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THE AGING OF NUCLEI IN A BINARY MIXTURE
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A theory of nucleation for a metastable binary mixture is developed, based on the Cahn-Hilliard theory of phase
separation. It is shown that at least in its intermediate stages the transition from a supersaturated state 1o an energetically

favored separated state follows the typical mechanism of surface tension governed nucleation proc:
i are found, analagous to the results of Lifshitz et al. It is shown that

similarity solutions describing the distribution of au

and long-time

spatially uniform nucleation is destabilized by diffusion and the modifications to the nucleation process due to spatial

inhomogeneity are found.

1. Introduction

" "In the evolution of first order phase transitions,
there is a stage called Ostwald Ripening, or aging
[1]. At the onset, homogeneously distributed nuclei
of one phase are surrounded by supersaturated
medium consisting of the other phase. The larger
nuclei grow and deplete the supersaturation of the
surrounding phase, and this leads to the decay of
the smaller nuclei. The demise of the smaller nuclei
replenishes the supersaturation of the surrounding
phase and supports the continued growth of the
large nuclei. This phenomenology is described
quantitatively in an analysis of I. Lifshitz and V.
Slyozov [2]. They find that in a medium with a
spatially uniform distribution of nuclei which oc-
cupy only a small fraction of the total volume, the
supersaturation and density of nuclei decrease with
ume like ¢7'/% and ¢! respectively, while the
mean nuclear radius increases like r*/3.

In practice, this description must be modified
after sufficiently large times, due to processes such
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as coagulation or gravitational separation that
might become important for large nuclei.

The subject of this analysis is an examination of
Ostwald ripening in a binary mixture, where the
transition from a homogeneous mixture to a spa-
tially inhomogeneous, partially separated mixture
is modeled by the Cahn-Hilliard theory [3]. We
present new exact solutions of this theory which
clearly correspond to the asymptotic results of [2].

Next, we consider the effects of spatial nonuni-
formity in the distribution of nuclei. This problem
has been studied in the context of chemical pre-
cipitation [4] by use of linearized analysis. We
present exact solutions of the full nonlinear theory
which describe the development of localized spa-
tial inhomogeneities. In the region of the inhomo-
geneity, the volume fraction occupied by nuclei
grows like 1273, instead of asymptoting (0 a con-
stant value as in the spatially homogeneous case.

2. Phase separation in binary mixture

We review the basics of Cahn—Hilliard theory
[3] which describes phase separation in a binary
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mixture. The free energy ¢ per unit volume is a
functional of ¢, the fractional concentration of one
component. For isotropic material with small vari-
ations and gradients in c,

olcl] =]'(£)+%[VC{1A >0, (241)

where f(c) is the free energy per unit volume in a
medium with uniform concentration ¢ and
(1/2)|Vc]? is the leading order effect of nonuni-
formities with small variations and gradients.

The dynamical evolution of small nonuniformi-
ties in ¢ may be described as follows: The chemi-
cal potential p per unit volume is

%:f’((-)—xdc. (22)

The concentration c is a locally conserved quantity
whose flux is —Ap. Hence, c satisfies the transport
equation

e, —A(f'(c)—rAc)=0. (2.3)

We discuss the stability of uniform states ¢ = ¢,.
From a linearized analysis of (2.3) we find that a
harmonic perturbation with wavenumber k has
growth rate

o= —f"(co)k>— kk*. (2.4)

If f(cg)> 0, then the medium is stable. If /”(c;)
<0, then there is instability for [k|><kZ=
—f"(ey)/k (fig. 1a).

Typically, we find that a homogeneous binary
mixture is stable at high temperatures, but unsta-
ble to phase separation at low temperatures. There
is a critical temperature such that T< T, — f”(c)
< 0 for some range of c. Fig. 1b shows the typical
form of the free energy f(c) in this case. The
darkened segment on the c-axis represents the
range of unstable ¢ values.

We review some basic results about steady equi-
libria. For an equilibrium state, the chemical
potential p assumes a steady, uniform value
throughout the entire medium. From (2.2). we see

«

{ca<o

that the steady equilibria satisfy

F(¢c)—rdc=p.

8
i

States with uniform concentration ¢ satisfy f'(c)
= p. To determine the concentrations correspond-
ing to a given value of chemical potential p, we
simply determine the points on the graph of y =
f(c) in fig. 1b where the slope is p. Given p with
min f’(c) < p < max f(c), we see from fig. 1b that
there are in general two concentrations ¢ = ¢=(p).
¢~ <c~, which correspond to uniform stable equi-
libria satisfying f"(¢)=p, f”(c)>0.

3. The critical nucleus

A uniform state ¢ = ¢, with ¢, below the unsta-
ble band may be metastable in the sense that finite
amplitude perturbation applied in a localized re-
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gion of space for a limited time may be sufficient
to create a growing nucleus whose interior has a
uniform value ¢ = cj above the unstable band. If
the initial perturbation is too small, the medium
will relax back to the uniform value c.

There is a steady, nonuniform solution of the
equilibrium equation (2.5) which represents the
critical nucleus. Physically, the critical nucleus rep-
resents a perturbation which is just large enough
to escape dissolution, but not large enough to
grow. The size of the critical nucleus is a function
of the chemical potential p in the medium sur-
rounding the nucleus.

‘We may think of the planar profile C(x)7 corre-
sponding to the chemical potential ., as a critical
nucleus of infinite radius. Accordingly, we expect
that the critical nucleus corresponding to a chemi-
cal potential p with 0 <p—p_ < p_ will have a
radius ry > 1. In this limit, we expect that there is
a transition zone about the spherical surface of
radius r, where the concentration ¢ adjusts from
values close to ¢™(p) in the interior of the nucleus
to the value ¢ = ¢~ (p) achieved at spatial infinity
(fig. 2).

The radius r; is estimated in [3] in the limit
0<p—p,<<p, by a variational argument. The
solutions of the equilibrium equation (2.5) which
satisfy ¢ = ¢~ () as |x| — oo are stationary points
of the free energy

e

szii(»g(c)ﬁ'%]vc[:)d. (3.1)
Here.
gle)=7(e)=f(c(p) —ple—c(m). (32)

In the interior of the nucleus, we expect that the
concentration c¢(x) is near the uniform value
¢ (). so that g(c)=g(c™(p)) in r <r,. For 0 <
B pg << g, we have g(c™(n))=(C— C)(p—

C(x) is the solution of f(C)—&kC  =p,. C(zw)=C",
with max C, occurring at x=0, that is it is the phase-plane
trajectory joining the two saddle points of the system. For
usual 7(C) it can be found in terms of elliptic functions.

fus
__________ g
I
v NS 5 oo = <G
=
LS
Fig. 2

It,)- Hence the contribution to G from the nucleus
interior is approximately (47/3)rg(C*— C™)(—
Em)- In (3:2), the term (x/2)| Ve|? is significant
=r,. Hence,

only in the transition zone about |x

we regard the integral (x/2)[%.|vc|*dx®
surface energy. Using the fact that the concentra-
tion profile is well approximated by the hetero-
clinic solution of the corresponding 1-D problem.
C(x), centered at 7 —r, [5], in the vicinity of the
transition zone where r —ry= (1), we find that
the surface energy term is approximately

as a

2akrd[*,C2dx. Summing the interior and surface
contributions, we obtain for G the approximate
value

w
i

G is stationary with respect to variations in 7, if

H=

H K 2 am -
B Ba=T ﬁfﬁxcﬁi‘- (3.4)

(3.4) is the relation between the size r; of the
critical nucleus and the chemical potential g in
the Jimit p—p — 07, This result is analogous to
the Gibbs—Thomson formula for the critical radius
of a liquid nucleus in vapor. H is analogous to
surface tension, and p—p, is analogous to the
supersaturation.
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4. The time evolution of nuclei

We analyze the growth and decay of nuclei in a
medium where the chemical potential p is just
above the critical value p_. We view the physical
process as follows: Outside the nucleus, where ¢ is
close to ¢ () and the gradients of ¢ afe fnuch
smaller than in the transition layer, the transport
process of ¢, represented by the Cahn-Hilliard
equation (2.3), may be approximated by simple
diffusion,

’=D(c’ +gc’). in r>r(r), (4.1)
T G
where ¢’=c—c¢7(p), D=/"(C"), and r(r) is the
radius of the nucleus at time 7. If the nucleus is
growing, it feeds on the surplus ¢’ in the exterior.
If it is decaying, it augments the surplus. In other
words, the surface of the nucleus acts as sink.or
source. The flux balance through the surface leads
to the boundary condition

r=r(1),

Dc,=06Ci(t), on sC=Cr-C".

(42)

As a result of the diffusion process represented by
(4.1)-(4.2), the chemical potential that the nucleus
sees at its surface is not p, but rather the value
consistent with the local value of ¢ at the surface.
which is approximately p'=De’+p~—p . If we
assume that the nucleus is in a quasi-static equi-
librum with this value, then (3.4) applies with
w=y’, and we obtain a second boundary condi-
tion

—du, on

r=r(1),

Sp=p—pg.

(4.3)
Egs. (4.1)-(4.3), together with the boundary condi-
tion ¢’ — 0 as r — oo, constitute a Stefan problem

for determining r(r) and ¢’(r.7) in r>r(z). The
solution of (4.1) that goes to 0 as |x|— o0 is

(44

Substituting into the boundary conditions
(4.2)-(4.3) and eliminating A4, we obtain an equa-
tion for the size of the nucleus, r=r(z):

. H
= el r(ﬁp_T)'

This result for the time evolution of the nuclear
radius in a binary medium has appeared in other
contexts, most notably in describing the precipita-
tion of crystals from ionic solutions (2, 4]. From
(4.5), we read off the following results: If r(z) is
initially less than the critical size ry= H /3y, then
r(t) collapses to zero in finite time. If r(7) is
initially greater than ry, then r(r) grows like 1'/2
ast— o0,

(45)

5. Evolving distributions of nuclei

We consider a medium with a distribution of
nuclei in which the volume fraction of nuclei is
assumed to be small. The consequence of this
assumption is that the diffusion zones around each
nucleus have small radius compared with the inter-
nuclear distance. Any given nucleus sees a uniform
value of supersaturation du around itself and grows
in size according to the rate (4.5). The background
supersaturation, on the other hand, feels the
growth and decay of nuclei as sinks and sources.
The macroscopic physics of this process may
be described quantitatively as follows: Let
f(r, x,1)drdx® be the number of nuclei in volume
dx® whose radii are between r and r+dr.

f(r,x,1) and the background concentration sur-
plus C(x,1)=

c(x,1)— C~ satisfy equations

(5.1) expresses the transport of nuclei in r space
due to this growth or decay. (5.2) is a mass balance
equation: Whatever material is gained by the nuclei
must be taken from the concentration surplus field
C. This is the meaning of the sink term on the
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r.h.s. The constants 6C, D, H in egs. (5.1)-(5.2)
may be absorbed by a rescaling of the variables.
The units of the variables we adopt are given in
the table below:

Variable r x t c 3

Unit

12 3
R ( DH ) 8CR H H

SCR® H DR

Here, R may be thought of as a typical nuclear
size in the initial distribution. In the units adopted
above, (5.1)-(5.2) read

e (Hfe-3) o 69
(Hg fﬂ",sfdr) =de (55)

The systems (5.4)-(5.5) has been studied in vari-
ous contexts. I. Lifshitz and V. Slyozov [2] consid-
ered the spatially uniform case. They show that a
_distribution f evolving according to (5.4)-(5.5)
takes on a limiting form as ¢ — co, in which the
mean radius of the nuclei grows like #'/* and the
number of particles decays like /~'. The con-
centration surplus C decays like ~!/>. Later work
has shown that spatially uniform solutions are
unstable to spatial fluctuations. The instability ap-
pears to be the origin of the spatial inhomogene-
ities observed in precipitate patterns, because the
initial distribution of nuclei is experimentally ob-
served to be uniform [4].

We begin our analysis of (5.4)-(5.5) with a
re-examination of spatially homogeneous distribu-
tions. We obtain exact solutions of the spatially
homogeneous problem which clearly correspond to
asymptotic solutions obtained by L. Lifshitz and V.
Slyozov for large time.

In the spatially homogeneous case, Ac=0 and
(5.4) can be integrated once with respect to time,
and we obtain an integral form of mass balance
equation,

dm e g .
c+= fo rifdr=C. (5.6)

Here, ¢, is a constant independent of time. We
may regard ¢, as the total amount of material per
unit volume in excess of C~ contained either in the
nuclei or the surrounding medium. (5.4) and (5.6)
are the governing equations of f(r, ) and c().

We seek solutions of (5.4) and (5.6) as follows:
(5-4) has similarity solutions of the form

=t (s,y), s=n"13, (5.7)
ey 1A, (5.8)

where y and n are constants. Substitution of (5.7)
and (5.8) into (5.4) gives

SPE{ = Q,F,, (59)

where

It is necessary to determine which of the similar-
ity solutions (5.7) are relevant to construction of
physical distribution functions. Certain required
properties may be anticipated from the character-
istics of the transport equation (5.4). With ¢ given
by (5.8), the ODE of the characteristics reads

dr_1 71/171)
d[_r(w r

or

I I T 5
d[(3(r ),) yrt 1. (5.11)
Introducing s = rr~'/* as the dependent variable,
(5.11) becomes

, »
L S—) L (5.12)

td'=7§(1—73+3 =7?PA

where P is the cubic in s given by (5.10). If

(5.13)

then P=1-7ys+s°/3 has two positive zeros
s7,sT with s<vy,, <s™. In this case, the char-
acteristics in (s, 1) space have the aspect depicted
in fig. 3a. The corresponding structure of the char-
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acteristics in (r, r) space is depicted in fig. 3b. The
characteristics in the shaded region of fig. 3b where
0<7<s"1'/? correspond well with the known
phenomenology of aging nuclei. Each characteris-
tic in the shaded region eventually collides with
the =0 axis. On the other hand, to the right of
the curve r=s5"7'/* in fig. 3b, no characteristic
terminates on the axis =0, so nuclei correspond-
ing to these characteristics are never destroyed.
Along these characteristics, r=1° as 1— o0.
Hence. the total amount of material in nuclei to
the right of r=s71/* would be proportional to ¢
if such nuclei existed. Mass conservation would
eventually be violated, hence there can’t be nuclei
in r>s"1'/3, and we must therefore seek solutions
of (3.9) for F,with F,=0ins>s".

We turn to the solution of F, in 0 <5 <s~. The
cubic 0, =2 —ys — (n/3)s> in (5.10) is positive at
5=0 and has only one positive root s,. In order
for the solution for F,to be free of a nonintegrable
singularity at s=s", we must have s;<s". We
show that there is a range of y with y > (3/2)*°
for which s, <s~if n>1. If y=(3/2)*?, then
s7=(3/2)"/* is a double root of P(s). The dashed

(a)

(b

curve in fig. 4a depicts P(s) for y=(3/2)*. The
value of Q, at s=(3/2)"% is 2—(3/2)(1 + n/3),
which is negative if # > 1. In this case 5, < (3/2)'/?
and Q, has the aspect depicted by the blackened
curve. Hence, we have shown that s™— s, > 0 will
remain true for y in some range of values above
(3/2)%73. The solid curve just below the dashed
curve depicts P(s) for a y in this range. In the
case s~ >s;, €q. (5.9) may be integrated to pro-
duce a solution for F,(s) which has the qualitative
behavior shown in fig. 4b.

Since the transport equation (5.4) for f(r.7) is
linear, we may construct solutions for f by super-
position of the similarity solutions (5.7) whose F,
functions meet the criteria discussed above. The
superposition must satisfy the mass balance equa-
tion (5.6). In the similarity variables, (5.6) reads

! {erzrl'd_r:C.

-
30,

(5.14)

Assuming that the F, are normalized according to

47 s 4
3 j: SF(s,y)ds=1,

(5.15)
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we see immediately from (5.14) that the superposi-
tion must be

f=co(T R (s 1)~ 1 E(s.7)).  (5.16)

Since 4.5 > 1, we know from the previous discus-
sion that there is a range of y values_with y >
(3/2)*7 for which acceptable F,, F; functions are
defined.

We note a basic limitation of this solution (5.16):
Since Fj, F5 > 0, we see that (5.16) gives negative [
values for sufficiently small times. Hence, we ex-
pect that (5.16) really represents a limiting form of
physically realizable solutions in the limit 7 — co.
For 1 — 0, (5.6) reduces to

f=cot PE(rmV3).

From this form of the asymptotic solution, the
results of I. Lifshitz and V. Slyozov for the density
of nuclei and mean nucleus radius follow im-
mediately.

6. Spatially inhomogeneous aging processes

The method employed in section 5 to construct
spatially independent solutions for f and ¢ can be
extended to the spatially dependent case. In equa-
tions (5.4), (5.5) we introduce the variable

s=p3 (6.1)
and write f and ¢ in the forms
f=1(s.x,1), c=t"y(x,1). (6.2)

The equations for f and y as functions of s, x, ¢
are

(o550, ) 1+ 4 (5= 5]

ﬁ:[r”"*y + 43

-/(;lssfdx) =y (64

We obtain solutions of (6.3), (6.4) in the special

case when v is independent of 7. That is,
y=7(x). (6.5)

In this case, for any n > 1, there is a range of y
values with v > (3/2)*> for which

f,=17"E(5.7) (6.6)

is a solution of (6.3), where the F, functions are
identical to those employed in the spatially homo-
geneous analysis of section 5. More general solu-
tions for f may be formed by superpositions of the
f,- These superpositions must satisfy the mass
balance equation (6.4). From the form of (6.4), we
see that it is sufficient to take a superposition of f,,
fs and f;. The most general superposition of
fa, fa» fs which satisfies the mass balance equation
(6.4) is

=37 E (s, y) +o(x) i F(s, )

¢t 2 F %), (6.7)

Here, v(x) is an arbitrary function of x. As in the

case of the spatially independent solution (5.16),

(6.7) yields solutions of the physical problem only

during intervals of time for which f is positive.
The volume fraction occupied by nuclei is

V=

47 1 AT 43 (® 3
3 for{fdr:7ﬂ/ [D s3fds. (6.8)

Substitating into (6.8) the solution (6.7) for f
and recalling the normalization condition
(4m/3) [§°s*F,ds = 1, we obtain for ¥ the result

V=3 Ay +o(x) -y (6.9)

We consider the instructive special case of an
isolated inhomogeneity. We take

v(x)=1v,>0, (6.10)
Ay=h(r), r=ix|, (6.11)

where /(r) is nonnegative and [§°r?h(r)dr < oo.
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The solution of (6.11) is

y:yo+f0'lfo"r"zh(r")dr"dr', (6.12)

7
where y, = v(0). For y given by (6.12), \\';: deduce

that y,> 0 and lim, _, .y =7,, is finite alld greater
than y,. If we assume that vy, v,, are both in the

ho

(=)

(&) N

range of y values for which the functions
E,(s,7), Fy(s,7), F5(s,v) exist, then (6.7) provide
a positive solution for f when r is sufficiently
large. The values of ¢ and ¥V corresponding to this
solution are given by

e=y(r),

V=3:2h(r) +vy—v(r) 15,

(6.13)
(6.14)

where y(r) is given by (6.12). Fig. 5 depicts
snapshots of ¢ and ¥ at successive instants in time
in a typical case.

We briefly discuss the physics contained in the
results (6.13), (6.14). In the case of no spatial
inhomogeneity with /=0, the volume fraction ¥
occupied by nuclei tends to the constant v,. If
there is spatial inhomogeneity and # = 0, then the
volume fraction occupied by nuclei grows like 7>/
in those regions where /(r)# 0. The reason for
this growth in the spatially inhomogeneous case is
the following: The voracious nuclei in the region
of the inhomogeneity can feed upon the more
abundant supersaturation in the distant surround-
ings, which are populated by smaller and less
voracious nuclei.
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