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Abstract

We present an efficient spectral method for studies of fundamental vortex dynamics in forced, circular shear
flows. The numerical results are compared with results from experiments carried out in rotating flows with both
planar and parabolic geometries. Due to the high accuracy of the code, it can be determined whether a two-
dimensional model is sufficient to describe the experimental results. 2000 IMACS. Published by Elsevier Science
B.V. All rights reserved.
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0. Introduction

In the study of the dynamics of coherent structures, forced circular shear flows offer many desirable
features. The inherent quantization of circular geometries due to the periodic boundary conditions makes
it possible to design experiments in which the spatial and temporal complexity of the coherent structures
can be accurately controlled. A large number of experiments on circular shear layers have been performed
in a variety of physical systems, including rotating gases and fluids, and magnetized plasmas (see,
e.g., [1,2] for a list of references). A number of theoretical and numerical investigations of these systems
have also been performed. However, the quantitative agreement between the results from these theoretical
and numerical studies and the experimental results have been rather poor. Up till now, it has not been
possible to determine whether the discrepancies were caused by inadequate physical modeling or by
insufficient numerical schemes based on low order methods with low resolution. In this paper, an accurate
and efficient spectral method is presented which reduces the errors in the numerical solutions so much
that conclusions can be drawn directly concerning the validity of the model equations.
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1. Experimental test cases and model equations

We will validate our numerical scheme against two different fluid experiments. In both experimental
setups, a radially localized shear forcing of the flow is produced by a differential rotation of an inner
and an outer part of the mechanical structure containing the flow. The first test case [3,7] has a planar
geometry, while the second [8] is carried out in a parabolic shaped tank. The main control parameter
characterizing these flows is the Reynolds number,

Re= 1Ωae
ν

. (1)

Here,1Ω is the difference in angular velocity between the inner and outer flow,a is the radius at which
the forcing is introduced,e is the width of the shear layer, andν the kinematic viscosity. The shear
layer aspect ratio,Γ = a/e, also plays a role in determining the transitions, sinceΓ is a measure of how
important shear curvature is, with smaller values corresponding to flows where curvature effects are more
pronounced.

As described in the papers on the experiments, the flows in the two cases can be modeled by the same
two-dimensional set of equations. These consist of the Charney equation in the infinite Rossby radius
limit

∂ω

∂t
+ J (ω,ψ)− β

r

∂ψ

∂θ
= ν∇2ω+ c(ω∗ − ω), (2)

and the Poisson equation

∇2ψ =−ω. (3)

In these equations, we have introduced the scalar vorticityω, the stream functionψ , and the Jacobian

J (f, g)≡ 1

r

(
∂f

∂r

∂g

∂θ
− ∂g
∂r

∂f

∂θ

)
.

The constantβ in (2) measures the effect of the varying Coriolis force in the parabolic tank [8] and is
zero in the planar case [3,7]. The external forcing function,ω∗, in (2) is an axisymmetric function that
enters the Eckman forcing term, and the constantc in front of this term is different in the two test cases.

In both experiments the flow is confined radially between two vertical walls at some distance from the
radius of forcing. In order to investigate the effect of boundary layers at these walls, we have solved (2),
(3) subject to both free-slip and no-slip boundary conditions.

2. Numerical scheme

In the numerical solution of (2), (3) a spectral method is employed in which all functions are expanded
in the form

g(r, θ, t)=
M∑
m=0

N/2−1∑
n=−N/2

gmn(t)Tm(r)e
inθ , (4)

whereM andN are the orders of truncation andTm(r) (with normalizedr) is themth degree Chebyshev
polynomial.
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For the time integration of (2) we have used a 3rd order “Stiffly Stable” scheme [6], which is a
mixed explicit/implicit time integration method. Thus, for each time step two elliptic equations, the
Poisson equation (3) and the Helmholtz equation originating from the implicit term, must be solved.
These equations are solved by an invertible integral operator method [4] which very efficiently solves
the equations in O(MN) operations with high accuracy even at high truncations (M ∼N ∼ 1024). The
invertible integral operator method is developed for ordinary differential equations with varying, rational
function coefficients. It decomposes the solution into a “particular solution” and a null-space correction
taking care of the boundary conditions. In this way, the method is well suited for domain decomposition
since it only needs to exchange boundary information between neighboring domains.

As mentioned above, both free-slip and no-slip boundary conditions have been implemented in
our scheme. The no-slip conditions are not easily introduced since (2) and (3) describe the flow in
the vorticity-stream function formulation, while the no-slip condition expresses a constraint on the
flow velocity. Actually, transcribing the no-slip velocity condition to the stream function causes the
Poisson equation (3) to be overdetermined. We have previously developed an accurate integral solvability
constraint method [5] to resolve this apparent overdeterminancy. In this method, the coefficients belong
to the solvability constraints are independent of viscosity and mode number truncation, and they are
calculated in a pre-processing stage. This way, imposing the solvability constraints during the dynamical
calculations add virtually no computational overhead.

In the explicit calculation of the nonlinear convection term, the products are calculated in point space
and the result fully de-aliased using the standard 2/3 truncation scheme. The accuracy of the full
numerical simulations is diagnosed by comparing the instantaneous temporal derivatives of the global
quantities: energy, enstrophy and angular momentum, obtained by time-stepping the simulation with the
analytical expressions for these quantities, and very high accuracies are obtained.

3. Asymptotic analysis

In addition to complete numerical simulations of the flows following (2) and (3) we have also
performed a weakly nonlinear analysis of the planar flows (withβ = 0 in (2)) near the critical Reynolds
number,Rec, where the flow undergoes the first bifurcation. In this analysis, we are guided by the
results from the experiments [3,7] and from the full simulations which demonstrate that the flow is
stable to radially symmetric perturbations at any Reynolds number, but becomes unstable to azimuthal
perturbations therefore, introduce the small parameterε such thatν = 1/(Rec + ε2) = νc(1− ε2νc +
O(ε4)).

We also introduce the slow time scaleτ = εt and expand the flow fields in the form

g(r, θ, t)= g0(r)+
3∑
k=1

εkgk(r, θ, t, τ )+O
(
ε4); (5)

hereg stands for eitherω or ψ . The slow time scale is suggested as usual by the dependence of the
unstable eigenvalues onRein the vicinity of Re=Rec.

The analysis of the O(ε0) and O(ε1) problems gives the basic linearized stability picture. This
determines the value ofRec, the linear eigenfunctions and the linear growth rates. To O(ε2) the
perturbation equations produce nonresonant second (and zero) harmonic corrections, but to O(ε3) the
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Fig. 1. Supercritical bifurcation near the critical Reynolds number fora = 3, Γ = 6.5. The black circles mark
the values of the saturated amplitude of the square of the maximal radial velocity, maxu2

r , for different values
of the Reynolds numberReand free-slip boundary conditions. The black squares show similar results for no-slip
boundary conditions. The dashed lines indicate linear, least square fits to the points with non-axisymmetric flows.

interaction of these harmonics with the fundamental produces resonant (secular) terms. Suppressing these
terms leads to

dA

dτ
= αA+ ξ |A|2A, (6)

which is the Landau equation for the saturation behavior of the complex amplitude,A(τ), of the neutral
mode. Further details on the asymptotic analysis can be found in [2].

4. Numerical results

Fig. 1 shows the numerical results for the nonlinear saturation of the perturbation near the first
bifurcation from the axisymmetric state. The calculations were initialized by exciting the first 20
azimuthal modes with random phases and low amplitudes. ForReless than a well-defined critical value,
Rec, all the azimuthal modes die out and an axisymmetric state is restored. ForRevalues not too far
aboveRec, ann= 5 mode is excited in agreement with the linear analysis forΓ = 6.5 anda = 3. After a
transient period, during which the stable modes die out, then= 5 perturbation grows to a finite amplitude
and saturates. It is clearly seen that the saturated amplitudes ofur grow as(Re−Rec)

(1/2) characteristic
for the supercritical bifurcation assumed in the asymptotic analysis in Section 3.

The intersections of the dashed lines in Fig. 1 with theRe-axis give good estimates ofRec. The values
for Rec found this way are 81.1±0.1 (free-slip) andRec= 86.3±0.1 (no-slip). These values are in good
agreement with the results from the asymptotic analysis, which givesRec = 80.6 andRec = 86.18 for
the free-slip and no-slip cases, respectively. Experimentally, [7] foundRec= 85± 5, while [3] reported
Rec= 80± 2. We note that in the numerical simulations of [3], the critical Reynolds number was found
to be Rec ≈ 60 for Γ = 6.5 which is far from the experimental value. Given the results presented in
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Fig. 2. Vorticity fields of a section of the first unstable mode fora = 3, Γ = 6.5. Dashed lines indicate
negative values and full lines positive values. (a)–(c) Free-slip boundary conditions; (d)–(f) no-slip conditions.
(a), (d) Eigenfunctions for the marginally stable case from linear analysis; (b), (e) saturated perturbation from full
numerical simulation atRe= 89.32; (c), (f) total saturated field from the same numerical simulation as in (b), (e).
In all the figures, the amplitude has been normalized to 1.

this paper, it is clear that this large discrepancy is not due physical effects missing from the model
equations (2), (3) but must be ascribed to the crude numerical scheme used in [3].

In Fig. 2, vorticity fields corresponding to the eigenfunctions from linear analysis are shown for
both free-slip and no-slip boundary conditions. Also shown are the saturated perturbation and the total
saturated field from the full simulations. The good agreement between the linear results and the results
from the full numerical simulations is obvious. We have also calculated the saturated perturbation for
the otherRevalues represented in Fig. 1 and found that the geometry of the fields corresponding to the
two different boundary conditions only changed slightly forRec < Re< 100. The temporal growth and
saturation of the amplitude of the perturbation for slightly unstable flows was compared with the Landau
equation (6) derived in Section 3 and an excellent agreement was found.

WhenReis increased further aboveRec than in the simulations shown in Fig. 1, a series of symmetry
breaking bifurcations occur. An example of such a bifurcation is shown in Fig. 3. We have found that
during all bifurcations, including the first bifurcation from the axisymmetric state, there are clear drops
in the energy and the enstrophy of the flow. During spin-down the flow exhibits a clear hysteresis in
agreement with the experimental observations. In the simulations, the inverse bifurcations only occur
when additional noise is added to the flow.

For the second test case in the parabolic geometry the generic flow behavior is very similar to the
behavior in the first test case. In Fig. 4 we show a full sequence of bifurcations. Again in this case we see
the fine agreement between the numerical simulations and the experiment.
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Fig. 3. Symmetry breaking transition during spin-up.

Fig. 4. Sequence of bifurcations in a parabolic tank.

5. Conclusion

We have presented an accurate and efficient spectral method for studies of the dynamical properties
of forced, circular shear layers. The code has been tested against theoretical results from asymptotic
analysis and verified against two different experimental test cases. Due the high agreement achieved in
all cases, we are able to conclude that the two-dimensional model equations (2), (3) are fully capable of
describing the complex vortex dynamics in the shear flows, at least in the cases where we have able to
make comparisons.
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