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Mapping the chemical space of small organic molecules is approached from a theoretical graph theory
viewpoint, in an effort to begin the systematic exploration of molecular topologies. We present an algorithm
for exhaustive generation of scaffold topologies with up to eight rings and an efficient comparison method
for graphs within this class. This method uses the return index, a topological invariant derived from the
adjacency matrix of the graph. Furthermore, we describe an algorithm that verifies the adequacy of the
comparison method. Applications of this method for chemical space exploration in the context of drug
discovery are discussed. The key result is a unique characterization of scaffold topologies, which may lead
to more efficient ways to query large chemical databases.

1. INTRODUCTION

The question of how vast is the chemical space of small
organic molecules (CSSM) has been addressed in several
wayssall of them related to in silico technologies, such as
virtual chemical library enumeration starting from known
lists of reagents. For example, the effort of enumerating all
derivatives of n-hexane, from mono- to 14-substituted
hexanes, starting from a list of 150 substituents, exceeds 1029

unique structures.1 Although most of these hexane derivatives
might be, to date, synthetically inaccessible, a small number
of building blocks can lead to an unlimited number of
possibilities, as witnessed in living systems: 22 proteinogenic
amino acids and five nucleotides combine to form large
arrays of proteins and nucleic acids, respectively. Represen-
tatives of all of the “tangible” chemicals2 (on the order of
100 million physical compounds) can be collected and
catalogued, and starting from such a database, one could, in
theory, expand into the space of virtual chemistry. However,
there is currently no approach that would enable the
systematic exploration of this chemical space. Indeed, most
methods explore only the limited space covered by (a) known
chemical reactions and (b) available/known chemical re-
agents. The question of how large this chemical space really
is has relevance if one considers that adequate sampling2 is
required, should one desire to query biological end points
using a diverse set of small molecules. To date, the CSSM
has been systematically mapped for organic molecules with
11 or less main atoms and a molecular weight of less than
160 Da.3 Eliminating constrained structures, the total number
of chemicals produced was approximately 44 million. A
chemical database of synthetically feasible structures is
available at http://www.dcb.unibe.ch/groups/reymond/. In
another study,4 orderly generation was used to produce all
possible single-bonded carbon graphs ranging from a maxi-
mum of 20 atoms and two rings to 13 atoms and eight rings.

A total of about 1.45 billion graphs were generated,5 but
this effort was never completed. Thus, the process of
exhaustively mapping the CSSM is far from trivial, even
when the effort is restricted to graph-reduced scaffolds.

In this paper, we map the CSSM for all molecules
containing eight or fewer independent rings and any number
of atoms, by systematically exploring the topologies that can
be present in the CSSM at the graph level, that is, carbon-
based, single-bond scaffolds only. The exploration of scaf-
folds is critical, since with few exceptions medicinal
chemistry-based drugs contain scaffolds. We reduce the
discussion of scaffolds to their corresponding topologies, a
description of the connected ring structure of a class of
scaffolds. In this paper, we show how the complete set of
scaffold topologies (up to a given size) may be algorithmi-
cally generated and uniquely characterized. The space of
possible scaffolds may be partitioned by topology class so
that the union of topology classes is precisely the space of
possible scaffolds. We present results for the population of
topologies in systems up to and including eight rings. In a
companion paper,6 we examine a number of chemical
databases, some large and general, some smaller and more
biologically oriented, for the properties of their topologies.
We compare the results with the complete coverage devel-
oped here for molecules with up to and including eight rings.

2. BASIC CONCEPTS

A graph, G, sometimes called a pseudograph,7 is a
collection of nodes and edges such that each edge connects
exactly two not-necessarily distinct nodes. Denote the set
of nodes by V(G) ) {V1,V2,. . .,Vn}. A walk is a sequence of
contiguous edges, or equivalently, a sequence of connected
nodes, from Vi to Vj, and a path is a walk in which each
node is traversed at most once. A cycle is a path starting
and ending at Vi. In a connected graph, any two distinct nodes
are connected by at least one path. All graphs we consider
in this analysis are connected graphs. A graph may be
described by any of its corresponding adjacency matrices.
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An adjacency matrix of a graph, A, is a symmetric matrix,
where each entry (aij) counts the edges connecting Vi and Vj.
A graph with n nodes may be described by any of up to n!
adjacency matrices of size n × n which are equivalent up to
the permutation of indices. These matrices are considered
isomorphic. The degree of node Vi is its row (or equivalently,
column) sum, which describes the number of edge segments
incident to node Vi: deg(Vi) ) ∑j)1

n aij. Each edge has two
terminal segments, and an edge with both terminal segments
incident to a node Vi is called a loop and increments deg(Vi)
by two. A node of degree k is called a k-node, and l edges
connecting the same pair of nodes are called an l-edge. A
graph with multiple edges between the same nodes but
without loops is called a multigraph, while a graph without
multiple edges or loops is called a simple graph.7 The
problem of deciding if there exists a relabeling of indices
that makes the adjacency matrices of two given graphs
coincide is called the graph isomorphism problem.8 In
general, the recognition of the isomorphism of simple graphs
with bounded valences can be carried out in polynomial time9

and of all graphs in moderately exponential time, O(e�(n log n) ),
where n is the number of nodes in the graph.

In this discussion, a scaffold topology, or topology, is a
connected graph with the minimal number of nodes and
corresponding edges required to fully describe its ring
structure. We limit this analysis to topologies with a
maximum nodal degree of four, corresponding to the valence
of neutral carbon. Except for the graph consisting of exactly
one ring (one node with a loop), topologies contain nodes
exclusively of degrees three and four. The one-ring graph is
referred to as an isolated loop.

A scaffold, in this context, is a chemical graph composed
solely of rings and optional linking linear structures. All
branches of a scaffold terminate in a ring. This description
is functionally equivalent to the one found in Koch et al.10

and Bemis and Murcko11 (where it is called a molecular
framework). We prefer the terms scaffold and scaffold
topology to emphasize its theoretical, chemistry-free nature.
At this level, the objects contain only topological information,
as defined above. A molecule with its corresponding scaffold
and topology is shown in Figure 1. We limit this discussion
to scaffolds containing only single bonds and a maximum
atomic valence of four. Any such scaffold may be constructed
from exactly one topology by distributing 2-nodes along its
edges, expanding each edge in the topology into a chain of
one or more edges. To describe the space of carbon-based
single-bond scaffolds with, say, 25 atoms, let nd ) 25 - n,
the number of 2-nodes to distribute in a graph with n nodes

and e edges. Then, a sharp upper bound for the number of
scaffolds, nscaffolds, that may exist in each (n, e) topology
class is

nscaffoldse (e+ nd - 1
nd

)
with equality if and only if there are no equivalent edges in
the topology. Two edges, ei and ej, are considered equiValent
if the graphs resulting from attaching an isolated loop to each
of ei and ej, respectively (as seen in Figure 3, case 3), differ
only by permutation of the indices.

Let n denote the total number of nodes in a graph and Nk

denote the number of k-nodes.
Summing over nodal degrees gives n ) ∑k g1 Nk.
For scaffolds, n ) N2 + N3 + N4, and for topologies with

4 g n g 3, n ) N3 + N4.
Let e count the total number of edges in a graph; then, 2e

) ∑k g1 kNk.
For scaffolds, 2e ) 2N2+ 3N3 + 4N4, and for topologies

with 4 g n g 3, 2e ) 3N3 + 4N4.
The number of independent rings, referred to in this

analysis as the number of rings, is equivalent to Cauchy’s
nullity, µ ) r ) e - n + 1.

For topologies with 4 g n g 3, r ) N4 + N3/2 + 1.
Holding N4 constant, N3 increments by two as r increments
by one.

3. GENERATING TOPOLOGIES

All topologies with r rings and j 4-nodes may be generated
by at least one topology with r rings and j - 1 4-nodes by
“fusing” together a pair of connected 3-nodes into a single
4-node in an otherwise identical graph.

A 4-node without any loops may connect to
(i) four distinct nodes by 1-edges
(ii) three distinct nodes: two by 1-edges and one by a

2-edge
(iii) two distinct nodes by 2-edges, or one by a 1-edge

and one by a 3-edge
(iv) one distinct node by one 4-edge
A 4-node with loops may connect to
(ii-a) two distinct nodes by 1-edges and one loop
(iii-a) one distinct node by a 2-edge and one loop, or two

loops
In case i, the 4-node may be constructed three ways. In

cases ii, ii-a, iii with 2-edges, and iii-a, the 4-node may be
constructed two ways. In case iii with a 3-edge and case iv,
the 4-nodes may be constructed one way, see Figure 2.

Denote the family of topologies with r rings, N3 3-nodes,
and N4 4-nodes by (r, N3, N4). For a particular r and N4, we
may generate all topologies in (r, N3, N4) from the family
(r, N3 + 2, N4 - 1), 1 e N4 e r -1, where N3 ) 2(r - N4

- 1).
As a topology is the reduced form of a family of scaffolds,

where the corresponding scaffolds may break up any edge
in a topology into a chain of contiguous edges, we may
consider edge i in a topology to contain any number of
“virtual” 2-nodes, ui,k, i ) 1, 2, . . ., e and k ) 1, 2, . . .; that
is, in a graph with n nodes, an edge may be added by
connecting ui,k to uj,l, which then acquire degree three and
become Vn+1 and Vn+2, respectively.

Figure 1. (a) (5-Methyl-2-propan-2-yl-phenyl)-3,3-dimethyl-2-
methylidene-bicyclo[2.2.1]heptane-1-carboxylate. (b) The scaffold
corresponding to this molecule. (c) The topology corresponding to
this scaffold.
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There are three ways to increment the number of 3-nodes
in a topology holding N4 constant: (r, N3, N4) f (r + 1, N3

+ 2, N4), where N4 ) r - N3/2 - 1.
(1) connecting ui,k to uj,l, i * j
(2) connecting ui,k to ui,l

(3) connecting ui,k to uloop, where uloop denotes the 2-node
of an isolated loop (the isolated loop may also be considered
“virtual” until it is connected to the topology via an edge).
See Figure 3 for details.

With these three operations to increment r by one, e by
three, and N3 by two, and a single operation to decrement
N3 by two and e by one and increment N4 by one, we may
generate all topologies with a given number of rings by
starting with any complete family of topologies containing
only 3-nodes: (r, 2(r - 1), 0). We choose to start with the
two topologies in (2, 2, 0), see Figure 4.

The completeness of the generation scheme follows from
the following two observations:

(1) If, in a graph with N3 3-nodes and N4 4-nodes and
thus r ) N3/2 + N4 + 1 rings, we replace one 4-node by
two 3-nodes by following any of the steps in Figure 2 from
left to right, there results a graph with N4 - 1 4-nodes and
N3 + 2 3-nodes, the same number of rings and one less edge.

(2) In a graph containing only 3-nodes, there are only three
ways to remove an edge, given by the reverse of each of the
steps shown in Figure 3. Hence, if we consider any graph
containing N3 3-nodes and zero 4-nodes, and thus r ) N3/2
+ 1 rings, and we remove any edge by the reverse of moves
of type 3(1) or 3(2) such that the graph remains connected
and also remove the resulting 2-nodes, or if we remove a
loop, its associated node, and the node connected to it (the
reverse move of 3(3)), we end up with a graph with N3 - 2
3-nodes, and consequently r - 1 rings (and three fewer
edges). Now, if we assume that we have all possible graphs

with N3 3-nodes and zero 4-nodes, it follows from observa-
tion 2 above that we will get all possible graphs with N3 +
2 3-nodes and zero 4-nodes (and r + 1 rings). Beginning
with all possible graphs with two 3-nodes (the two graphs
shown in Figure 4), it follows by induction that we may
generate all possible graphs with arbitrary (but even) numbers
N3 of 3-nodes and zero 4-nodes (and thus r ) N3/2 + 1
rings). And, following observation 1, if we assume that we
have all possible graphs with N3 3-nodes and N4 4-nodes
and r ) N3/2 + N4 + 1 rings, then we may get all possible
graphs of N3 - 2 3-nodes and N4 + 1 4-nodes by following
all possible moves shown in Figure 2 from right to left. This
process may be repeated until we generate all possible graphs
with zero 3-nodes and r - 1 4-nodes.

4. RETURN-INDEX

The algorithm described above generates all possible
topologies, but due to symmetries, it generates many topolo-
gies more than once. To enumerate the complete collection
of distinct topologies, we compare each topology with the
members of its (r, N3, N4) class. As mentioned previously,
a graph with n nodes has up to n! associated adjacency
matrices, considered isomorphic. It is possible to avoid
comparing n! matrix permutations, as would be required to
determine isomorphism from adjacency matrices directly.
Several algorithms exist for solving the graph isomorphism
problem efficiently for different categories of graphs, among
which McKay’s package nauty12 is considered state-of-the-
art for both exhaustive generation and solution of the
isomorphism problem.13 The most relevant algorithms in
nauty for our purpose are GENG, which may produce an
exhaustive enumeration of simple graphs that may include
up to one loop per vertex but not multiedges; LABELG,
which produces a canonical labeling of all simple graphs of
the type generated by GENG; and MULTIG, which can
generate all possible distinct multigraphs corresponding to
a given simple graph with no loops and test them for
isomorphism (but does not produce a canonical labeling).
Since pseudographs with both loops and multiedges are not
allowed,12 one would need to include 2-nodes and then prune
the graphs thus generated, removing all 2-nodes and discard-
ing equivalent graphs. Although it could be possible to use
this approach with some effort, it would result in huge
numbers of redundant structures that would have to be
generated, pruned, and compared. There have been other

Figure 2. Three operations to increment r by 1 and N3 by 2.

Figure 3. The correspondence between 4-nodes and pairs of
connected 3-nodes.
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attempts to separate pseudographs into equivalence classes
via a labeling scheme and then explore the corresponding
chemical space. Lipkus14 classifies the CSSM with a trio of
topological descriptors, while Xu and Johnson15,16 used
molecular equivalence numbers, which produce finer-grained
classes than our topologies, but the method was potentially
subject to classification noise.

These considerations led us to seek a direct approach, one
that would work for the scaffold-topology-type graphs
considered here. In general, a graph may be associated with
a diverse set of topological invariants that are independent
of the specific indexing. Such invariants which both possess
discriminating power and can be computed in polynomial
time may help reduce the isomorphism problem. Different
types of invariants have been introduced by various authors
(see, e.g., Ivanciuc et al.17 and the references therein). One
such set of invariants consists of the eigenvalues of the
adjacency matrix, the spectrum of the graph.18 It is well-
known that the spectrum of a graph does not fully discrimi-
nate between graphs, in that isospectral but nonisomorphic
graphs do exist.19 For our purposes, we were able to arrive
at a simple, discriminating method for comparing scaffold
topologies with up to eight rings that can be carried out in

polynomial, O(n3) time, as well as a unique characterization
for such graphs, by introducing the ordered return index.

Let a k-walk denote a walk of length k. It is well-known7

that the entries of Ak, (aij
(k)), contain the number of k-walks

from Vi to Vj. In particular, (aij
(k)) contains the number of

return walks, starting and ending at Vi. We construct the
return index, R, an n × n matrix whose columns, R(k), contain
the diagonal entries of Ak, (ajj

(k)), j ) 1, 2, . . ., n. In practice,
R is constructed by taking the powers of A′, the adjacency
matrix with all entries on the main diagonal set to zero. No
information is lost as all nodes in A are of degree three or
four, and subtracting loops leaves affected nodes with degree
zero, one, or two, respectively, distinguishing them from
other nodes in the topology. The degree is zero in exactly
one case, depicted in Figure 4, where the single node with
two loops is the only member of the family (2, 0, 1). The
first column of R (return walks of length one) does not
contain any distinguishing information and is replaced with
the number of 1-nodes each respective node has as first-
order neighbors in A′, in a linear-time algorithm. The full
calculation of R is a cubic-time algorithm. Each column of
A (or A′) has at most four entries, and the calculation of

Figure 4. Schematic diagram of the generation scheme showing all graphs in (2, 2, 0), (2, 0, 1), and (3, 4, 0).

Figure 5. Example of topologically inequivalent nodes with the same return string.
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each power is at most 4n2 operations. Since we need to
calculate n - 1 powers, the total operations count is on the
order of n3.

The rows of R, each of which contains information with
respect to a particular node of A′, may be sorted in
descending numerical order. The row R′ corresponding to
node Vi is its return string. The ordered matrix, R′, may be
used to compare graphs. It is clear that two graphs with
different return indices are not isomorphic. It is not true in
general that two graphs with the same ordered return index
are necessarily isomorphic. We demonstrated by exhaustive
pairwise comparison that, for topology graphs of up to and

including eight rings, the ordered return index fully distin-
guishes nonisomorphic graphs (data not shown). These
topologies can be queried interactively at the UNM Bio-
computing Web site.20

5. VERIFICATION OF THE ORDERED RETURN INDEX

To verify that R′ fully discriminates topologies up to a
certain size, we ran the generation algorithm, comparing
topologies by R′. Where R′ matched another previously
generated topology in the corresponding (r, N3, N4) class,
adjacency matrices were compared using all possibly equiva-
lent graph labelings until we found a match. The determi-
nation of possibly equivalent labelings is described below.
In all cases where the return indices of two graphs matched,
some permutation (labeling) of the adjacency matrices
matched as well. In order to reduce the number of permuta-
tions and comparisons, the graphs are first assigned a
semicanonical numbering with respect to the return string
corresponding to each node. The graph is then labeled in
terms of “blocks” ,where each block contains nodes with
the same return string. We implement the following recursive
algorithm:

(1) For each node, form a neighbor list specifying to which
blocks its first-order neighbors belong.

(2) Reorder nodes within existing blocks according to the
neighbor lists.

(3) Relabel the graph with a new set of blocks separating
previous blocks by neighbor lists.

(4) If any new blocks were created in 3, and there are
less than n blocks, return to 1. This algorithm is guaranteed
to terminate in less than n steps, as the number of blocks
cannot exceed the number of nodes. The block structure is
the final list of blocks corresponding to the reordered list of
nodes; by construction, the block structure is arranged in
ascending numerical order. The members of each block in
the final block structure are called topologically equiValent
nodes. Two isomorphic graphs must have the same block
structure. In comparing adjacency matrices, graphs are first
relabeled in terms of their block structure. Only indices
falling within the same blocks need be permuted in order to
find a match between matrices. An example of topologically
inequivalent nodes with the same return string is shown in
Figure 5.

A useful byproduct of having established that the ordered
return index has discriminatory power when applied to
scaffold topologies with up to eight rings is the unique
characterization for such graphs. Indeed, if we tag each such
graph with its ordered return index, we have shown that
identical ordered return indices imply isomorphism. The
actual proof of this fact still requires permutation and
comparison, since the method does not result in a canonical
labeling of the nodes of a pseudograph, but rather a division
of the nodes of a graph into topologically descriptive
subclasses. Thus, the nonisomorphism of two graphs with
distinct ordered return indices is automatic. In order to
establish adequacy of the return index for determining
isomorphism in case of identical ordered return indices, we
need to compare all possible reindexings of topologically
equivalent nodes. This process, although much reduced
relative to a full comparison of all permutations, can still be
daunting. However, once carried out for all possible topolo-

Figure 6. In graph a, nodes labeled 1 and 2 have identical return
strings but fall into different blocks. In graph b, nodes labeled 1
and 2 have identical return strings and fall into the same block.
Graphs a and b have identical return indices but different block
structures.

Figure 7. In both graphs a and b, nodes labeled 1and 2 have
identical return-strings, but fall into different blocks. Graphs a and
b have identical return indices and block structures but are not
isomorphic.

Figure 8. In both graphs a and b, nodes labeled 1 and 2 have
identical return strings but fall into different blocks. Graphs a and
b have identical return indices, but they have different respective
block structures. With the return index modified to contain the
number of 1-node neighbors instead of return walks of length 1,
graphs a and b are fully distinguished without comparing block
structures.
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gies of up to eight rings, we found that the ordered return
index is indeed adequate to distinguish all such topologies.
Having established this, we have thus reduced the problem
of detecting graph isomorphism of scaffold topologies, that
is, pseudographs of valence three or four with eight or fewer
rings to the simple, polynomial time computation of the
ordered return index and the linear time comparison of the
indices of two graphs.

6. COUNTEREXAMPLES WITH MORE THAN EIGHT
RINGS

The return index, even without the additional discrimina-
tion provided by the neighbor ranking, has at least the same
discriminating power as the spectrum. This is a consequence
of the fact that a matrix satisfies its own characteristic
polynomial (Cayley-Hamilton theorem21). Thus, if the
characteristic polynomial is given by

P(λ)) λn + pn-1λ
n-1 + . . .+ p1λ+ p0

then, since P(A) ) 0, it follows that

aii
(n) + pn-1aii

(n-1) + . . .+ p1aii + p0 ) 0;i) 1, . . ., n

so that the coefficients of the characteristic polynomial can
be determined completely from the entries of the return-index
matrix R, since there are n equations in the n quantities pi,
i ) 1, . . ., n. Thus, graphs with the same return index have
the same characteristic polynomials and are therefore isospectral.

The following three pairs of topologies are not differenti-
ated by the return index, if it is calculated without replacing
the first column of R with 1-node neighbor information; with
that modification, the third pair is distinguished. The topolo-

gies in the first pair, with 11 rings, found among various
examples on isospectral graphs in Cvetkovič et al.,19 have
identical return indices but different block structures (Figure
6). The topologies in the second pair, with 12 rings, have
identical return indices and block structures (Figure 7). These
graphs are not isomorphic, as can be shown by permutation
of indices within blocks of topologically equivalent nodes,
or by the observation that there is no node in graph a with
the same branching structure as that of node 1 in graph b.
The topologies in the third pair, with 13 rings, have identical
return indices but different block structures (Figure 8). All
three pairs of graphs contain a pair of nodes with equivalent
return strings, but which fall into different blocks in at least
one of the two graphs in the pair. We have not determined
whether there are any counterexamples with 9 or 10 rings.

7. RESULTS AND CONCLUSIONS

In this paper, we described a method and an algorithm
for the systematic generation of topologies with up to, and
including, eight rings and an efficient (cubic time) algorithm
for comparing these graphs to determine isomorphism.
Furthermore, we produced a unique characterization for
scaffold topology pseudographs with up to eight rings. A
practical application of this result follows: If all small
molecules (up to eight rings) in a given chemical database
are tagged by the ordered return index characterizing their
topologies (an operation that only needs to be performed once
for any given database), then the problem of deciding if a
given molecule is present in the database can be quickly
reduced by querying only those database entries with the
same topology. This renders database searching more ef-
ficient, in particular since most chemical collections now
exceed 107 unique chemicals.

The total numbers of topologies in each class of (r, N3,
N4) are summarized in Table 1 and shown in Figure 8. A
lower bound for the number of unique topologies in (9, 16,
0) is 204 637. We have not confirmed whether the return
index is adequate to distinguish between topologies with 9
or 10 rings, and we have found counterexamples for which
the return index supplemented with only nearest neighbor
loop information fails for 11 and 12 rings.

The population density of the topological scaffold space
is higher at the midlevel combination of 3-nodes and 4-nodes
for any given number of rings (Figure 9). The shape of the
population density curves is similar to that of the binomial
coefficients. This is in notable contrast to the population
densities of topologies found in the chemical databases
discussed in a paired paper.3 Those chemical databases show

Table 1. Total Number of Distinct Topologies up to and Including Eight Rings

N3

0 2 4 6 8 10 12 14 total

1 1 1
2 1 2 3
3 2 5 5 12

r 4 4 22 30 17 73
5 10 88 228 193 71 590
6 28 430 1655 2457 1496 388 6454
7 97 2242 12905 28301 28649 13343 2592 88129
8 359 13239 105188 326761 483124 365994 136666 21096 1452427

Figure 9. Total number of distinct topologies with two through
eight rings, plotted as a function of N3.
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higher populations for topologies containing not more than
one 4-node.

We note that the number of possible scaffold topologies
for up to six rings is slightly over 7000 and dramatically
increases with higher ring numbers. Moreover, the number
of nonplanar topologies grows with the number of rings:
While there are no nonplanar scaffold topologies with two
or three rings and exactly one with four, the number grows
to roughly 10% of the total for eight rings. In an accompany-
ing paper, we present the topological scaffold space oc-
cupancy (distribution) for a diverse set of chemical data-
bases.6 The probability of finding existing molecules for a
given scaffold topology decreases rapidly for higher ring
numbers. Additionally, there are exactly 44 molecules,
belonging to 12 distinct nonplanar topology classes, found
in the entire merged database we considered6 (planarity was
determined using the routine PLANARG of nauty12).

Since this is a complete enumeration of all of the possible
scaffold topologies, we anticipate that the use of this system
can become standard for rapid queries of ultralarge databases.
Furthermore, this system can provide a basis for the
systematic topological classification of organic small mol-
ecules and serve as a first step to the complete mapping of
topological chemical space.
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