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An asymptotic analysis is carried out to calculate the effects of a small thermal
spread in the injection energy of an electron beam on its space charge limit. It
is found that the space charge limit is lowered proportionally to the beam tem-
perature 7' near 7' = 0.

1. Introduction

Recent applications of intense charged particle beams in such areas as inertial
confinement fusion and microwave generation (Coutsias & Sullivan 1983, and
references therein) has necessitated a deepening of our understanding of the
basic physics of space charge limited flows. An excellent review of our present
state of knowledge can be found in Miller (1982).

In particular, many authors have carried out calculations of the space charge
limit (SCL) of electron and ion beams (Voronin, Zozulya & Lebedev 1972; Read
& Nation 1975; Genoni & Proctor 1980). These are concerned mostly with mono-
energetic beams in various geometries. Although the importance of thermal
effects is recognized, no analytical estimates of the effect of thermal spread on
the beam kinetic energy at injection have appeared.

Here we present an asymptotic method to estimate the modification of the
SCL due to a small thermal spread. For simplicity we limit our discussion to
one-dimensional, classical motion. However, the method can be applied to any
of the other situations for which SCL estimates exist and produce appropriate
corrections.

2. Effect of temperature on the space charge limit

An adequate discussion of the properties of a non-relativistic electron beam in
one dimension can be found in Coutsias & Sullivan (1983). Here we shall treat
the beam as a one-dimensional electron gas flowing between two conducting
grid planes, at fixed potential. For the density range we consider (~ 1013 cm-3)
the usual collisionless approximation is valid, and thus the electron distribution
function satisfies the Vlasov equation

O f+ud f+(e/m)Ee,f=0 (1)
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where ¢, z, u are the time, position and velocity variables, respectively, and E
s the self-consistent electric field.
The electron charge density is given by

= f fla,u,t)du, 2)
and the electric field is found from :
g = (/&) n, (3)
while the poten(:lal qﬁ(l t) is given by
09 =- (4)
The boundary conditions are given for the potential
8(0,0) =y >0, ¢(L1)=0, (®)

and the distribution function
f(0,u,t) specified for = >0 (incoming flow at 2 = 0)
fll,u,t)=0 for % <0 (noincoming flow atz = I)}
This specification is valid also in the presence of multiple streams.

We shall model the effect of finite source temperature by specifying the in-
coming distribution f(0,%,t), > 0 as

f0,u,t) =n, (%)%exp (m(z?z‘};TV)z)’ (7)

where 7', assumed to be small, plays the role of an effective beam temperature.

Forsmall enough 7', we shall assume that we have a regime of steady behaviour,
in analogy to the cold beam case. For steady states, particle energy is conserved
and the solution to (1) is of the form (Davidson 1974)

3 + =
e 1)7710(2 IT) - ( m[V — (2 (%2/:} @) ¢o))%]2) ®

Then, combining (2), (3), (4) and (8) we find that the potential satisfies the
equation

P (JZT)% F esp (_m[r— (z:2+(22€;) (p’(x)—m))’f]ﬁ) G0

)

where u,,, the velocity cut-off, is equal to
@) = £ [2¢/m) (B — P@)IE. (10)
Here ¢, is the potential minimum, the (+ ) sign applies to the right and the (—)
to the left of the position = £ of the potential minimum as shown in Appendix A.

We define ) 8
e[ e‘p( mU—(u-+<2e_2/£i})(¢(r)—pn>)—]-)t,u. -

u

m

So (9) can be written as

3
) rg:m = 0. {12)
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By introducing the variable

5= (2 (2e/m) ($(x) — St — (13)
the integral I(¢; T) in (12) can be rewritten as
X L ms |
1g:m) = [ exp () dur 22 [ oxp (-2 ). (10

The first of the integrals in (14) represents the transmitted flow, while the second
is due to particles without sufficient energy to cross the potential minimum and
which are therefore reflected and return to the anode. Equation (12) with the
integral term given by (14) is very hard to solve for a finite temperature 7', but
for small 7' we can approximate the integrals in (14) by Laplace’s method. As
is well known (Erdelyi 1956), in approximating integrals of this type with a
strong maximum at an interior point, the dominant contribution comes from
the neighbourhood of this point. Thus, in (14) we can approximate I(¢; T') by

o ms? ms2,
I(¢,T)_f7mexp( 2AT)d11TO(e2.p( 7I:T)\) (14a)
where —s,, = V—((2¢/m) (¢,,— ¢))}. Then provided V is large enough so that
the mean energy of the beam is never of order O(E7), the correction term goes to
zero faster than any power of 7' as 7' 0, and therefore is negligible to the order
that we carry the calculations. Nevertheless, it gives us an estimate of the domain
of validity of the subsequent discussion, for which we need
exp (—msy/2kT) < kT. (140)
Therefore we write

v [E w (s+ V) exp (—ms?/2kT) -
rigier= [~ exe (~Gig) o= | e e - 09
and we get for the potential the approximate equation

ng( m \¥[® (s+ V) exp (—ms?/2kT) _
R I = e UL

This can be integrated once to give
102+J(3:T) = J($: T) (7
where

) =2 (2 7 )
X ((s+ V- (%) (¢(n:)7¢0))%exp(»m-s2/2k1’)ds. (18)

Integrating once more we find

L T 9
L,(~f<¢m;T>—J(¢;T>>%:**S“j""*j’ ) ()

Imposing the boundary conditions at
equations determining £ and ¢,,:

0=E—8(¢: 90 T), 1=E+8(¢,,0; 7). (20)

r=£42-2

2 =0 and = =1 we are led to the two
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Eliminating £ we find
U= S(ms $0; T) +8(, 0:T) (21)

which must be analysed in order to determine, among other things, the desired
steady state for the potential ¢ (and hence the distribution function f) and the
SCL for small temperature 7' > 0.

To get an approximate expression for ¢,, as T — 0 we note that J(¢; ') can
be approximated by Laplace’s method if we expand the non-exponential part
of the integrand in a Taylor series about s = 0 and integrate term by term. We
find, after some algebra that

o 7)Y (OG0
(~) s = vy (PO oy o

where ¢ = (2k7'/m) < 1 and R(¢) = (V2— (2¢/m) (¢(x) — do))}. Using (22) we
now approximate S:

. Ly _ o i dg o (_&e H
Som$:7) =2 [ o s = ()

s d ¢ [l @)R,,, B0 B .\
¢,1(R—R,,,)%(“i( TRE ) ) tO) 29

where we set = R(9), R,, = R(¢,,), © = (¢/m) (3(x) ~ p0), P, = (e/m) ($1,— o)
and since d¢) = — (m/e) RdR,

2€y7m %

1 i
S 8370 = (%) (R~ R R+ 20 +(52)

2eny V.
3 I]Z 172
o R (3T T
X((P Bn) (m i 81-?1{,3,,)

m

;*)¢O(e ). (24)

*m

sect

pE
Ui

This can be substituted in (21) to find ¢,, which in turn will allow us to determine
£, the position of the potential minimum from (20) and, finally, we can combine
all this information in (19) to get the desired relation between = and ¢.

For simplicity we demonstrate this for the unbiased case, ¢, = 0. Letting

RO)=R@) =V, s=R,/V, e=¢/T",
and introducing
a = 9enyl?/8e,m V2,
(21) becomes

~—st((1aogyraa(3 L1 _3secls™ o, g5
b=l s)~((1.2s).ge(4s e 85 (1 s)i)‘O(C ))’ @3)

We note that to leading order (¢ = 0), (24) reduces to the usual expression for

cold beams. By including the O(#) corrections we can find the first-order correc-

tion to the SCL. This is the value of « for which (24) has a double root. We find
a=ay+éay+..., §=35+8s+...,

and substitution yields
ay =2,
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(A 3) can have either sign. Assuming that the potential achieves a unique mini-
mum p = p,, at some location = = £, we find that particles that arrive at £ with
zero velocity must start at = = 0 with velocity %,,(0) such that

e e €
3 (0)+—po = hu(@) + - p(2) = — -

m
At each point 2 < £ particles with velocities less than w,, will be reflected before
reaching = = £ while faster particles will be transmitted across the potential
barrier. To the leff of the potential minimum therefore, we shall have particles
with velocities larger than ((2¢/m) (p,,—p(x)))} composing the flow that will be
transmitted, and particles with velocities in the range

[u] < ((2e/m) (o, —pl))

composing the counterstreaming flow (figure 1). To the right of the potential
minimum we have only particles with velocities larger than u,,, so that the
potential minimum has filtered out of the flow particles whose energies were too
small to traverse it.
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