynomial methods for the approximation of the

spatial operators. In the following we shall discuss the eigenvalue spectra

appearing from the approximation of the �rst and second order spatial

derivatives using Legendre and Chebyshev polynomials, with the em-

phasis on approximate operators appearing from tau and collocation

projections.

10.1.2.1 Spectrum of the Advective Operator.

Let us �rst consider the behavior of the eigenvalue spectrum of the

advective operator

Lu = du

dx
;

subject to homogeneous Dirichlet boundary conditions.

Let us for simplicity �rst consider the Chebyshev collocation approx-

imation

Lu = Du ;

where D represents the Chebyshev-Gauss-Lobatto di�erentiation matrix

with the boundary conditions being imposed by removing the last row

and column of D. As D has no signi�cant symmetry we can not obtain

the eigenvalue spectrum by analytical means, leaving us with no alter-

native to the numerical computation of the spectrum. In Fig. 10.1 we

illustrate the corresponding spectrum for various orders of discretization.

We observe that the real parts are strictly negative while the maxi-

mum eigenvalue scales as
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�gure 10.1. Eigenvalue spectra of a Chebyshev-Gauss-Lobatto advection
operator for increasing resolution, N .

max j�(1)j = O(N2) ;

with the estimate being asymptotically sharp. We note that, contrary to

the case for Fourier methods, the eigenvalue grows like N2 rather that

linear in N .

The spectrum for the Chebyshev tau approximation of the advection

operator is qualitatively the same as for the collocation approximation

although numerical studies show the numerical value of the maximum

eigenvalue is slightly smaller than obtained in the collocation approxi-

mation.

The situation when using Legendre polynomials to construct the ap-

proximation is slightly di�erent. In Fig. 10.2 we show the spectrum

of the Legendre-Gauss-Lobatto di�erentiation matrix and observe that

although the spectrum is qualitatively di�erent from the Chebyshev-

Gauss-Lobatto case in Fig. 10.1 we recover a similar scaling of the

maximum eigenvalue as

max j�(1)j = O(N2) ;

with all real parts of the spectrum being strictly negative, albeit with a

very small real part for the extreme eigenvalues.

The situation for the Legendre tau approximation is slightly di�er-

ent, at least in theory. Indeed, it is possibly to show analytically that
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�gure 10.2. Eigenvalue spectra of a Legendre-Gauss-Lobatto advection op-
erator for increasing resolution, N .

asymptotically the maximum eigenvalue scales likes

max j�(1)j = O(N) ;

in the Legendre tau approximation of the advective operator. On the

other hand, numerical studies suggest a quadratic dependence of N .

This discrepancy between theory and computation is caused by ill-conditioning

of the tau operator, which makes it extremely sensitive to round-o� er-

rors, the e�ect of this being that in e�ect the maximum eigenvalue scales

like N2 in an actual implementation of the Legendre tau approximation.

One could think that the quadratic dependence of maximum eigen-

value on N is related to the minimal grid size in the Gauss-Lobatto grid,

which indeed is of O(N�2) for ultraspherical polynomials. However, al-

though tempting to make such a connection, care has to exercised as

the grid scaling is a consequence, rather that a source, of the applica-

tion of the ultraspherical polynomials with the associated eigenvalue,

�n � n2, from the Sturm-Liouville problem. Nevertheless, the mini-

mum grid spacing in practical implementation of polynomial collocation

methods supplies a very good estimate of the inverse of the maximum

eigenvalue.

The ill-conditioning of the discrete approximations to the advection

operators, as we also experienced in the previous chapter, may cause

the eigenvalues to behave di�erently from what we have discussed so

far. This supplies yet another reason for exercising great care when
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Approximation max j�(2)j=N4 max j�(2)j=N4

Chebyshev Tau 0.300 0.047
Chebyshev Collocation 0.047 0.014

Legendre Tau 0.110 0.026
Legendre Collocation 0.026 0.006

implementing the di�erentiation matrices in order to minimize the e�ects

of the �nite precision.

10.1.2.2 Spectrum of the Di�usive Operator.

Let us now consider the eigenvalue spectrum of the di�usive operator

Lu = d2u

dx2
:

We �rst consider the case of homogeneous Dirichlet boundary conditions

enforced by setting the entries of the �rst and last row and column of

the di�erentiation matrices to zero in the collocation method while the

boundary conditions are implemented in the usual manner in the tau

method by having the �nal two rows enforcing the boundary conditions.

We �rst note that there is only little quantitative di�erence between

the Legendre and Chebyshev methods as well as the tau and collocation

approach. Indeed, the eigenvalue spectrum is in all cases strictly neg-

ative, real and distinct and bounded by the two constants, c1 and c2,

as

�c1N4 � � � c2 < 0 ;

i.e. the maximum eigenvalue scales as

max j�(2)j = O(N4) ;

asymptotically. This result can be con�rmed through numerical experi-

ments, and in Table 10.1 we give the asymptotic values of c1 for reference.

We note that the maximum eigenvalue is always smaller using colloca-

tion methods as compared to the use of tau methods independent of the

choice of polynomials.

The situation for Neumann boundary conditions is very similar to

that of Dirichlet conditions. Neumann conditions are implemented in the

collocation methods by exchanging the �rst and last row of the second
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order di�erentiation matrix with those of the �rst order di�erentiation

matrix.

As for the Dirichlet boundary conditions we obtain a scaling as

�c1N4 � � � c2 < 0 ;

with the exception of the zero eigenvalue introduced by the Neumann

boundary condition. Thus, the maximum eigenvalue scales as

max j�(2)j = O(N4) ;

asymptotically and in Table 10.1 we give the asymptotic values of c1.

Enforcing the Neumann conditions in a di�erent manner, e.g. implicitly,

yields similar values of the maximum eigenvalue and the growth remains

to scale with N4.

10.2 Standard Time Integration Schemes

The actual choice of the time integration method is inuenced by several

factors such as required accuracy, available memory and computer speed.

In the following we shall briey discuss the most commonly used time

integration methods for integrating time dependent partial di�erential

equations with the spatial operators being approximated using spectral

methods and discuss the implications of the strong N dependence of the

eigenvalue spectrum on the maximum allowable time step.

We consider the initial boundary value problem approximated using

spectral methods as

dun

dt
= L(un; n�t) = Ln ;

where un represents the solution vector at t = n�t with �t being the

actual time step and Ln is the spectral approximation to the operator

at t = n�t. We assume that the boundary operator is included in Ln

and that proper initial conditions are supplied.

10.2.1 Multi-step Schemes.

The general multi-step scheme is of the form
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pX
i=0

�iu
n�i = �t

pX
i=0

�iL
n�i ;

where p refers to the order of the scheme. We may distinguish between

implicit and explicit methods by realizing that for �0 = 0 we obtain the

solution at t = n�t from knowledge of the solution at previous time

steps only, i.e. the scheme is explicit. Multi-step schemes in general

require that solutions at one or more previous time-steps are retained,

thus making such schemes memory intensive, in particular when ad-

dressing multi-dimensional problems. However, only one evaluation of

Ln is required to advance one time step, thereby reducing the computa-

tional workload. The importance of memory over computational speed

is problem dependent and it is very hard to give general guidelines.

Initially, one may not have the solution at the required number of

time steps backward in time. Thus, it is necessary to start out with a

few 1st order steps while retaining the results and, once suÆcient steps

is known backward in time, a high order time di�erencing scheme can be

applied. A suitable choice for performing the initial steps is the forward

Euler method but other may also be applied. Since one is only doing

very few steps with this initial method, the question of stability may

in fact be neglected and even unconditionally unstable schemes can be

used for initializing multi-step schemes.

Let us as a �rst example consider the classic 2nd order explicit Leap-

Frog Scheme being de�ned as

un+1 = un�1 + 2�tLn :

Since the stability of the scheme is related to the eigenvalue spectrum

of Ln, we shall consider the stability of the linearized problem

Ln = �un ; (10.1)

to obtain necessary conditions for stability of the Leap-Frog scheme.

The analysis of a multi-step scheme is done by writing the scheme in

matrix form as �
un+1

un

�
=

�
2��t 1

1 0

��
un

un�1

�
;

where the matrix operator plays the role of K(L;�t) introduced previ-
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ously. In order for the solution to remain bounded we must require that

the eigenvalues, �, of the matrix operator advancing the solution by one

time step are less than or equal to one. The eigenvalues are easily found

as

� = ��t�
p
1 + �2�t2 ;

subject to the constraint j�j � 1. This implies that j��tj � 1 and ��t

must be purely imaginary. Hence, the Leap-Frog scheme is only stable

when advancing purely advective problems being approximated using a

Fourier method, i.e. its use is rather limited. However, used in such a

situation, the time step has to be restricted as

�t � 1

max j�(1)j =
2

N
=

1

�

1

�x
;

i.e. the time step must decay linearly with the resolution in order to

maintain stability, much like the case of �nite di�erence methods.

In the following we shall give numerous alternatives to the Leap-Frog

scheme, in particular methods suitable for the integration of approxi-

mations based on polynomials as in this case it should be clear that the

Leap-Frog scheme in inappropriate. We shall not perform a detailed

stability analysis of all the schemes as such an analysis is fairly trivial,

following the exact same approach as discussed above, and can be found

in most text books on the solutions of ordinary di�erential equations.

10.2.1.1 Adams Methods.

A popular choice of explicit time integration schemes are the explicit

Adam-Bashforth Methods of which the �rst reads

un+1 = un +�tLn ;

also known as the 1st order forward Euler scheme. Performing the sta-

bility analysis using Eq.(10.1) yields the stability condition

j1 + ��tj � 1 ;

which represents the unit circle, centered at ��t = �1, i.e. the scheme
is stable as long as ��t is inside this stability region. Consequently,

using the forward Euler method for integrating an advective periodic

problem, approximated using a Fourier method, is inherently unstable,

since the imaginary axis is a marginal member of the stability region



10.2 Standard Time Integration Schemes 361

�gure 10.3. Stability regions for Adam-Bashforth methods of order 2, 3 and
4.

only. However, approximating the operator using a polynomial basis

leads to eigenvalues with non-zero real and imaginary parts and, pro-

vided �t is chosen suÆciently small, one may obtain stable schemes by

ensuring that ��t remains inside the stability region. This, however,

poses very strict constraints on �t and should not be used except when

no alternative is available.

The 2nd order Adam-Bashforth scheme reads

un+1 = un +
�t

2
(3Ln � Ln�1) ;

the still more accurate 3rd order scheme is given as

un+1 = un +
�t

12
(23Ln � 16Ln�1 + 5Ln�2) ;

and the 4th order scheme becomes

un+1 = un +
�t

24
(55Ln � 59Ln�1 + 37Ln�2 � 9Ln�3)

The stability regions for these methods may be obtained by the exact
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�gure 10.4. Stability regions for Adam-Moulton methods of order 3 and 4.

same method as applied for analyzing the Leap-Frog scheme and in Fig.

10.3 we show the stability regions for these high order schemes. Note

that the stability region decreases for increasing order of the method,

thus placing stronger constraints on the maximum allowable time step.

One should also note that while the 1st and 2nd order schemes do not

include any part of the imaginary axis, this is no longer true for higher

order methods, thus rendering these methods well suited for approxima-

tions based on Fourier as well as polynomial methods.

A family closely related to the explicit Adam-Bashforth methods is

known as the implicit Adam-Moulton Methods, which, as it �rst mem-

ber, contains the scheme

un+1 = un +�tLn+1 ;

also know as the 1st order backward Euler method. Performing a sta-

bility analysis for this scheme results in a condition as

1

j1� ��tj � 1 ;
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implying that the scheme is stable provided ��t is outside a unit circle

centered at ��t = 1, i.e. the scheme is A-stable. Since the eigenvalue

spectra of the approximated spectral operators all have strictly negative

real parts, it is clear that the backward Euler method is uncondition-

ally stable, i.e. independent of the size of �t. However, one should

remember that the error is O(�t) putting constraints on the time step

with respect to accuracy. A-stability is also a property of the 2nd or-

der Adam-Moulton method, also known as the Crank-Nicolson method,

being

un+1 = un +
�t

2
(Ln+1 + Ln) ;

which is 2nd order accurate and widely used for solving di�usion prob-

lems. High order Adam-Moulton methods may also be obtained to 3rd

order as

un+1 = un +
�t

12
(5Ln+1 + 8Ln � Ln�1) ;

and the 4th order scheme is given as

un+1 = un +
�t

24
(9Ln+1 + 19Ln � 5Ln�1 + Ln�2) :

Contrary to the lower order members of the family, the 3rd and 4th order

schemes are only conditionally stable with the stability regions being

shown in Fig. 10.4. One should note that the high order methods does

not include the imaginary axis except for the origin, thus rendering them

ill suited for Fourier and Legendre approximated advection problems.

Comparing the stability regions of the explicit Adam-Bashforth meth-

ods in Fig. 10.3 and those of the implicit Adam-Moulton methods in

Fig. 10.4 it is clear that the latter has a stability region being roughly

ten timers larger than the former. Moreover, the implicit methods have

a smaller truncation error, making them more accurate, however at the

expense of requiring the solution of an implicit set of equations.

A common way of combining the advantages of an explicit scheme

with the higher accuracy and increased stability region of an implicit

scheme is to use the Adam-Bashforth methods as a predictor to the

Adam-Moulton methods, yielding the Adam-Bashforth Predictor-Corrector

Methods of which the 2nd order scheme is
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�gure 10.5. Stability regions for Adam-Bashforth Predictor-Corrector meth-
ods of order 2, 3 and 4.

u� = un +
�t

2
(3Ln � Ln�1) ;

un+1 = un +
�t

2
(L� + Ln) ;

where L� = L(u�; n�t), i.e. the solution obtained using the predictor

is taking the role of the solution in the implicit corrector, yielding a

two-step explicit scheme. The widely used 3rd order predictor-corrector

scheme is given as

u� = un +
�t

12
(23Ln � 16Ln�1 + 5Ln�2) ;

un+1 = un +
�t

12
(5L� + 8Ln � Ln�1) ;

while a 4th order scheme is obtained directly by combining the explicit

and implicit Adams methods discussed above.

Compared to the one-step explicit schemes, the predictor-corrector
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methods have a larger stability region, see Fig. 10.5, and are more

accurate although less than for the purely implicit scheme. We observe

in Fig. 10.5 that only the stability region of the 3rd order predictor-

corrector contains part of the imaginary axis, explaining the wide use of

this particular method for Fourier as well as polynomial based methods.

Contrary to the explicit one-step schemes, the predictor-corrector

schemes require two evaluations of L, which may be costly. This tradeo�

between higher accuracy and more computations makes it hard to gen-

erally state that the predictor-corrector methods are the best choice. In-

deed, for many problems the explicit Adams-Bashforth methods may be

a better choice. However, it is possible to change these two-step schemes

such that only one computation of L is required, known as partially cor-

rected schemes contrary to the standard fully corrected schemes. Indeed,

the partially corrected two-step schemes have considerably smaller er-

rors than the explicit one-step schemes, although also a slightly smaller

stability region that the fully corrected scheme. The partially corrected

3rd order predictor-corrector scheme is given as

~un+1 = un +
�t

12
(23~Ln � 16~Ln�1 + 5~Ln�2) ;

un+1 = un +
�t

12
(5~Ln+1 + 8~Ln � ~Ln�1) ;

where ~Ln = L(~un; n�t), i.e. only after the predictor step does one

need to compute the time derivative thereby making the required com-

putational work similar to that of a one-step scheme, albeit with higher

accuracy.

10.2.1.2 Backward Di�erentiation Schemes.

As an alternative to the Adam schemes, one can use the Backward Dif-

ferentiation Formulas (BDF), being implicit schemes, the �rst of which

is the backward Euler scheme. The 2nd order scheme is given as

3un+1 � 4un + un�1 = 2�tLn+1 :

Comparing with the Adam-Moulton methods we observe that the solu-

tion, un, at the previous time steps rather than its time derivative, Ln,

needs to be stored to advance in time.

For some types of problems this has a signi�cant advantage and BDF-

methods are widely used for solving e.g. sti� systems of di�usive prob-
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�gure 10.6. Stability regions for BDF methods of order one to six.

lems. The 3rd order scheme yields

11un+1 � 18un + 9un�1 � 2un�2 = 6�tLn+1 ;

while the 4th order scheme is given as

25un+1 � 48un + 36un�1 � 16un�2 + 3un�3 = 12�tLn+1 :

In Fig. 10.6 we show the stability regions of the BDF methods and note

that the �rst and second order schemes are A-stable while this property

is lost for higher order schemes. A scheme is stable if ��t is outside the

stability region for all eigenvalues of the operator, since we are dealing

with implicit methods.

10.2.1.3 Semi-Implicit Schemes.

The advection-di�usion equation, or indeed the incompressible Navier-

Stokes equation, plays a very important role in many branches of science

and engineering and special schemes tailored for the eÆcient solution of

such problems has received signi�cant attention. Purely explicit schemes

may be very expensive due to the requirement of a very small time-step,
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this particularly being true when using polynomial methods, where the

eigenvalues of the di�usive operator grows like N4. On the other hand,

the advective part of the equation is often non-linear making a purely

implicit solution diÆcult and costly.

If we consider the general discretized advection-di�usion equation

du

dt
= L(u; t) = �F(u; t) + G(u; t) ;

then the advective operator, F(u; t), is often non-linear while the di�u-

sive operator, G(u; t), is linear in u. This observation has lead to the

introduction of the Semi-Implicit Schemes where the non-linear part is

advanced in time using an explicit scheme while the linear part is dealt

with using an implicit scheme, thereby, at least partially, avoiding the

inuence of the di�usive operator on the time step restriction.

The most straightforward semi-implicit scheme is obtained by using

the 2nd order Adam-Bashforth scheme for the non-linear part and the

Crank-Nicholson scheme for the di�usive part as

un+1 = un +
�t

2
(3Fn � Fn�1) +

�t

2
(Gn+1 +Gn) ;

yielding a scheme in which only the linear part of the equation requires

to be solved implicitly. Since the Crank-Nicholson scheme is A-stable,

the total scheme has stability region as the explicit Adam-Bashforth

method, however, only for the advective part thereby avoiding the e�ects

of the di�usive operator on the time step. It is certainly possible to use a

higher order scheme for advective part, however, the scheme will remain

second order. To achieve higher order more elaborate schemes, known

as Sti�y Stable Schemes, needs to be considered.

The sti�y stable schemes are obtained by combining the BDF meth-

ods with an explicit multi-step scheme, specially tailored for stability

and accuracy, for advancing the non-linear part of the equation. The

1st order scheme, being nothing more than a combination of the forward

Euler scheme for the non-linear part with the backward Euler scheme

for the linear part, yields

un+1 � un = �tFn +�tGn+1 :

The 2nd order scheme is given as

3un+1 � 4un + un�1 = 2�t(2Fn � Fn�1) + 2�tGn+1 ;
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while the even more accurate, and widely used, 3rd order scheme is given

as

11un+1�18un+9un�1�2un�2 = 6�t(3Fn�3Fn�1+Fn�2)+6�tGn+1 :

The connection with the BDF schemes is clear and we note that these

schemes all are one-step schemes. It is generally found that the stability

is governed by the nonlinear term with a time-step restriction being

close to that of the explicit Adam-Bashforth methods although slightly

smaller time step in general is required.

10.2.2 Runge-Kutta Schemes.

A popular and highly eÆcient alternative to the multi-step schemes is

known as the Runge-Kutta Methods, given on the general form

k1 = L(un; n�t) = Ln

ki = L(un +�t

i�1X
j=1

aijki; (n+ ci)�t)

un+1 = un +�t

sX
i=1

biki :

Such a scheme is termed an s-stage explicit Runge-Kutta scheme, where

the choice of the constants aij ; ci and bi determines the accuracy and

eÆciency of the overall scheme.

For linear operators, L, the s-stage Runge-Kutta schemes are nothing

else than the Taylor expansion of the matrix exponential to order s. The

main di�erence between the Runge-Kutta schemes and the multi-step

schemes is that the former require more evaluations of L to advance a

time step while no information from previous time-steps is required as

is the case for multi-step schemes.

10.2.2.1 Standard Schemes.

A popular 2nd order scheme is found for c2 = a21 = 1
2 and b2 = 1

and zero otherwise. This scheme is known as the midpoint method and

yields

k1 = L(un; n�t) = Ln
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k2 = L(un + 1
2�tk1; (n+

1
2 )�t)

un+1 = un +�tk2 ;

being a 2-stage scheme. An alternative 2nd order accurate, 2-stage

scheme is known as the Heun method

k1 = L(un; n�t) = Ln

k2 = L(un +�tk1; (n+ 1)�t)

un+1 = un +
�t

2
(k1 + k2) :

Stability of these schemes is established by considering the scalar equa-

tion

du

dt
= �u ;

for which the general s-stage scheme can be expressed as a truncated

Taylor expansion of the exponential functions as

un+1 =

sX
i=1

(��t)i

i!
un ;

and, consequently, stability is obtained provided�����
sX
i=1

(��t)i

i!

����� � 1 ;

for which the stability region for ��t may be obtained.

A popular 3rd order 3-stage scheme is the Heun scheme given as

k1 = L(un; n�t) = Ln

k2 = L(un + 1
3�tk1; (n+

1
3 )�t)

k3 = L(un + 2
3�tk2; (n+

2
3 )�t)

un+1 = un +
�t

4
(k1 + 3k3) :

Note, that although being a 3rd order scheme only two storage levels is

required.

The classic 4th order accurate, 4-stage scheme is given as
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�gure 10.7. Stability regions for Runge-Kutta methods.

k1 = L(un; n�t) = Ln

k2 = L(un + 1
2�tk1; (n+

1
2 )�t)

k3 = L(un + 1
2�tk2; (n+

1
2 )�t)

k4 = L(un +�tk3; (n+ 1)�t)

un+1 = un +
�t

6
(k1 + 2k2 + 2k3 + k4) ;

requiring four storage levels.

In Fig. 10.7 we display the stability regions for the three Runge-Kutta

methods

One should note that contrary to the fully explicit Adam-Bashforth

methods, the stability regions expand with increasing order of the Runge-

Kutta method. However, one should also remember that increasing the

order of the scheme also increases the amount of memory and computa-

tion required to complete the step.

Observe also, that the 2nd order Runge-Kutta scheme is only marginally

stable at the imaginary axis, thus rendering it ill suited for Fourier and
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Legendre based schemes for approximating advective operators.

10.2.2.2 Low-Storage Methods.

The requirement for several storage levels, e.g. four for the classical 4th

order Runge-Kutta method, leads to excessive memory requirement in

particular when dealing with multi-dimensional problems. However, by

de�ning the constants of the Runge-Kutta method properly it is possible

to arrive at methods that require only two storage levels, however, at

the expense of performing one extra evaluation of L. The introduction

of the additional step introduces extra degrees of freedom in the design

of the scheme such that the resulting schemes also have a larger stability

region making the work per time unit about the same at the classical

methods, albeit with less memory requirements.

The s-stage Low-Storage Method is given on the form

u0 = un

8j 2 [1; s] :

�
kj = ajkj�1 +�tL(uj ; (n+ cj)�t)

uj = uj�1 + bjkj

un+1 = us ;

where the constants aj , bj and cj are determined to yield the desired

order, s�1, of the scheme. For the scheme to be self-starting we require

that a1 = 0. Note that we need only two storage levels containing, kj
and uj , to advance the solution.

A 4-stage 3rd order Runge-Kutta scheme is obtained using the con-

stants

a1 = 0 b1 =
1
3 c1 = 0

a2 = � 11
15 b2 =

5
6 c2 =

1
3

a3 = � 5
3 b3 =

3
5 c3 =

5
9

a4 = �1 b4 =
1
4 c4 =

8
9

:

The constants for a 5-stage 4th order Runge-Kutta scheme is given as
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a1 = 0 b1 =
1432997174477
9575080441755 c1 = 0

a2 = � 567301805773
1357537059087 b2 =

5161836677717
13612068292357 c2 =

1432997174477
9575080441755

a3 = � 2404267990393
2016746695238 b3 =

1720146321549
2090206949498 c3 =

2526269341429
6820363962896

a4 = � 3550918686646
2091501179385 b4 =

3134564353537
4481467310338 c4 =

2006345519317
3224310063776

a5 = � 1275806237668
842570457699 b5 =

2277821191437
14882151754819 c5 =

2802321613138
2924317926251

:

These constants are accurate up to 26 digits, being suÆcient for most

implementations.

The stability regions for these low storagemethods are similar to those

of the classical methods, although slightly larger. In particular, both low

storage schemes contain the imaginary axis as part of the stability region.
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A

Norms, Spaces, and Inequalities

In the following we shall briey review a number of de�nition and con-

cepts from approximation theory in linear spaces. We do not attempt to

give a complete picture of the underlying theories, but rather to provide

a simple and very selective introduction to issues of relevance to the

development and analysis of spectral methods.

For a more thorough introduction to linear approximation theory and

the modern terminology from functional analysis we refer to one of the

many excellent texts on the topic, e.g., [?].

A.1 Normed Linear Spaces

Consider a normed linear space, V, endowed with the norm k � k, of
functions, u. A function u is said to belong to V if kuk is bounded.

This, on the other hand, also de�nes V in terms of all functions, u, as

V = fu j kuk <1g :

We assume, for simplicity, that V is de�ned over the �eld of real numbers,

R. However, most of the subsequent results also hold for the �eld of

complex numbers.

The norm, k � k, enables the de�nition of linear spaces in which all

elements u 2 V, subject to kuk 6= 0, are normalized such that u=kuk is
unity. Such spaces are termed normed linear spaces and, by the de�ni-

377
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tion of a norm, we immediately recover

Positive de�nite � kuk � 0 ; kuk = 0, u � 0

Triangular inequality � ku+ vk � kuk+ kvk
Homogeneous � kauk = jajkuk

Additional useful bounds are given as

2kuvk � kuk2 + kvk2 ;

j kuk � kvk j � ku� vk � kuk+ kvk ;

for u; v 2 V.

A.2 Banach Spaces

Let us use the norm, k � k, to de�ne a metric, d(u; v) = ku � vk, such
that the distance between elements in V can be measured. Let us fur-

thermore introduce the Cauchy sequence, fung1n=0 2 V, de�ned through
the condition

8" > 0 9N 8m;n > N : d(un; um) < " ;

or, equivalently,

lim
m;n!1

d(un; um) = 0 :

If, indeed, any Cauchy sequence in V is convergent to an element in V,

the normed linear space, (V; k � k), is termed complete.

The completeness of (V; k � k) has the important consequence that

any vector, u 2 V, can be approximated arbitrarily close by elements

contained entirely in V, i.e., there exists a Cauchy sequence for which

limn!1 d(u; un) = 0, where closeness is measured using the norm, k � k.
Complete normed linear spaces are also known as Banach spaces and

play an important role in many areas of analysis, e.g., a prominent

member is any �nite dimensional normed space, e.g., RN , endowed with

the p-norm

kukp =
 

NX
i=0

juijp
!1=p

:
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A.2.1 The Spaces of Continuous Functions, Cm[D].

A particularly important example of a Banach space is the space of

continuous and continuously di�erentiable functions, denoted by Cm[D]

where D is a bounded subset of R. If we, for simplicity, restrict ourselves

to functions of one variable and de�ne

u(n) = D(n)u =
dn

dxn
u ;

then the space Cm[D] de�ned on D � R is a Banach space with the norm

kuk =
X
n�m

max
x2D

jD(n)uj :

Hence, Cm[D] is the space of function, de�ned on D that have at least m

continuous derivatives. Cm[D] is clearly complete since every sequence

will converge to a continuous function, i.e., an element in the space itself.

We note that the restriction of the above de�nitions of Cm[D] to

functions of one variable by no means is necessary and generalizations

to multiple dimensions is straightforward.

A.2.2 The Lp[D] and Lpw[D] Spaces.

The Lp[D] spaces are de�ned as consisting of functions, u(x), for which

ju(x)jp is Lebesgue integrable, and endowed with the norm

kukLp[D] =
�Z

D

ju(x)jpdx
�1=p

;

where 1 � p <1
A generalization of the Lp[D] spaces involves the weighted Lpw[D]

space, endowed with the norm

kukLpw[D] =
�Z

D

ju(x)jpw(x)dx
�1=p

;

where 1 � p < 1 and w(x) 2 L1[D] is a strictly positive weightfunc-

tion.The weighted Lpw[D] spaces play a central role in the analysis of

spectral methods based on polynomials.

The de�nition of the L1[D] is enabled through the norm
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kukL1[D] = sup
x2D

ju(x)j :

Note that there is no such thing as a weighted L1 norm.

The generalized triangle inequality in Lpw[D], known as Minkowskis

inequality and valid for 1 < p �1, reads

ku+ vkLpw[D] � kukLpw[D] + kvkLpw[D] ;

where u; v 2 Lpw[D].
A result, exclusive to Lpw[D] spaces and known as the H�older inequal-

ity, takes the form����
Z
D

u(x)v(x)w(x) dx

���� � kukLpw[D] kvkLqw[D] kwkLrw[D]
provide that

1 =
1

p
+

1

q
+

1

r
;

where p; q; r > 1.

It is also worth recalling a few relations between the di�erent Lpw[D]

spaces. In particular, they form a sequence of Banach spaces since

1 � q < p � 1 : Lpw[D] � Lqw[D] ;

i.e., L1
w[D] is the largest and L

1[D] the smallest of the spaces.

The norms associated with the Lpw[D] spaces are all equivalent for the

same weight, w(x), as

81 � p; q �1 9C1; C2 : C1kukLpw[D] � kukLqw[D] � C2kukLpw[D] ;

provided only that u are in Lpw[D] as well as L
q
w[D].

A.2.3 Dense Subspaces

Assume that (V; k � k) is a Banach space and let S � V be a subset of V.

We shall term S dense in V if any element u 2 V can be approximated

by a sequence, un 2 S, such that

ku� unk ! 0 ; n!1 :
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Hence, any element in V can be approximated arbitrarily well by ele-

ments in S as measured through the norm associated with V.

As a prominent example, we have that C0[D] is dense in L2
w[D] since

for any u 2 L2
w[D] there exists a sequence, un 2 C0[D], such thatZ

D

ju� unj2 dx � 1

n2
;

i.e. any function in L2
w[D] can be represented arbitrarily well by a se-

quence of continuous functions.

A.3 Hilbert Spaces

A Banach space endowed with an inner product norm is known as

a Hilbert space, e.g., L2
w[D] constitutes a Hilbert space, H, with the

weighted inner product

(u; v)L2w[D] =

Z
D

u(x) v(x)w(x) dx ;

and the associated weighted norm

kukL2w[D] =
�Z

D

ju(x)j2w(x)dx
�1=2

:

Here v(x) refers to the complex conjugate v(x), which is introduced

to ensure symmetry of the inner product for functions de�ned on the

complex �eld, C.

The Hilbert space plays a key role in modern numerical analysis due to

its similarity with the more familiar notion of an Euclidean space. This

enables the use of geometric intuition e.g., the validity of the triangle

inequality can be appreciated in terms of the geometry of a triangle.

Moreover, the Cauchy-Schwarz inequality, which is a special case of

the H�older inequality, on the form����
Z
D

u(x)v(x)w(x) dx

���� � kukL2w[D] kvkL2w[D] ;
has a clear equivalence in the scalar product in an Euclidean geometry.

Taking this notion further, we shall call two functions u; v 2 H or-

thogonal provided

(f; g)L2w[D] = 0, f ? g :
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For such functions, the Pythagorean theorem holds on a general Hilbert

space as

u ? v , ku+ vk2L2w[D] = kuk2L2w[D] + kvk
2
L2w[D]

:

It is also this geometric interpretation of the Hilbert spaces that makes

it natural to talk about projections onto �nite dimensional spaces in

that it has a simple analogy in the projection of vector components onto

perpendicular basis vectors within an Euclidean geometry.

Expansions of functions, u 2 H, using orthogonal basis functions,

�k 2 H, play a special role in the development of spectral methods.

Such orthogonal expansions,

u(x) =

1X
k=0

ûk�k(x) ; ûk =
1

k
(u; �k)L2w[D] ; k = k�kk2L2w[D] ;

has the important property

kuk2L2w[D] �
1X
k=0

kjûkj2 ;

known as Bessel's inequality.

If, furthermore, the basis �k(x) is complete in H, i.e., if

uN(x) =

NX
k=0

ûk�k(x) ;

and

lim
N!1

ku� uNkL2w[D] = 0 ;

one recovers

kuk2L2w[D] =
1X
k=0

kjûkj2 ;

known as Parsevals identity.

A.4 Sobolev Spaces

Let us �nally introduce the classical Sobolev spaces which provide a

powerful framework in which to study linear operators.
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We de�ne the Sobolev space, Hm
w [D], of functions u as

Hm
w [D] =

�
u 2 L2

w[D]
�� 8n 2 [0;m]; u(n) 2 L2

w[D]
o

;

where m is an integer.

The Hm
w [D] space is endowed with the inner product

(u; v)Hm
w [D] =

mX
n=0

Z
D

u(n)(x)v(n)(x)w(x) dx ;

and the norm

kukHm
w [D] =

 
mX
n=0

ku(n)k2L2w[D]
!1=2

:

The Sobolev spaces form a hierarchy of Hilbert spaces in the sense that

Hm+1
w [D] � Hm

w [D] � : : : � H0
w[D] = L2

w[D]. Moreover, it is clear that

f 2 Cm[D] ) f 2 Hm[D], i.e., Cm[D] is a dense subspace of Hm[D]

as any function u 2 Hm[D] can be approximated arbitrarily well by an

element in Cm[D] as discussed in Sec. A.2.3. Conversely, if u 2 Cm�1[D]

then it is also true that u 2 Hm[D], i.e., Hm[D] � Cm�1[D].

As for the Lpw[D] norms, the Sobolev norms are all equivalent, i.e.,

81 � p; q � 1 9C1; C2 : C1kukHp
w[D] � kukHq

w[D] � C2kukHp
w[D] ;

provided only that u are in Hp
w[D] as well as H

q
w[D].

The de�nition of the Sobolev spaces given above is for functions of

one variable only. However, the developments as well as the de�nitions

generalize straightforwardly to problems in multiple dimensions.

Let us �nally state a couple of inequalities that shall become useful

in the subsequent analysis. Assume that D = [a; b] signi�es a bounded

interval on R and that we consider a function, u 2 H1[D]. We have the

Sobolev inequality

kukL1[D] �
�
2 +

1

b� a

�1=2

kuk1=2L2[D]kuk1=2H1[D] :

Here, and in what remains, we shall byHm[D] refer to the Sobolev space,

Hm
w [D], with w(x) = 1 for brevity. This Sobolev inequality is important

as it relates the Lp[D] spaces with the H1[D] Sobolev space.

Also, we shall �nd it useful to recall the Poincar�e inequality for a
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function u 2 H1[D] where again D = [a; b] is assumed bounded. Then

there exists a constant C such that

kukL2w[D] � Cku(1)kL2w[D] ;

connecting the function with its derivative.

A.5 Notation for Periodic Functions

In working with periodic functions, it is natural to slightly modify the

meaning of the spaces and norms discussed above.

We shall de�ne a function, u(x), as being periodic in the interval

[0; 2�] if u(0) and u(2�) both exist and are equal, i.e., u(0) = u(2�).

Based on this, we de�ne the space, Cmp [0; 2�], as the space of functions

for which u(n); n � m is continuous and periodic.

In a similar fashion, we de�ne the Sobolev space, Hmp [0; 2�], endowed

with the inner product

(u; v)Hm
p [0;2�] =

 
mX
n=0

ku(n)k2L2[0;2�]
!1=2

;

and the norm

kuk2Hm
p [0;2�] = (u; u)Hm

p [0;2�] ;

as the space of periodic functions for which kukHm
p [0;2�] is bounded,

i.e., it coincides with the space of functions, u 2 C
m�1
p [0; 2�] for which

u(m) 2 L2[0; 2�].

A.6 Linear Operators and Operator Norms

Let us consider the operator, L : V ! V, where V is a Banach space.

The operator is termed linear if

L(au+ bv) = aLu+ bLv ;

where u; v 2 V and a; b are scalars.

For linear operators, we de�ne the subordinate norm

kLk = sup
kuk6=0

kLuk
kuk = sup

kuk=1

kLuk ; u 2 V :
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The operator is bounded if there exists a constant, C, such that

kLuk � kLkkuk � Ckuk ;

for all u 2 V . Conversely, is no such constant exists, the operator is

termed unbounded.

Restricting the attention to V being a Hilbert space, i.e., we can de�ne

an inner product (�; �) associated with the norm, we have that

(Lu; v) = (u;L�v) ;

where L� is termed the adjoint operator.

If there exists a constant, C, such that

L+ L� � CI ;

in the sense that

(u; (L+ L�)u) � Ckuk2 ;

we shall call L a semi-bounded operator.
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B

The Gamma Function

Let us briey review some properties of the Euler-Gamma function,

�(x), de�ned as

�(x) =

Z 1

0

tx�1 exp(�t) dt ;

which is analytic for x > 0 and with a pole at x = 0. However, integra-

tion by parts immediately yields the recursive formula

�(x+ 1) = x�(x) ;

i.e., the pole at x = 0 is simple.

For x being an integer, this simple recurrence yields the important

identity

�(n+ 1) = n! :

Useful formulas, of which many more can found in [?], include

�(2x) =
1p
�
22x�1�(x)�(x + 1

2 ) ;

known as the duplication formula, and the relation with binomial coef-

�cients�
x

k

�
=

x!

k!(x� k)!
=

�(x+ 1)

�(k + 1)�(x� k + 1)
; x > k � 1:

Special values of �(x) include
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�(1) = 1 ; �( 12 ) =
p
� ;

while a useful asymptotic expression, known as Stirlings formula, reads

�(x) ' p2� exp(�x) x
x

p
x

�
1 +

1

12x
+

1

288x2
� 139

51840x3
� :::

�
; jxj ! 1 :

Recalling the close connection to the Beta function,

B(x; y) =

Z 1

0

tx�1(1� t)y�1 dt =
�(x)�(y)

�(x+ y)
;

we recoverZ 1

�1

(1� t)�(1 + t)� dx = 2�+�+1
�(�+ 1)�(� + 1)

�(�+ � + 2)
:
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C

A Zoo of Polynomials

C.1 Legendre Polynomials

The Legendre polynomials, Pn(x), are de�ned as the solution to the

Sturm-Liouville problem with p(x) = 1� x2, q(x) = 0 and w(x) = 1 as

d

dx
(1� x2)

dPn(x)

dx
+ n(n+ 1)Pn(x) = 0 ;

where Pn(x) is assumed bounded for x 2 [�1; 1].
The Legendre polynomials are given as P0(x) = 1, P1(x) = x, P2(x) =

1
2 (3x

2 � 1), P3(x) =
1
2 (5x

3 � 3x) and are orthogonal in L2
w[�1; 1] with

as w(x) = 1 as Z 1

�1

Pn(x)Pm(x) dx =
2

2n+ 1
Æmn :

C.1.1 The Legendre Expansion

The continuous expansion is given as

u(x) =

NX
n=0

ûnPn(x) ; ûn =
2n+ 1

2

Z 1

�1

u(x)Pn(x) dx :

The discrete expansion coeÆcients depend on what family of Gauss

points are chosen.

3
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Legendre Gauss Quadrature

zj = fzjPN+1(z) = 0g ; uj =
2

(1� z2j )[P
0
N+1(zj)]

2
; j 2 [0; : : : ; N ] :

The normalization constant is given as

~n =
2

2n+ 1
;

resulting in the expansion coeÆcients as

~un =
1

~n

NX
j=0

u(zj)Pn(zj)uj :

Legendre Gauss-Radau Quadrature

yj = fyjPN(y) + PN+1(y) = 0g ;

vj =

(
2

(N+1)2 j = 0
1

(N+1)2
1�yj

[PN (yj)]2
j 2 [1; : : : ; N ]

:

The normalization constant is given as

~n =
2

2n+ 1
;

yielding the discrete expansion coeÆcients as

~un =
1

~n

NX
j=0

u(yj)Pn(yj)vj :

Legendre Gauss-Lobatto Quadrature

xj = fxj(1� x2)P 0N (x) = 0g ; wj =
2

N(N + 1)

1

[PN (xj)]2
:

The normalization constant is given as

~n =

� 2
2n+1 j 2 [0; N � 1]
2
N j = N

;

from which the discrete expansion coeÆcients become
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~un =
1

~n

NX
j=0

u(xj)Pn(xj)wj :

C.1.2 Recurrence and other Relations.

Here we give a number of useful recurrence relations.

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) � nPn�1(x) :

Pn(x) =
1

2n+ 1
P 0n+1(x)�

1

2n+ 1
P 0n�1(x) ; P0(x) = P 01(x) :

We also have

Z
Pn(x) dx =

8<
:
P1(x) n = 0
1
6 (2P2(x) + 1) n = 1
1

2n+1Pn+1(x) � 1
2n+1Pn�1(x) n � 2

:

Pn(�x) = (�1)nPn(x) :

C.1.3 Special Values.

The Legendre polynomials have the following special values.

jPn(x)j � 1 ; jP 0n(x)j �
1

2
n(n+ 1) :

Pn(�1) = (�1)n ; P 0n(�1) =
(�1)n+1

2
n(n+ 1) :

The values of Pn at the center x = 0 behaves as

P2n(0) = (�1)n (n� 1)!

(
Qn=2

i=1 2i)
2
; P2n+1(0) = 0 :

Finally, we obtain the results for integration asZ 1

�1

Pn(x) dx = 2Æ0n :
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C.1.4 Operators.

In the following we will consider the following question for Legendre

expansions. Given a polynomial approximation as

f(x) =

1X
n=0

ânPn(x) ; Lf(x) =
1X
n=0

b̂nPn(x) ;

where L is a given operator, what is the relation between ân and b̂n. We

will give the result for the most commonly used operators, L.

L =
d

dx
: b̂n = (2n+ 1)

1X
p=n+1

p+n odd

âp :

L =
d2

dx2
: b̂n =

2n+ 1

2

1X
p=n+2

p+n even

(p(p+ 1)� n(n+ 1))âp :

L = x : b̂n =
n

2n� 1
ân�1 +

n+ 1

2n+ 3
ân+1 :

Finally, if we have

dq

dxq
u(x) =

1X
n=0

û(q)n Pn(x) ;

then

1

2n� 1
û
(q)
n�1 �

1

2n+ 3
û
(q)
n+1 = û(q�1)n :

C.2 Chebyshev Polynomials

The Chebyshev polynomials of the �rst kind, Tn(x), appear as a solution

to the singular Sturm-Liouville problem with p(x) =
p
1� x2, q(x) = 0

and w(x) = (
p
1� x2)�1 as

d

dx

�p
1� x2

dTn(x)

dx

�
+

n2p
1� x2

Tn(x) = 0 ;

where Tn(x) is assumed bounded for x 2 [�1; 1].
The Chebyshev polynomials may be given on explicit form as
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Tn(x) = cos(n arccosx) :

Thus, T0(x) = 1, T1(x) = x, T2(x) = 2x2 � 1, T3(x) = 4x3 � 3x etc.

The Chebyshev polynomials are orthogonal in L2
w[�1; 1]Z 1

�1

Tn(x)Tm(x)
1p

1� x2
dx =

�

2
cnÆmn ;

where

cn =

�
2 n = 0

1 otherwise
:

C.2.1 The Chebyshev Expansion.

The continuous expansion is given as

u(x) =
NX
n=0

ûnTn(x) ; ûn =
2

�cn

Z 1

�1

u(x)Tn(x)
1p

1� x2
;

where as the details of the discrete expansion depends on what family

of Gauss points are chosen.

Chebyshev Gauss Quadrature

zj = � cos

�
(2j + 1)�

2N + 2

�
; uj =

�

N + 1
; j 2 [0; : : : ; N ] :

The normalization constant is given as

~n =

�
� n = 0
�
2 n 2 [1; : : : ; N ]

;

with the discrete expansion coeÆcients being

~un =
1

~n

NX
j=0

u(zj)Tn(zj)uj :
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Chebyshev Gauss-Radau Quadrature

yj = � cos

�
2j�

2N + 1

�
; vj =

(
�

2N+1 j = 0
2�

2N+2 j 2 [1; : : : ; N ]
:

The normalization constant is given as

~n =

�
� n = 0
�
2 n 2 [1; : : : ; N ]

;

yielding the discrete expansion coeÆcients as

~un =
1

~n

NX
j=0

u(yj)Tn(yj)vj :

Chebyshev Gauss-Lobatto Quadrature

xj = � cos

�
�j

N

�
; wj =

�
�
2N j = 0; N
�
N j 2 [1; : : : ; N � 1]

:

The normalization constant is given as

~n =

�
�
2 j 2 [1; N � 1]

� j = 0; N
;

resulting in the discrete expansion coeÆcients being

~un =
1

~n

NX
j=0

u(xj)Tn(xj)wj :

C.2.2 Recurrence and other Relations.

The number of recurrence relations is large and we will only give the

most useful ones.

Tn+1(x) = 2xTn(x) � Tn�1(x) :

Tn =
1

2(n+ 1)
T 0n+1(x) �

1

2(n� 1)
T 0n�1(x) ; T0(x) = T 01(x) :
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Other useful relations are

2T 2
n(x) = 1 + T2n(x) :

2Tn(x)Tm(x) = Tjn+mj(x) + Tjn�mj(x) :

Z
Tn(x) dx =

8><
>:
T1(x) n = 0
1
4 (T2(x) + 1) n = 1

1
2(n+1)Tn+1(x)� 1

2(n�1)Tn�1(x) n � 2

:

Tn(�x) = (�1)nTn(x) :

C.2.3 Special Values.

From the de�nition of the Chebyshev polynomials we may make the

following observations.

jTn(x)j � 1 ; jT 0n(x)j � n2 :

dq

dxq
Tn(�1) = (�1)n+q

q�1Y
k=0

n2 � k2

2k + 1
;

with the special cases

Tn(�1) = (�1)n ; T 0n(�1) = (�1)n+1n2 :

The values of Tn at the center x = 0 behaves as

T2n(0) = (�1)n ; T2n+1(0) = 0 :

T 02n(0) = 0 ; T 02n+1(0) = (�1)nn :

Finally, we obtain the results for integration asZ 1

�1

Tn(x) dx =

�� 2
n2�1 n even

0 n odd
:
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C.2.4 Operators

In the following we consider the following question for Chebyshev ex-

pansions. Given a polynomial approximation as

f(x) =

1X
n=0

ânTn(x) ; Lf(x) =
1X
n=0

b̂nTn(x) ;

where L is a given operator, what is the relation between ân and b̂n. We

give the result for the most commonly used operators, L.

L =
d

dx
: b̂n =

2

cn

1X
p=n+1

p+n odd

pâp :

L =
d2

dx2
: b̂n =

1

cn

1X
p=n+2

p+n even

p(p2 � n2)âp :

L =
d3

dx3
: b̂n =

1

4cn

1X
p=n+3

p+n odd

p(p2(p2 � 2)� 2p2n2 + (n2 � 1)2)âp :

L =
d4

dx4
: b̂n =

1

24cn

1X
p=n+4

p+n even

p(p2(p2�4)2�3p4n2+3p2n4�n2(n2�4)2)âp :

L = x : b̂n =
1

2
(cn�1ân�1 + ân+1) :

L = x2 : b̂n =
1

4
(cn�2ân�2 + (cn + cn�1)ân + ân+2) :

Finally, if we have

dq

dxq
u(x) =

1X
n=0

û(q)n Tn(x) ;

then

cn�1û
(q)
n�1 � û

(q)
n+1 = 2nû(q�1)n :
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C.3 Laguerre Polynomials

The Laguerre polynomial, Ln(x), is de�ned as the solution to the Sturm-

Liouville problem with p(x) = x exp(�x), q(x) = 0 and w(x) = exp(�x)
as

d

dx
x exp(�x)dLn(x)

dx
+ n exp(�x)Ln(x) = 0 ;

where Ln(x) is de�ned for x 2 [0;1[.

The Laguerre polynomials are given as L0(x) = 1, L1(x) = 1 � x,

L2(x) =
1
2x

2 � 2x+ 1, L3(x) = � 1
6x

3 + 3
2x

2 � 3x+ 1 and the Laguerre

polynomials are orthogonal in L2
w[0;1] with as w(x) = exp(�x) asZ 1

0

Ln(x)Lm(x) exp(�x) dx = Æmn :

C.3.1 The Laguerre Expansion

The continuous expansion is given as

u(x) =

NX
n=0

ûnLn(x) ; ûn =

Z 1

0

u(x)Ln(x) exp(�x) dx :

The discrete expansion depends on what family of Gauss points are

chosen. Here we only consider the Gauss and the Gauss-Radau points

as they are the most commonly used, as no quadrature point is situated

at in�nity.

Laguerre Gauss Quadrature

zj = fzjLN+1(z) = 0g ;

uj = � 1

N + 1

�
LN(zj)L

0
N+1(zj)

��1
;

with the discrete expansion coeÆcients being

~un =

NX
j=0

u(zj)Ln(zj)uj :
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Laguerre Gauss-Radau Quadrature

yj = fyjy0 = 0 ; L0N+1(y) = 0g ;

vj =

(
1

N+1 j = 0
1

N+1 [LN+1(yj)L
0
N (yj)]

�1
j 2 [1; N ]

;

with the discrete expansion coeÆcients being

~un =

NX
j=0

u(yj)Ln(yj)vj :

C.3.2 Recurrence and other Relations.

Here we give a number of useful recurrence relations.

(n+ 1)Ln+1(x) = (2n+ 1� x)Ln(x)� nLn�1(x) :

Ln(x) = L0n(x) � L0n+1(x) ; L0(x) = �L01(x) :

C.3.3 Special Values.

The Laguerre polynomials have the following special values.

jLn(x) exp(�x)j � 1 :

Ln(0) = 1 :

C.3.4 Operators.

Consider

dq

dxq
u(x) =

1X
n=0

û(q)n Ln(x) ;

then

û(q)n = û
(q)
n+1 � û

(q�1)
n+1 :
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C.4 Hermite Polynomials

The Hermite polynomial, Hn(x), is de�ned as the solution to the Sturm-

Liouville problem with p(x) = exp(�x2), q(x) = 0 and w(x) = exp(�x2)
as

d

dx
exp(�x2)dHn(x)

dx
+ 2n exp(�x2)Hn(x) = 0 ;

where Hn(x) is de�ned for x 2]�1;1[.

The Hermite polynomials are given as H0(x) = 1, H1(x) = 2x,

H2(x) = 4x2 � 2, H3(x) = 8x3 � 12x, with the polynomials being or-

thogonal in L2
w[�1;1] with w(x) = exp(�x2) asZ 1

�1

Hn(x)Hm(x) exp(�x2) dx = 2nn!
p
�Æmn :

C.4.1 The Hermite Expansion

The continuous expansion is given as

u(x) =

NX
n=0

ûnHn(x) ; ûn =
1

2nn!
p
�

Z 1

�1

u(x)Hn(x) exp(�x2) dx :

Only for the Gauss points is it convenient to introduce the discrete ex-

pansion coeÆcients, since this set of quadrature points does not include

the endpoints.

Hermite Gauss Quadrature

zj = fzjHN+1(z) = 0g ;

uj = 4
p
�2N(N + 1)!

�
H 0
N+1(zj)

��2
; j 2 [0; : : : ; N ] :

The normalization constant is given as

~n = 2nn!
p
� ;

leading to the discrete expansion coeÆcients given as

~un =

NX
j=0

u(zj)Hn(zj)uj :
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C.4.2 Recurrence and other Relations.

Here we give a number of useful recurrence relations.

Hn+1(x) = 2xHn(x)� nHn�1(x) :

Hn(x) =
1

2(n+ 1)
H 0
n+1(x) ; H0(x) =

1

2
H 0
1(x) :

Hn(�x) = (�1)nHn(x) :

C.4.3 Special Values

The Hermite polynomials have the following special values.

jHn(x) exp(�x2)j � 1 :

H2n+1(0) = 0 ; H2n(0) = (�1)n (2n)!
n!

:

C.4.4 Operators

Consider

dq

dxq
u(x) =

1X
n=0

û(q)n Hn(x) ;

then

û
(q)
n�1 = 2nû(q�1)n :
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