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Turning and turning in the widening gyre
The falcon cannot hear the falconer;

Things fall apart; the center cannot hold...

W.B. Years

The partial sums of the trigonometrical series S =T%

complex plane € composed of Cornu-like spira
where e=(2-p)/(p-1).1f p

e
and p> 1 the number
/a]— [ + (1 - 1)/al, wh
Thus .#; increases (decreases) selhntil p> 2 (1 <p<2). We thus ha

V. at Buffalo, Buffalo, NY 14214, USA

for a small mod2 lead to distributions of points in the
7 of points in the /th spiral is 0(/) + 1,
< [ x]. denotes the greatest integer in x.
two types of disorderly behavior for p> 1, p=2

(and p not an integer if a is rational). For p > 2 the number of points per spiral decreases to 1 and the points are distributed
in a seemingly random fashion: while for 1 <p <2 the number of points per spiral increases to + o6 with /— o0, and the
orientation of the spirals changes in seemingly random fashion with /. There s order if p is an integer: if a is rational the
pattern is 2 pseudo-periodic arrangement of spirals which, depending on a. also may be composed of spirals; if a is a
quadratic irrational and p=2 (ie. a can be represented by a periodic continued fraction), then the pattern is renormalizable.
In the second case the numbers s, of points between the mid-points (points of inflection) of successive spirals form a Beatty
sequence [16]. The proof of renormalizability depends upon Hardy and Littlewood’s approximate functional equation for the

theta function [6]. Similar behavior is exhibited by n-dimensional generalizations of the sum S above.

1. Introduction

‘We discuss some phenomena exhibited by sums

3 exp [im(an” + fn)] (1.1)
0

of unit vectors in € as N — cc. The phenomena
exhibited by (1) for various choices of a. 8 and p
have implications for numerical computations and
disorder in dynamical systems and are beautiful as
well. The sums (1) arise in several contexts, for

example, as Riemann sums approximating oscilla-
tory integrals typified by

I(z)= j:cxp(irrs"/Z)dx. (1.2)

If p=2 (B=0). (2) is the Fresnel integral. and
I(o0)=¢""/*. The graph in € of (2) is then a
Cornu spiral (C-spiral) [8] (fig. 1a). For a discus-
sion of the C-spiral in relation to geometrical
optics, see ref. 5. The approximation of (2) by
Riemann sums is reliable provided the stepsize is
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Fig. 1. (2) A Cornu spiral: £ ex

smaller than the period of the integrand. Since for
p>1 this period decreases as u increases, the
approximation of (2) by Riemann sums of a given
stepsize breaks down for z large. There is a
Zax for which there is optimum agreement be-
tween (2) and its approximating Riemann sum,
and the sum forms a spiral very close to the true
C-spiral which is the graph of (2). But, for z = o
and fixed stepsize the Riemann sums diverge. At
first glance, it is surprising that, depending on the
stepsize, the Riemann sums form new spirals, in-
finitely many spirals of spirals. .. for z = 0.

If p=2 and B=0. the elementary spirals are
all of the same size as the initial spiral, while for
p # 2 their size varies with n, decreasing (increas-

/501): b) a periodic lattice of simple Cornu spirals
one pint is plotted corresponding to the value of each partial sum.

/417). In these figures

ing) for p>2 (1 <p<2). Also, at first sight, on
the screen of a Macintosh computer, these spirals
seem to wander randomly over C. Closer inves-
tigation reveals this “wandering” has structure.
Indeed, the self-similar shapes of the spirals of
spirals, ..., (fig. 2) suggest that the series (1) for
p=2and B =0 might be summable in blocks. For
special values of a we prove this is approximately
so in section 3 below. If we think of the concentra-
tions of points in the dense windings of the ele-
mentary spirals as points, then the infinite sum
collapses to a new one in which the building
blocks are vectors of fixed length joining these
points (the new points were spirals of elementary
points in the original sum). The varying size of
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Fig. 2. Parts of £F exp(iann?), done in 32 bit precision TML Pascal. Shown in (z) are full or parts of Ath level self-similar spirals of
points with a = 13 — Y168 for k=1,2,3; n varies from 1 to 5000. Shown in (¢) is a continuation of ) for # < 12500 showing part of
a 4th level self-similar spiral. Shown in (b) and (d) are anti-self-similar spirals with a =170 — 13 for the same ranges of #. In these
and the remaining figures successive terms in the sequence of partial sums are connected by straight line segments of unit length. (¢)
Part of the lattice formed by replacing a by 4a in figs. (b). (d) with a = —13 +y170.

spirals for p # 2 makes a similar procedure much vals of n in which spirals of spirals are formed;
harder to implement; consequently. results for see fig. 3

p # 2 lack the generality of those for p = 2. Never- Some of the behavior just discussed was first
theless, for rational values of p+#2 and special observed by us in numerical experiments per-

values of a(f8=0). we are able to produce inter- formed on a Macintosh computer to study the real
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Fig. 3. A portion of the graph of { =, } showing spirals of spirals of points, all with 1, = 10° for: a) »

c

97750 to n = 1000350, with

p=15 and a=8(30—y899)/3; b) n=999250 to n=1000800 with p=25 and a=S§(20—y399)/15000; ¢) n=999500 to

7 =1000550 with p=3 and a =24 % 10°(20 — {399).

map

X,y =x,+cos[7(an?+ pn)].

Ypor =V, + sin[z(an? + fn)].

(13)

This map was shown to N.D.K. in 1983 by E.
Bombieri.

Remark. We are indebted to a referee for the
following observation. Since there is no coupling
among the real and imaginary parts of z, =

. the map (3) may be thought of as a penodl—
ca!\} driven, one-dimensional mapping with pol
nomially increasing time: let 8= 0 for simplicity,
let the time be O, and let x,.; = x,+ cos(ar0,).

0,.,= (87 +1)”.

Although the map (3) is, in the sense remarked
one-dimensional, introducing a second dimension
allowed us to use geometric ideas. especially
curvature of the graph or pattern formed. This led
us to concrete predictions, such as a renormaliza-
tion transformation, which would otherwise have
been difficult to discover. A sum of cosines of
slowly varying argument is easier to visualize and
investigate when unfolded as a sum of unit vectors
in C.

Computer graphics played an essential role in
this work, both in verifying (or not) our conjec-
tures and in suggesting usually unexpected new
lines of investigation. The case p =2 is fairly well
understood from the number theorist’s point of
view [1, 6, 10-13, 16-18]; also see [9). If p=2, (1)
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relates to Gauss sums and to properties of Jacobian Our main results use the concept of discrete
theta functions and their multidimensional gener- curvature to establish a renormalization transfor-
alizations [2. 6] near and on the real axis. How- mation, both for p=2 and p # 2. This renormal-
ever, complete, number-theoretic results appear to ization led us to the cases in which we found
be unknown for p # 2. self-similarity in the graph of (1.1). For p =2 and

g9

Fig. 4 The parameters p, a, and N, the number of vectors added mz‘axp(x
‘zn?") are in (a)-(g), respectively: $.2.¢
010,10 X 10%,9.99 X 10

n?) and the parameters p’. o’ of the renormalized
3000, 1.0 x 10° through 1.03 X 10°,





[image: image6.jpg]B =0 we use a delicate result of Hardy and Litt-
lewood, Theorem 2.128 in [6], the approximate
functional equation for the theta function, to prove
that the renormalization is correct up to an error
that is at most a constant multiple of a~'/2% We
thus predict that for a=m—(m*—1)"? (m a
positive integer), p=2 and B =0, the spirals are
arranged in a self-similar sequence of ascending
scales, and we establish relevant scaling laws. The
self-similar pattern is easiest to observe numeri-
cally for p = 2. but for p # 2 we establish generali-
zations as well as some representative graphs; see
figs. 3 and 4. If a=(m>+1)"?>—m, p=2, and
B =0, then (1) also yields spirals of spirals of ...
points, but the spirals at successive levels are
oppositely oriented (a is replaced by —a). Fur-

00 E.A. Coutsias and N.D. Kazarinoff / Cornu-like spirals

ther, the renormalization of (1) for p=2 can be
extended to a multi-dimensional generalization of
(1); see fig. 5. Use of discrete curvature also en-
ables us to define the number of points #(s,) per
spiral. It then follows for p =2 that the sequence
{4,} is a Beatty sequence [1. 13. 16] for each a
that yields a self-similar, or anit-self-similar, pat-
tern; namely, if a=m—(m*—1)"? (or (m*
1)Y/2—m), the sequence of integers {s,} is a
Beatty sequence, of the integers 2m and 2m —1
(or 2m and 2m+1). D.H. Lehmer [10] in 1976
investigated the sums S, in the case where a = 1/N
for various classes of integers N, and he provided
pictures of various C-spirals that result. He was
perhaps the first mathematician to realize that
there is geometric content in the sequences { Sy }.

Fig. 5. (a)-(c) The graph of £§__oT}
larges

1exp(izan’) with a =13 — (168)'/%

>

£

Th2-o0Ln, =0 eXpl
piral in (a) is of order 3. the largest in (b) is of order 4, and the largest in (c) is of order 5

4)!/2: five orders of self-similar spirals. The
(d) The graph of

witha=15—(
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While for p=2 order in the graph of (1) is
global if it is present, for p # 2 order is only local
(in n) and, in some cases intermittent if a is
irrational. A question of interest from the point of
view of dynamical systems, and which still needs
to be pursued, is to define average numbers that
describe the distribution of points in € so as to
characterize the transition from an ordered to a
disordered pattern. M. Mendés-France [1] has
given a good review of what is known in this
direction.

This paper is arranged as follows. In section 2
we discuss the geometric ideas that lead to our
prediction of renormalizability and scaling laws.
In section 3 we discuss (1) for p=2. deriving
self-similarlity results and some results special to
this case, such as the rule generating the number
of points per spiral in the renormalizable case and
some generalizations to multiple sums. In section
4 we present results for p#2. In our closing
section 5 we summarize our results, present a
discussion, and state some conjectures.

2. Discrete spirals

We consider vectorial addition in € of the col-
lection of points {Sy} (N € g) with

(2.1)

.= exp(iman?) is a unit vector in the
complex plane, p>1, and 0 <a <1 (later we

shall generalize 10 0 < [a| mod2 < 1). We let

o, =7an? and A¢,=¢,.,— ¢, (n=0,1

).
(22)

Definitions. (i) The local discrete radius of curva-
mre R, of the pattern generated by the points S,
is the radius of the circle passing through the three
consecutive points S,_;, S,, S,.,: namely,

R, =1|csc(49,/2) | (2.3)

ii) For n=ny,, z, is the mid-vector ( point of
inflection) of the Ith C-spiral of the pattern S, if
(see fig. 6b)

26, <2Um<do,. (2.4)

iii) Similarly, for n=n,,.,, z is the end-vector
(cusp) of the Ith C-spiral and for n=n,,., +1, z,,
is the initial-vector (cusp) of the (I+1)* C-spiral
if
Aé

S
-1

<@+ 1)r<4s, ; (25)

Pnarei?

see fig. 6a.
Combining the inequalities (2.4-5) and using the

binomial theorem, we find that approximately, for
[ large,

" [(I/Pa)n/lrn]_ .6)

where the square brackets denote the greatest in-

Fig. 6. a) An end (beginning) point or cusp: b) a point of inflection.
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teger function. From the behavior of R,
increases we obtain the following theorem:

as n

Theorem. For 0 < & << 1mod 2 the pattern formed
by the points

is a double spiral, resembling a Cornu spiral from
diffraction theory [5. 8]. The number of points 4
in the /th C-spiral is

M E Ty — Ry 2.7)

For [ large and p>1(p#2),

Hi=1+ (p= 1)1 /pa) 0
x{1+0(1/1)). (2.8)

For p=2,

ny=[3+k/(20)]

and (2.9)

1+ (1-1)/a] =1/a

It follows from the above theorem that for
1 <p <2(p > 2) the number of points per C-spiral
decreases (increases) like @(I°), where e=(2—
p)/(p—1). This can be observed in figs. 4 and 7.

For p=2 the relation of ., to the size of a
C-spiral and its application to obtain a renormal-
ization transformation are presented in the next
section.

3. The quadratic case: p =2
For p =2 the sum (2.1) is related to the Jacobian
theta function 5(v, 7) defined as
=

0,(v,7)= Y eireaeine

-

m(r)>0). (3.1)

In our problem, Im 7 =0, so that the infinite series
expression for #; diverges. Our study of the partial
sums (2.1) can be thought of as a study of partial
sums of the series for #; at its natural boundary.
The problem of the behavior of a trigonometric
series at a natural boundary was first posed sys-
tematically by Fatou [4]. Hardy and Littlewood [6]
were able to settle several questions concerning
the behavior of the theta functions on the real
7-axis by deriving approximate functional equa-
tions satisfied by partial sums of their expressions
in series. These approximate functional equations
are extensions of the functional equation, known
as Jacobi’s imaginary transformation [2; pp.
72-80], relating 85(v,7) to 6;(v/7.—1/7) for
Im(7)> 0. For v =0 Jacobi’s transformation be-

Fig. 7. a) The number of points per spiral and their size decreases:
spiral and their size increases: 3™

exp (iamn' ') with a = 750. The last 1200 points are in the larg

) . b) The number of points per
spiral.

xp(iamn®) with a=10
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comes (7/i)1/205(0, 7) = 65(0. —1/7) or

=(i/7)" ): g, (3.2)

Obviously, (3.2) diverges if Im7=0; one has in-
stead the approximate formula [6, Thm. 2.128, p.
209], adapted to our case

n [n7]

— (/)Y e
(1]

Hardy and Littlewood used this remarkable result
to get several estimates on the rate of divergence
of the sum (2.1) for p=2. For example, if 7 is
irrational, then the sum grows with 7 like n'/%
More precise estimates depend upon the growth
rate of the coefficients in the continued fraction
expansion of 7. Hardy and Littlewood also studied
(1) for p=2 in relation to the continued fraction
expansions of 7. Thus it appears strange that,
although they studied these sums for 7 a quad-
ratic irrationality, they missed their renormaliza-
bility. Their results were improved and extended
by van der Corput [17, 18] to a wide range of sums
of the type Yg(n)e?". A short proof of (3.3)
was given by Mordell [12].

Here we give a derivation of the approximate
functional equation based upon the geometric
properties of C-spirals. We begin by summing the
terms in the block %, of terms that correspond to
the /th spiral,

nyay My

(34)

Clearly,

S,

sy e

(Q<m<ny, —

ny). (33)

It is convenient to express each term within the

Ith spiral in terms of the mid-vector z,,_.

[T T

Bi= X o

expima(ny + k). (

(R

.6)

If we define 8, by 8,= (//a) — [+ + (I/a)]. then

)/a] <4. (3.7)

If we recall (2.8) (n,
the exponent in (3.6) as

+(1/a)]), we may write

a(ny+ k) =alk+ (ny—I/a) + 1/a)
=a(k+1+[l/a] = 1/a)’
—1/a+20(k+ny,), (38)

so that, finally,

| myueTny
By=e it /a »

Leny_y=ny

exp [imx(k* 8,)2]A
(3.9)

To estimate the sum in (3.8), we approximate the
integral (1.2) by a Riemann sum

L(z)= f:exp (ims?/2)ds
o

=4[ expims?/2) 8rds
< \l
" =1as Y explin(kas—£)’+0(as)].
. s

(3.10)

where 4s is the stepsize, M
£ < 1As. By letting 445 = o’
M=ny., —ny

z/As, and — $As <
(=1), £=8,/aand
ny—ny_ = ke, we arrive at
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the estimate

mysy =y

Y exp [17u(k~5,)2]

Vo=

—1/2 [(naray—nape? =
=12 [0 oxp (ims?) ds
(L+ny_y—ny)a/?

::exp(im:)dXT‘ 0(1). (3.11)

But the last integral converges to e”™* as a — 0.
Thus, by (3.9) and (3.11), we conclude that

ny
1o

a'/%e=7/%4 N exp(iman?)
n=-1

= g exp (—imn®/a).

n=0

(3.12)

The result of Hardy and Littlewood [6] guarantees
that the error in (3.12) is 0(1).

The block summation in (3.12) embodies the
intuitive idea that the clusters (elementary C-
spirals) of (2.1) may be thought of as “points”™ of
a new sum of vectors joining these “points”. These
vectors have length approximately a~/? (the
“Size” of a C-spiral), and are rotated counter-
clockwise by 7/4 from the mid-vector of their
corresponding C-spiral. The new sum is of the
same type as the original one except that a is
replaced by —1/a; that is, summation by blocks
left the form of the sum invariant but *“renormal-
ised” the parameter a and scaled the new sum by
the factor a™!/%™/%,

It is natural to ask under what conditions will
the renormalized sum exhibit behavior similar to
the original sum (i.e., C-spirals and renormaliza-
bility or self-similarity). Since the arguments we
have presented rely essentially on amod2 being
small, while for amod2 not small there is ap-
parent disorder in the distribution of the S, it
follows that the desired condition for our analysis
of renormalization to hold is

|—1/almod2 < 1. (3.13)

Kazarinoff / Cornu-like spirals

We stress that the condition amod2 be small is
only needed if we insist on the appearance of
C-spirals in the pattern generated by a sequence
{Sy}, since the discussion in section 5 below
shows, when it is applied to the case p =2, that
the condition amod2 small is not necessary for
self-similarity and order.
Returning to the renormalization map

(=) X07

o —1/amod2, (3.14)

we look for conditions on a so that (3.13) is
satisfied. The mapping (3.14) associates to every
number a=a, in (—1.1) the sequence {a;} of
iterates of the map. If « is rational, the sequence
terminates with a 0 or with an infinite sequence of
I’s. If a is irrational, then so are all the «;. Indeed,
if & has the continued fraction expansion

a=ag2ng+(1/2n +(1/2n,+(1/ny+ - -
(219,2n,.2n5,...)
(=1<a<1;eachn,>0), (3.15)

then the ith iterate a; is given by
a,=(-1)"(2n,.2n,.,.2n,.,,...).

Our renormalization argument requires all
«; mod 2 to be sufficiently small. It follows that all
numbers a whose continued fraction expansions
are composed of sufficiently large even integers
will lead to infinitely renormalizable patterns { Sy }
in C. If a is also a quadratic irrational, namely, if
its continued fraction becomes periodic with
period k eventually, then the pattern generated by
{Sy} in C is eventually self-similar of order k.
The special case n=ng=—n;=n,= —ns.....
which implies

a=tn—(n2-1)"2 (3.16)

leads to a pattern that is self-similar; see fig. 2a.
The special case n=ng=n; =n,= ..., which
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+n, (3.17)

leads to a pattern that is anti-self-similar, i.e., a
pattern whose spirals are inverted by a reflection
at each iteration: see fig. 2b.

The similarity that is observed is precisely this:
Let V., be the vector from the origin to the
center of the first spiral of order /+ 1 formed by
the spirals of order /, and let the length of v; be
llv,]l- Then v, , makes an angle of /4 (clockwise)
to v, and a'/?jv,. || =|lv/||. If we rotate the plane
by —=/4 and contract by a’/? with respect to the
origin then the images of the points of inflection
of the spirals of order / forming the first spiral of
order /+1 almost coincide with the points of
inflection of the spirals of order /—1 that form
the first spiral of order /. In the case of anti-self-
similarity v,,, makes an angle of —=/4 with v, _;:
v5,., makes an angle of 7/4 with v, The self-
similarity is never exact (a is irrational), but it
improves as a — 0.

To cover cases of other irrational numbers, we
allow negative integers in their continued fraction
expansions. Since, it can be shown that every
irrational number has a unique continued fraction
expansion of the form (3.15) if we allow negative
integers 7;, the statements made above cover any
irrational in (—1,1). Thus, the numbers

a=(2n,—-2n,2n,—2n,

2n-1/a,

correspond to patterns generated by {Sy} in €
that are self-similar. An example is shown in fig.
2a.

The case of anti-self-similarity (3.16) is the case
of quadratic irrationalities considered by Stolarsky
[16]. As he shows, in this case the differences

se=[(k+1)/a+v] = [k/a+v]
(k=0,

)

form a (renormalizable) Beatty sequence. Namely,
if a=(n*+1)"?—n and y=1, then it can be

shown that {s;} (={¢,}) is composed of the
integers 2n and 2n + 1 and is left invariant by the
nonuniform substitution

2n{(2n—1) —terms},2n+1-2n and
2n{(2n—terms)},2n+1-2n+1

and its inverse. For example, if n =1, then {s,} is
the sequence

35 5555 L L. %6

- 2, 3; 2

"~
>

If a=n—(n*=1)2 and y=1, then {s,} is an

ordering of the integers 2n and 2n—1 that re-
mains invariant under the mapping

2n{(2n—1) —terms},2n—1-2n and

2n{(2n—terms},2n—1-2n-1

and its inverse. For example, if n=2,

L03.04,4,43,4,4,43,4, 4,43, 4,4, 4,43,

- e 4, 4, i, ZEEY

Since the number of points ¢, between the mid-
points of the (/+ 1)st and the /th C-spiral gener-
ated by {Sy} is [ +2(/+1)/Qa)]—[}+
20/Qa)] =% + (I +1)/a] = [} + /a] =5, We see
that self-similar sequences are associated with our
self-similar and anti-self-similar patterns. Finally,
we remark that Beatty sequences were employed
by de Bruijn [1] in his study of Penrose’s five-fold
tilings of the plane [15].

We close this section with a generalization of
some of the previous results to multi-indexed sums.
Jacobi’s #; has been generalized and used to study
the number of ways that an even integer can be
represented as a sum of squares [2, chap. XI]. This
enables us to generalize (1.1) and, heuristically, its
renormalization for p = 2. Let Q(x
O(xy,.... x,)=LF _ja,x,x; be a positive-
definite quadratic form associated with the sym-
metric, positive-definite, real matrix (a; ,) with
determinant D. Let (a} ;) be the inverse of the
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matrix (a, ;). and let Q’(x) be the quadratic form
associated with (aj_;). Define

6(=.0)= X

Myt =1

exp (i77Q(ny....n,,))
(Im(7)>0).

Then 6(7.Q)=[6:(0.7)]", and 6(—1
(+/i)"/2D~1/24(z, Q). For
(m*—1)"? and (a, ;) the identity matrix we ob-
tain the formal identity #(—1/a. Q)=
(a/i)™/?0(a, Q). This identity might possibly be
justified as an approximation for partial sums as
was done above in the case of (2.1). Iterations of
the map z,., =z, + exp(izan®). where now n is
a multi-index with components n..... n,, and
n+1 means add 1 to some component of n, yield
graphs exhibiting selfsimilarity or anti-self-similar-
ity for a a quadradic irrationality; see fig. 5.

T=a

4. Thecase p>1,p+2

‘We now give a derivation, in close analogy to
that given above for p =z, of a functional equa-
tion for sums of the form

Seg— X

asnsb

exp(iman?) (p#2.p>1). (41)

Our result (4.6-7) below in which p—p'=p/
(p—1) agrees with the approximate functional
equation given by van der Corput [18] for general
sums of the form ¥, _,_,g(n)e*"/ (when it is
specialized to the sums (4.1) we consider). Since
van der Corput’s proof is long, intricate and ex-
tremely difficult to motivate, we believe that our
simple argument demonstrates the power of geo-
metric thinking in this context. We also apply the
method of stationary phase to reduce our func-
tional equation, if the range of n in (4.1) is further
limited, to the case p— 2 so that we obtain C-
spirals of C-spirals of points for these sums. The
self-similarity obtained is only approximate, and
we were able to find it only up through level 2: the

C-spirals of C-spirals of points do not form C-
spirals.

Motivated by the geometry seen on the Macin-
tosh screen we again separate the sum (4.1) into
blocks %, corresponding to individual C-spirals,

T ]

#- %

Tty yny

exp [ima(ny,+k)p]. 42)

Since, by (2.6). if / is large.

= [(/pa) V).

Then, assuming for the moment that [n,,—
(21/pa)/*=V| <1, we have

a(ny+ k)7
=af@l/pa) /7"
+(k+ ny— U/pa) /7))
= a(2l/pa)”’* "+ ap(21/( pa))
X[+ ny = (2/pa) /Y]

+lap(p=1)Q2l/pa) " " Nk —5)’
Fo (43)

?

where we keep only the terms in the binomial
expansion (4.3) involving the highest powers of
the (large) number

L=(l/pa)/* ™ (4.4)

and in which
8=L-ny (43)
with [§,] < 1. Let

(p-1)

ap)” (4.6)

‘We obtain from (4.3), after performing some alge-
braic manipulation, the approximation

a(ny+ k) =y(=2[(p-1)/pli7/2~D
+(p—1)1#= /=D (k — 6,):
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Thus,

2= exp{ —2ail(p—1)/p]v}

Mape1—nzoy

X %

iy g =ny

X1e=2/-0(k—5,)7]. (47

expliz(p—1)(1/7)

Using (3.12) to approximate the sum in (4.7), we
obtain the approximate functional equation

LEFRS) A

Y expliman®l= ¥ 4. (4.8)
L+ny, I=ly
where

v/(p- 1)][(3*/’)/117*1)}1/2
Xl exp{ —ima’I?"}, (4.9)
a’==2[(p=1)/plv. p'=p/(p=1). (410)

Note that one must take care and understand that
(4.8) holds only for large /; < ;. We also observe
that our block summation process has led to a new
sum, the right-hand side of (4.8), in which a and p
have been replaced by a’ and p’, respectively,
while a change of phase by 7/4 and a scale factor
r; have been introduced, where

n={lv/(p=D)]ie-Pre-v}'7, (4.11)

The search for approximately self-similar patterns
is complicated in this case. Since a’ is not neces-
sarily a small number, the renormalized sum will
exhibit regular behavior if p’ is an integer and a’
is rational. In this case the graph of the right-hand
side of (4.8) is a portion of a pseudo-periodic
graph of C-spirals. The graphs produced by (4.1)
will have spirals that grow in size, according to
(4.11), if 1 <p <2 and which decrease in size for
p=2. A series of patterns produced in this case
for rational p’s yielding p’=3.4,...,8,y=1, and
special a’s for which a’ is rational are shown in
fig. 4.

To find selfsimilar behavior in sums of the form
(4.1) it turns out to make sense to look for self-
similar patterns locally in n, that is, for n in the
neighborhood of some fixed value .. We do this
by utilizing some properties of Diophantine ap-
proximations and applying the method of sta-
tionary phase. Let n. be a large integer and
consider a sum

n+b

S= Y exp(iman?)

ne—a
nth
=exp (ivan?) Y, exp{ma[pnf"k

n—a

+ip(p—1)nz %]} (412)

In (4.12) the first neglected term in the exponent is
of order k*nZ~3. Now let

apn? ' =2|tapnz | +r,

where ||-|| denotes the nearest integer function.
Then, after we complete the square in the expo-
nent of the terms in the sum (4.12) and neglect
even multiples of =, it becomes

S=exp(im[anz—8])
n.+b

x ¥ exp{ir[(p—1)/n.]

2

x[Lapnz=*](k+8)’}. (4.13)
where
8'=r/(2ap(p—1)n2?).
(4.14)

s=r/(ap(p—1)nz=3).
The sum in (4.13) will behave like a quadratic sum
n+b

Y exp {ima’k?}.

(4.15)

provided 8 can be made sufficiently small. This
will be the case provided n?~" is sufficiently close
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to the denominator of a convergent to tap in its
continued fraction expansion. For, then, by the
best approximation property, one can always find
a fixed constant ¢ such that

tap—m/ni7 <c/nf 7t (4.16)

which implies that r=c/n?~". This in turn im-
plies that

d=c/(Jap(p=1)n2™).

Since in (4.17), ap. although it might be small. is
fixed, and c¢ is a fixed constant (like . if we use
Hurwitz's theorem [7]), 8 can be made arbitrarily
small by choosing 7, large enough provided p > 3.
However, in terms of observing patterns arising
from (4.14) this formula is not useful for p <2
except for special values of a. If a=m—
(m?>—1)/2 (m a positive integer) is small, then
—1/a is also small and equal to amod?2 so that &
is small. For, if we choose a = K[m — (m*—1)!/?]
and choose K so that the coefficient of (k + 8)? is
exactly iw[m— (m*—1)"/?], then (4.12) should
produce some level of self-similarity for a and b
small enough, provided the neglected terms in
(4.12) are small as well. In fig. 3 we show three
second order spirals for p’s # 2, produced by using
the a’s determined from (4.14) as described in this
section.

The estimate (4.17) and the formula (4.14) also
have an interesting implication in the case p =2:
(4.14) with § as in (4.18) implies that the pattern
centered at n_ (meaning » is close to n.) will be
arbitrarily close to the pattern centered at n=0 if
n_ is a convergent denominator for a.

(417)

Nore. While revising this paper for publication,
we became aware of current work of AP.
Mulhaupt [13] in which he explores this aspect of
the behavior of the patterns generated by sums
(1.1) in the case p=2 in connection with Beatty
sequences.

For some p # 2 we can also use the functional
equation (4.8) as follows. Let p > 2 be an integer.

and let

lap=[0:ng~imp7h.] (meZ7). (418)
Choose 1, not too large and choose n; very large.
Let n.=ngn,. Then the second convergent’s de-
nominator ¢ =n?~'+1=n?"%, so that by (4.14),
we get (415) with o' =[(p—1)/n]n{ '+
O(n}7P)]. In this case o’ is very nearly equal to
(p—1nf~'/n_. and we expect ordered behavior
for n close to n.. In the general case, we can only
expect order for some range of n for fap’s whose
continued fraction expansions contain intergers
that are in some sense close to numbers of the
form 77~ !. This leads to several interesting ques-
tions of Diophantine approximation which we do
not pursue further here.

5. Discussion

Many of the ideas presented above can be
found in the work of Hardy and Littlewood [6],
van der Corput [17, 18], Lehmer [8] and Koksma
[9]. Here the central questions investigated are
new: Is there order and disorder in the graph of

Sip= % exp [izan?] (5.)

for various a and p? Is there self-similarity ex-
hibited in the graph of Sy for some (a, p)? We
found that for 1 <p <2(p>2), and any a > 0, no
matter how large (no matter how small), the graph
of the sum Sy as N increases eventually contains
C-spirals (initially contains C-spirals), with each
succeeding spiral containing more (fewer) points
according to the law O(/¢), where e=(2-p)/
(p —1). In the case p =2, we found that for any «
the map consists of C-spirals, of seemingly ran-
dom orientation if a is irrational, except for
special quadratic «’s for which we found self-
similarity and anti-self-similarity. For related a’s
but 1 < p < 3, we were able to show intervals of n
exist in which the graph of S, formed spirals of
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spirals of points nearly similar to the spirals of
points. The key tool we use in our investigation,
not used by the number theorists, and which leads
to all our new results, is the local discrete curva-
ture of the graph of S. In particular, it led to our
summing S, by blocks. This tool may be of use in
the theory of trigonometrical series in other con-
texts. If o= —1/amod2, and the sum (5.1) is
taken over values of n corresponding to a single
C-spiral (between consecutive changes in the local
discrete curvature of the graph generated by (5.1)).
then we conjecture that error in the approximate
functional equation (3.12) approaches zero as a —
0, which would make it nearly a direct generaliza-
tion of the formula for Gauss sums in this case. As
far as we know, the results of Hardy and Lit-
tlewood and others for an approximate functional
equation for finite sums associated with 6; have
not been generalized to the case of multisums. The
self-similarity we have found on the Macintosh
indicates that such formulae might be found.

‘We also conjecture that if a = —1/amod2 and
one approximates a by a finite portion of its
continued fraction expansion, then there exists
similarity up to a corresponding level in the graph
generated (5.1), but this similarity is exact. If
such a magic « is replaced by 2™, then (5.1)
yields a lattice of points building spirals building
spirals of spirals; see fig. 2c. Further, there is a
wide variety of cases for which (1.1) is periodic.
For example, if a=s5/q. B=r/q, and 522, q
and r are positive integers, with (s,¢)=s, (7, ¢q)
=1, then the graph generated by (1.1) is periodic
with period at least as small as 24 or yields a
periodic lattice; see fig. 1b. The case s=1 and
r=g=2m is associated with generalized Gauss
sums [2, p. 144].

Finally, we observe that the S, of (1.1) can
also be interpreted to be special solutions of
Schrodinger’s equation with x [0, 1]. 7>0 and
periodic boundary conditions. If u_ =iu,. then
expi(nmx + n’m’t) is a solution; and setting a =
77t and B =7x, we see that S, is a sum of such
solutions. Indeed S, is the (formal) solution of
this problem satisfying the initial condition u(x,0)

=38( that is, S, is formally the causal Green’s
function for Schrédinger’s equation. For a map
like (1.1), but involving quartic, quadratic, and
linear powers of n, S, is formally the Green’s
function for the linear part of the Kuramoto—
Velarde operator u,+4u, . +a(u . + 3(u)*+

(uu).).
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