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1 Introduction

The Optimal Rotational Superposition problem is an old one. For the case
of the least squares residual (RMSD)
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||
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W (X − Y)||2F (1)

two approaches, using the SVD of the matrix R := XYT ([1], formula (5))
and the spectral analysis of the quaternion matrix F ([1], formula (10)) have
been available for some time together with several generalizations [2]. Here
we follow the notation of Coutsias et al. [1]; X and Y are the model and
target sets respectively and the subscript F denotes the Frobenius norm.
For simplicity we omit the positive weights wi. Given the importance of the
problem, there did appear to be a need of a deeper understanding of these
two seemingly different mathematical answers to the same mathematical
question. The analysis in [1] elucidates how the two approaches inform
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each other, and we feel that there is nothing misleading in our proof of the
algebraic identity between the two methods, especially given the extensive
discussion of chirality and its encoding in the spectrum of F and the singular
values and vectors of R. Of course, there were problems with the original
lengthy derivation by Kabsch [3], which used Lagrange multipliers to enforce
orthogonality for the optimal rotation matrix, resulting in transformations of
ambiguous chirality. This problem however lies only with Kabsch’s original
method of proof, not with the SVD approach per se. The commonly accepted
proof [4] is based on the connection between the trace of the matrix YTX
and the properties of the singular vectors of R and is entirely unambiguous,
as discussed at length in [1], p. 1851.

In this regard, there is no new information in Section 2 of the comment
by Kneller [5], only a restatement of the analysis of the arrangement of the
spectrum in Coutsias et al.[1] given for his slightly different representation
of the residual in terms of the matrix M ([5], formula (10)). Finally, better
bounds can be found for the spectrum for the general case of non-collinear
vectors using Gershgorin’s theorem [4], while the bounds quoted by Kneller
([5], formula (23)) are problematic and they are corrected below.

2 The SVD and Quaternion approach yield iden-

tical results

The main point in Coutsias et al. [1] was that the Procrustes [6] (or, for
the chemists, Kabsch’s [3]) method and the Quaternion method [7, 8, 9]
are mathematically equivalent problems, i.e. that they contain identical
information and, when properly understood and applied, lead to identical
answers to any question regarding least-squares rotational superposition,
either by proper rotations or by rotation–reflections. The key insight for the
Kabsch singular vectors is that the optimal rotations align or antialign them
according to the sign of the Kabsch matrix determinant, detR. There may
be circumstances (not in the design of protein-like molecules to be certain!)
where a chiral reversal might be allowed. It is clear from the analysis in [1]
that the arrangement of the eigenvalues of the Quaternion matrix contains
equivalent information with that found from analysis of the chirality of the
singular vectors. We demonstrated that the sign of the eigenvalue of the
largest magnitude is the same as the sign of the Kabsch matrix determinant.
Therefore, when both methods are correctly understood one can accomplish
the same things with either method with no extra work or special case
checks. Of course, computing the determinant of the Kabsch matrix adds
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insignificant overhead (the cost of a cross and a dot product) compared to
the work to set up the matrices in either method and the work to find the
SVD of a 3x3 matrix or to that of finding the spectrum of a 4x4 traceless
matrix. We can contrast the two methods as follows

1. The Kabsch method:
Form matrix R = XYT and perform the SVD, R = VΣWT .
Form the optimal rotation matrix WXVT where matrix X is the iden-
tity except that its entry χ33 = sgndetR.
If detR = 0 then there is at least one zero singular value and the sets
are chirality-indifferent.

In comparing sizes of residuals between pure rotations or rotation-
reflections, it is clear that the smallest value occurs when subtracting
the sum of all singular values, which results from the alignment of
all pairs of singular vectors. That can be accomplished without a
reflection if the two sets of singular vectors have the same chirality
so that detR > 0. Otherwise a reversal is required and the best that
can be done by a pure rotation is to align the pairs of right and left
singular vectors for the two largest singular values, while antialigning
that of the smallest.

2. The Quaternion method:
Construct the matrix F ([1], form. (10)) and compute its eigenvalues,
µ1 ≥ µ2 ≥ µ3 ≥ µ4, and eigenvectors, qi , i = 1, 2, 3, 4.
If the eigenvalue of largest magnitude is positive (µ1), corresponding
eigenvector q1 gives matrix U(q1) for optimal rotation superposition.
Conversely, if the eigenvalue of largest magnitude is negative (µ4), then
U(q1) provides only rotational optimality, while the matrix −U(q4),
i.e. a rotation based on the most negative eigenvalue followed by a
reflection, provides a better, but chirality-reversing, optimum.
If the smallest and largest eigenvalue have equal magnitudes the sets
are chirality-indifferent, e.g. planar or linear.

In our view, these are equivalent statements.

3 Remarks

3.1 Chirality and Degeneracy

The ambiguity in Kabsch’s original paper [3] was noted by Nyburg and Yuen
and addressed by Kabsch in a subsequent publication [10]. The proper
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treatment of the chirality question in terms of the right and left singular
vectors of the correlation matrix R has been in standard textbooks for some
time [4].

The fact that the rotation operator as derived from the quaternion eigen-
vectors is proper is well understood [11], as is the distinction between proper
and enantiomeric superpositions. It is pointed out in [1] that a slight ad-
vantage of the quaternion method is its efficient coding of the degenerate
case, since the invariant subspace of a degenerate eigenvalue is spanned by
linear combinations of its eigenvectors, while the SVD based method does
not readily provide such a representation since the relation between the
quaternion and its rotation matrix is nonlinear. The simple expression for
the invariant subspace did appear in [12], without contrast to the SVD pic-
ture. Apart from this case, which is discussed in [1] the two methods (SVD
and quaternion) do indeed produce mathematically equivalent descriptions
of the problem, and contrasting them does help gain a clearer understand-
ing of rotational superposition: the singularity of the correlation matrix R
reveals degeneracy, and the sign of its determinant gives the chirality of
optimal superposition directly and simply, without the need of computing
spectra. Here we must mention that Dr. Kneller’s independent derivation
of the quaternion RMSD, given in his elegant 1991 article [12] was missed
by the 1999 review by Flower [2], as well as in the overview given in [1].
In any case, the argument regarding chirality and quaternions is an old one
[11], and there seems to be no need to repeat it here.

3.2 Spectral estimates

Sharp bounds for the eigenvalues of F (or for M) can be found easily, by
applying standard Gershgorin [4] estimates to the quaternion matrix F .
Thus, the (real) eigenvalues of F are found on the union of the intervals

Ii :=



Fii −
∑

j 6=i

|Fij |, Fii +
∑

j 6=i

|Fij |


 , i, j = 1, 2, 3, 4 . (2)

Taking advantage of further results along the lines of (2) and the traceless
character of F one can refine these estimates, and speed up the calculation
of the spectrum of F . These estimates are optimal but their geometrical
content is obscure. One can proceed directly from the definition of the
residual (1) and apply the triangle inequality to arrive at bounds with clearer
geometrical content. These bounds, however, are in general not sharp except
for perfectly alignable or collinear sets. In the preceding comment [5], an
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estimate based on the triangle inequality is claimed, however the estimate
(21) for the spectrum of the matrix M is one-sided and its conversion to
the estimate (23) for the spectrum of F is incorrect. A careful application
of the triangle inequality gives:

0 ≤
∑

a

wa(|xa|−|ya|)2 ≤ NE =
∑

a

wa(xa−ya)
2 ≤

∑

a

wa(|xa|+|ya|)2 (3)

from which follows the symmetric estimate for the eigenvalues of F :

−
∑

a

wa|xa||ya| ≤ µi ≤
∑

a

wa|xa||ya| (4)

These bounds are realized, for example, for two collinear sets of (generally
unequal) vectors. The spectrum of F obeys symmetric bounds e.g. in the
case of double degeneracy, when the singular values of R are σ1 > σ2 =
σ3 = 0 since then µ1 = µ2 =

√
σ1 = −µ3 = −µ4.
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