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the torsion angles need not be onseutive, and any rigid interveningsegments are allowed between the free torsions. Our approah alsoallows for a small degree of exibility in the bond angles and the pep-tide torsion angles; this substantially enlarges the spae of solvableon�gurations as is demonstrated by an appliation of the method tothe modeling of yli pentapeptides. We give further appliationsto two important problems. First, we show that this analytial looplosure algorithm an be eÆiently ombined with an existing loop-onstrution algorithm to sample loops longer than three residues.Seond, we show that Monte Carlo Minimization is made several-fold more eÆient by employing the loal moves generated by theloop losure algorithm, when applied to the global minimization of aneight-residue loop. Our loop losure algorithm is freely available athttp://dillgroup.usf.edu/loop_losure/.1 IntrodutionWe onsider the problem of loop losure, i.e., �nding strutures of a seg-ment in a hain moleule that are geometrially onsistent with the rest ofthe hain struture. This problem has an important appliation in homol-ogy modeling [1℄, when segments of insertions or deletions are to be modeledwhile the rest of the protein struture is relatively well known from struturesof homologous proteins. Another useful appliation is in the area of MonteCarlo simulations, where alternative segment strutures an be introduedas elementary loalized moves [2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄. These movesan lead to improved eÆieny in onformational sampling. Unlike Carte-sian moves, they avoid geometri distortions and the high energy penaltythese entail. On the other hand, the deformation produed by these movesis limited to a segment, while unoordinated torsion angle moves result inmovement proportional to the distane of eah atom from the perturbationaxes, resulting in large unontrolled moves. Other possible appliations ofthe loop losure problem are disussed in Ref. [12℄.It is well known that the number of onstraints is idential to the num-ber of degrees of freedom (DOFs) in the ase of loops with six free torsionangles, or three residue loops for proteins [13℄. This means that, in general,suh loops may be found as disrete solutions of the loop losure problem.This fat has been known for some time in the Kinemati theory of Meh-anisms [14℄. Kinematis is the branh of mehanis whose onern is the2



geometri analysis of motion, espeially onstrained displaements withoutregard to fores. The kinemati analysis of systems of rigid objets onnetedby exible joints, suh as multi-jointed roboti manipulators, exhibits manysimilarities with the geometri analysis of maromoleules, when the foresresponsible for the motions are ignored and the main question of interestis the analysis of possible onformations onsistent with the onstraints as-soiated with bond lengths and bond angles. In robotis, joints that allowone arm to rotate about another at a �xed angle are alled Rotator pairsor \R-pairs". The arm system analogous to a maromoleule with 6 rotat-able bonds is a \6R" linkage. The kinemati analysis of these and othersimilar linkages leads to Fourier polynomials in the six rotation angles, �i,i.e., polynomials in the variables os �i; sin �i. By introduing the half-angletransformationui = tan(�i=2) ! sin �i = 2ui1 + u2i ; os �i = 1� u2i1 + u2i ; i = 1; : : : ; 6;there results a system of polynomial equations in the ui. A polynomial for-mulation o�ers several advantages, suh as relative ease of solution, availabletheorems for the aurate enumeration of the number of solutions within agiven region when there is only a disrete number, and in general better un-derstood numerial properties. For instane, the number of real roots of aunivariate polynomial equation ontained in an interval an be readily deter-mined by Sturm's method [15℄. No suh method is available for more general,transendental equations. Therefore, an advantage of our polynomial equa-tion ompared to the transendental equation of G�o and Sheraga [13℄ is thatthe exat number of solutions an be found, whih is important for satisfyingmirosopi reversibility in Monte Carlo simulations [3℄. Methods from alge-brai geometry [16, 17℄ and homotopy theory [18℄ have been applied to suhsystems, and robust algorithms exist for the determination of their solutions,real or omplex. A thorough disussion of roboti linkage systems an befound in the text by Du�y [19℄, while informative expositions and reviewsof the relevant literature an be found in the lassi text by Hartenberg andDenavit [14℄ and more reently in the text by Hunt [20℄. A relatively urrentsurvey is given in Manoha [21℄.The problem of losing 6R loops is entral for the ontrol of robotimanipulators, where in many ommon appliations one end is �xed and theother (the \end e�etor") must be positioned at a spei� loation and witha given orientation. Adding a 7th rotator gives a system with one additional3



DOF, o�ering the possibility of ontinuous motion with two �xed ends. Thisproblem, haraterized as \The Mount Everest of roboti manipulators" byFreudenstein [22℄ was redued to a single variable, 16th degree polynomialequation by Lee and Liang [23℄. In their solution, the 7th rotational DOFis used as a ontrol parameter, and the real solutions obtained for the otherangles one the 7th angle is �xed provide alternative losure on�gurations forthe system. The method applies to systems with arbitrary axes of rotation,but the derivation is quite involved and it is diÆult to arrive at an intuitiveunderstanding of its solutions and the implied hain displaements.In this paper we onsider an important speial ase in whih the 6Rproblem has an intuitively simple desription: onsider all the motions of ahain moleule that involve hanges in only six bakbone torsions. If these arearranged so that they form three oterminal pairs, then the segments betweensuessive pairs will form e�etively a oarser hain of 3 (losed ase) or 4(open ase) rigid bodies, joined at the loations of the paired torsion axes.An illustration is given in Fig. 1 for a tri-peptide example, where the 4 rigidbodies are (N1 C�1), (C�1 C1 N2 C�2), (C�2 C2 N3 C�3), and (C�3 C3). Ifwe now require the two end segments of the hain (N1 C�1) and (C�3 C3)to remain at a �xed position relative to eah other, (C�3 C3 N1 C�1) formsa third segment. Now eah of the three rigid units (C�1 C1 N2 C�2), (C�2C2 N3 C�3), and (C�3 C3 N1 C�1) has two juntions on it, attahing to theother two units. De�ne the line onneting the two juntions on a unit asthe virtual axis of the unit (C�1{C�2, C�2{C�3, and C�3{C�1). The motionsof the middle two segments relative to the rest of the hain an only beomposed of individual rotations of eah about their respetive virtual axes(C�1{C�2 and C�2{C�3) or joint rotations of the two as a unit about the third(�xed) axis (C�3{C�1). The three virtual axes form a triangle, with vertiesat the three juntions (C�1, C�2, and C�3). If we rotate eah of the unitsabout its axis by some angle �i; i = 1; 2; 3, the rotatable bonds at eitherend of the unit maintain a �xed dihedral with the axis and eah other (adihedral formed by C�1{C1, C1{N2, and N2{C�2, for example). Any possiblemotion that a onerted hange in the original six torsions is apable of anthus be desribed in terms of these three angles. If we now require that bondangles (�i) between the atual bonds at the juntion of two segments remainat a given value, these motions beome oupled. The feasible on�gurationswhere all onstraints are satis�ed form a disrete set, found as the solutionsof a polynomial equation in the orresponding three variables ui; i = 1; 2; 3.Having sets of rotation axes arranged in oterminal pairs is a natural property4



Figure 1: De�nition of three variables �1, �2, and �3 and three onstraints on�1, �2, and �3 in the anonial tripeptide loop losure problem.
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of polypeptide hain bakbones where one enounters pairs of rotatable bondsat eah C� atom (with the exeption of proline), and similar pairings areommon in other moleules of interest, suh as RNA where groupings of 5pairwise oterminal rotatable bonds in the phosphate bakbone are separatedby relatively rigid sugar rings.In its simplest form our algorithm may utilize the torsion angles at 3 C�atoms loated onseutively along a peptide bakbone. This is the \tripep-tide loop losure" problem. The tripeptide loop losure problem was �rstonsidered by G�o and Sheraga [13℄, who redued the problem to solving atransendental equation in a single variable in the ase of planar peptide tor-sion angles. The method has found numerous appliations and extensions.Bruoleri and Karplus [24℄ allowed small variation in bond angles as a meansof extending the method to over normal variability of these parameters inproteins of known strutures, and applied the method to loop modeling [25℄.Dinner [7℄ produed a generalization to the non-planar peptide ase, still interms of transendental equations. More reently, Wedemeyer and Sheraga[12℄ derived a single variable 16th degree polynomial equation for the par-tiular ase of loop losure involving three onseutive residues with planarpeptide torsions at anonial bond lengths and angles, i.e., when only threeonseutive pairs of � and  torsion angles are allowed to vary.One of the generalizations possible with our algorithm is for the threepairs of torsion angles with oterminal axes to be hosen along a moleu-lar hain with arbitrary, �xed struture between suessive pairs, inludingnonplanar peptide torsion angles. This generalization is useful for severalreasons. Sampling with �xed bond angles and peptide torsion angles ansigni�antly limit the overage of onformational spae [24℄, and moreoverutuations of order � 10o for the bond angles and peptide torsion anglesare not unommon among proteins of known struture. Further, the methodpresented here allows for the torsion angles partiipating in the move to behosen at arbitrary loations along the hain. This allows its appliationto diverse situations, suh as to the modeling of longer loops and loops inpolymers and nulei aids. Although it is possible to derive a desriptionin terms of a 16th degree polynomial even if all the angles are hosen om-pletely independently [26℄, the hoie of paired �- angles leads to a simpleformulation in terms of three natural angle variables:� Choose three C� arbons loated suessively (but not neessarily on-seutively) along the hain, say C�i; i = 1; 2; 3.6



� Rotate the segment C�1; : : : ; C�2 by angle �1 about the axis C�1{C�2.� Rotate the segment C�2; : : : ; C�3 by angle �2 about the axis C�2{C�3.� Rotate the segment C�1; : : : ; C�2; : : : ; C�3 by angle �3 about the axisC�1{C�3.� Choose the angles �i; i = 1; 2; 3 so that the bond angles Ni{C�i{C 0iassume (near) anonial values at eah of the atoms C�i.Satisfation of the ompatibility onditions in the last step is assured by thesolution of the polynomial system mentioned above, and every real solutionresults in a distint on�guration. The analysis an easily be applied to hainsof arbitrary struture (i.e., it is not limited to polypeptides), provided thereexist pairs of o-terminal rotatable bonds. In the robotis literature, R-jointswith axes that have a ommon point are referred as \spherial pairs". We arethus studying the 6R system with three interonneted spherial pairs [19℄.Problems of struture similar to the tripeptide loop losure problem are alsoommon in another area of omputational geometry: the motion planningfor the assembly of four solid objets an be ast in idential mathematialform [27℄.Given that the general 6R problem an be desribed by a 16th degreepolynomial, it follows that there will always be an even number of real so-lutions, ounting multipliities, and at most 16 distint real solutions arepossible, leading in turn to at most 16 distint loop on�gurations. Suhan example has been found by Manseur and Doty [28℄ for a 6R roboti ma-nipulator. Dodd et al. [3℄ in their study of onerted rotations in polymersystems report as many as 12 solutions in ertain ases, but sine they studythe problem in its transendental form they need to rely on expensive, ex-haustive searhes to arrive at a omplete enumeration with on�dene. Forthe anonial tripeptide loop losure, Wedemeyer and Sheraga [12℄ havefound at most 8 real solutions of the losure polynomial and, hene, at most8 distint onformations. Our own studies with the more general peptide ge-ometry have so far only disovered ases with at most 10 real solutions, andwe believe that this might be a limitation due to the fat that the buildingbloks of the problem are of speial form, perhaps not apable of overingthe entire set of possible behaviors of the polynomial system unless a ertainvariability in the parameters is introdued. For example, the obtuseness ofthe bond angles at the C� arbons should be ontrasted with the fat that7



the angles between suessive arms of the manipulator in [28℄ are all �=2exept for one pair of parallel axes.Even though it is obvious that the analytial loop losure method is ex-at and muh more eÆient ompared to numerial loop losure methods[29, 30℄ for three residue loops, appliation of the analytial method to mod-eling longer loops has not yet been explored extensively. For loops of ntorsion angles, (n�6) DOFs need to be sampled with some additional searhmethod. Here we employ an existing loop onstrution method [31℄ to sample(n� 6) torsion angles, and solve for the remaining 6 torsion angles using an-alytial loop losure. Other approahes suh as a hierarhial method and adeimation method have been suggested by Wedemeyer and Sheraga [12℄ forsampling longer loops using an analytial loop losure method. We sample(n�6) torsion angles diretly beause it is possible to inorporate sreeningsfor Ramahandran allowed regions and steri lashes. These sreens enhanethe eÆieny of sampling beause they an be applied at early stages, andnon-promising strutures an be pruned out before the whole model loop isonstruted.We believe that an advantage of our work is the simpli�ed, intuitive viewof the tripeptide loop struture (or 6 free torsion angles in general), whihenables us to develop insights for useful appliations. General theory andmethods are presented in Setion 2, and results of appliations in Setion 3.In Setion 2.1, we desribe the simple view of the tripeptide loop losure,derive the loop losure equation, and present an eÆient algorithm for solv-ing the polynomial equation. Further generalizations to the ase where thetorsion angle pairs are hosen at arbitrary (non-ontiguous) C� atoms andto the ase of an additional 7th dihedral are disussed in Setion 2.2. InSetion 2.3, a perturbation method for inreasing the overage of onforma-tional spae is disussed. Appliations to bond angle perturbations, longerloop modeling and Monte Carlo Minimization are presented in Setions 3.1,3.2, and 3.3, respetively. Conlusions are given in Setion 4.2 Theory and Methods2.1 Loop Closure FormulationWe pose here the loop-losure problem in its simplest form as follows: Givena moleular hain with inexible bond lengths and bond angles, �nd all pos-8



Figure 2 (a): Alternative on�gurations shown in the referene frame of thethree �xed C� atoms.sible arrangements with the property that all bond vetors are �xed in spaeexept for a ontiguous set and suh that the hanges are made in at most6 intervening dihedral angles. For onveniene of presentation, we illustrateour derivation for the ase of a tripeptide loop with oasional referene tomore general ases.2.1.1 Tripeptide loop losure equationWe view the six-torsion loop losure problem in a simpli�ed representation asshown in Fig. 1. A tripeptide loop example is shown in the �gure, where fouratoms N1, C�1, C�3 and C3 are �xed in spae, and all other atom positionsare to be determined. Atom types N , C�, and C refer to nitrogen, alphaarbon, and arbonyl arbon, and the subsripts to the residue number (1,2, or 3).There are three variables and three onstraints in this piture, whih isequivalent to, but simpler than, the six-variable/six-onstraint piture of G�oand Sheraga [13℄. The three variables in the piture are the three rotationangles �i (i = 1; 2; 3) of the Ci and Ni+1 atoms about the C�i{C�i+1 virtualbonds, where i = 4 is equivalent to i = 1. Ni+1 is rotated with Ci beause9



Figure 2 (b): The same alternative loop losure on�gurations as in Fig. 2(a), but now in the original frame of the �xed atoms N1, C�1, C�3, and C3.there is no free rotation involved between them. The �i rotations preserve allthe bond lengths and angles exept for the three bond angles �i (:= 6 NiC�iCi)shown in Fig. 1. The ondition that �i angles are equal to �xed valuesforms the three onstraints in our problem. The �i angles are de�ned in thereferene frame where all C�i are �xed. C�1 and C�3 are �xed by de�nition,and so are the side lengths of the triangle formed by C�1, C�2, and C�3.C�2 therefore traes a irle about the C�3{C�1 axis. In the referene frameof Figs. 1 and 2 (a), C�2 is �xed and the rotation of C�2 is replaed by anequivalent rotation of N1 and C3 about the same axis. One the problem inthis referene frame is solved, the N1 and C3 atoms (together with all otheratoms in between) an be rotated bak to the original frame by a reverserotation about the same C�3{C�1 axis. This onept is illustrated with eightalternative loop onformations in the referene frame of the three C� atomsin Fig. 2 (a), and the orresponding piture in the original frame of �xedatoms N1, C�1, C�3, and C3 is shown in Fig. 2 (b). Our formulation doesnot require planarity of the peptide torsion, and overs a more general asewhere arbitrary rigid strutures intervene between the C�i{Ci and Ni+1{C�i+1 bonds. 10



Figure 3: De�nition of angle parameters �i, �i, and �i.In the derivation below, the bond vetors C�iCi and C�i+1Ni+1 (boldfaesymbol of a pair of atoms represents the bond vetor of the pair) are �rstexpressed in terms of �i angles and other �xed quantities, and then the �iangle onstraints are written in terms of dot produts of these vetors.First onsider the following unit vetors:ẑi = C�iC�i+1=jC�iC�i+1j;r̂�i = C�iCi=jC�iCij;r̂�i = C�i+1Ni+1=jC�i+1Ni+1j; (1)and de�ne the following �xed angles in terms of these vetors:�i = os�1(ẑi � ẑi�1); (2)�i = os�1(ẑi � r̂�i ); (3)�i = os�1(�ẑi � r̂�i ); (4)where �i, �i, and �i are all taken to be in the range [0; �℄. These angles areshown in Fig. 3 in the ontext of the C� triangle.We now de�ne a right-handed loal oordinate system by three unit ve-tors (x̂i; ŷ; ẑi) for eah �i rotation, where the referene axis ŷ is onveniently11



Figure 4 (a): A peptide unit along the C�i{C�i+1 virtual bond. In the loaloordinate system, �i and �i are related by �i = �i + Æi.set to ŷ = (ẑ3 � ẑ1)=jẑ3 � ẑ1j so that it is perpendiular to all ẑi de�ned inEq. (1), and to x̂i = ŷ � ẑi. As pitured in Fig. 4 (a), the �i angle is nowpreisely de�ned to be the rotation angle of r̂�i (or C�iCi) about ẑi in thisloal oordinate system, and �i is de�ned similarly as the rotation angle ofr̂�i (or C�i+1Ni+1) about ẑi.The angles �i and �i are related to eah other beause r̂�i and r̂�i arerotated together as a rigid body. Fig. 4 (a) shows that �i and �i are relatedby the simple relation �i = �i + Æi; (5)where Æi is the dihedral angle de�ned by the three vetors (CiC�i, C�iC�i+1,C�i+1Ni+1), as illustrated in Fig. 4 (a).As an be seen in Fig. 4 (b), the unit vetors r̂�i and r̂�i are expressed in12



Figure 4 (b): Geometri de�nitions at the C�i juntion. The blak irle atthe origin denotes the C�i atom, while the vetors r̂�i�1 and r̂�i point to theNi and Ci atoms, respetively.
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terms of the above de�ned unit vetors and angles asr̂�i = os �iẑi + sin �i(os �ix̂i + sin �iŷ);r̂�i�1 = � os �i�1ẑi�1 + sin �i�1(os �i�1x̂i�1 + sin�i�1ŷ): (6)The �i angle onstraints an then be expressed in terms of r̂�i and r̂�i�1r̂�i � r̂�i�1 = os �i: (7)Substitution of Eq. (6) into Eq. (7) gives the equationsos �i + os �i os �i�1 os�i =sin�i(sin �i�1 os �i os �i�1 + os �i�1 sin �i os �i)+ sin �i�1 sin �i(sin �i sin�i�1 + os�i os �i os �i�1); (8)with i = 1; 2; 3, where the dot produts (ẑi � ẑi�1) = os�i, (ẑi � ŷ) = 0,(ẑi � x̂i�1) = sin�i, (x̂i � x̂i�1) = os�i, (x̂i � ŷ) = 0, and (ẑi�1 � x̂i) = � sin�ihave been used.In Setion 2.1.3, �i�1 is �rst eliminated from Eq. (8) using Eq. (5), andthe three oupled equations for �i (i = 1; 2; 3) are redued to a 16-degreepolynomial for the single variable u3 = tan(�3=2). From the theory of poly-nomial systems [32℄ it follows that for every (real) solution there orrespondsa unique (real) triplet (�1; �2; �3), so that in general there are at most 16 realsolutions.Eq. (8), desribing the rotation of the C�i{Ni and C�i{Ci bonds about thevirtual bonds C�i�1{C�i and C�i{C�i+1 respetively, is known in the theoryof mehanisms as the equation for a RR joint with oterminal axes and withthe two arms onstrained to be at a �xed distane. It was derived in 1897by Briard in his study of exible otahedra [33℄, and onsiderable literatureabout it exists [20, 34℄. A geometrial analysis of the individual (unoupled)�i onstraint Eqs. (7) and (8) is provided in Appendix A.2.1.2 The algorithmOne the polynomial equation is obtained, all atomi oordinates in the loopan be determined. Before presenting a detailed derivation and solution ofthe polynomial equation, we give here a simple outline of the loop losurealgorithm that �nds the atom positions in the loop.14



(1) The polynomial oeÆients are determined from the angles �i, �i, �i, �i,and Æi: First, the angles �3, �3, Æ3 are determined from the oordinatesof N1, C�1, C�3, and C3, and all other angles are omputed from thegiven bond lengths and bond angles (anonial, or, more generally,for arbitrary, spei�ed values of these). The oeÆients of the 16thdegree polynomial are then determined algorithmially following thesteps desribed in Setion 2.1.3 and Appendix B.(2) u3 = tan(�3=2) is obtained by solving the 16th degree polynomial, asdesribed in Setion 2.1.4 or 2.1.5. u2 = tan(�2=2) and u1 = tan(�1=2)are determined from u3 as desribed in Appendix C, and �i = 2 tan�1 uiand �i = �i + Æi follow.(3) Positions of all the atoms are obtained from �i and �i: First, the ref-erene frame is de�ned. The unit vetor ẑ3 is determined from theoordinates of C�1 and C�3. ẑ1 is set arbitrarily exept that the anglebetween ẑ1 and ẑ3 is �1. ẑ2 = �ẑ1� ẑ3 follows. ŷ and x̂i are omputedfrom ẑi. Next, r̂�i and r̂�i (i = 1; 2) in the referene frame are obtainedfrom �i and �i using Eq. (6). All atom positions are then omputedfrom these vetors in the referene frame. The unit vetors de�ne � (0)3that are determined from the �xed oordinates of N1, C�1, C�3, andC3. All atoms are then rotated about ẑ3 by (� (0)3 � �3) to bring themto the original frame.2.1.3 Derivation of the polynomial equationEquation (8) is onverted to polynomial form in the variables wi, ui wherewi := tan(�i=2); ui := tan(�i=2): (9)Using the half-angle formulasos � = 1� u21 + u2 ; sin � = 2u1 + u2 ; u = tan �2 ; (10)Eq. (8) beomesAiw2i�1u2i +Biw2i�1 + Ciwi�1ui +Diu2i + Ei = 0 (11)15



where Ai = � os �i � os (�i � �i�1 � �i)Bi = � os �i � os (�i � �i�1 + �i)Ci = 4 sin �i�1 sin �iDi = � os �i � os (�i + �i�1 � �i)Ei = � os �i � os (�i + �i�1 + �i) :Eq. (11) is alled the tetrahedral equation [33℄ sine it desribes the alter-native shapes of the tetrahedral formed by the four �xed angles �, �, �, and�. This equation is quadrati both in w and u, denoting that, in general, toeah value of one of the dihedrals � and � there orrespond two values of theother. After eliminating wi�1 from Eq. (11) using Eq. (5), sinewi = tan (�i=2 + Æi=2) = tan(�i=2) + tan(Æi=2)1� tan(Æi=2) tan(�i=2) = ui +�i1��iui (12)where we introdued � = tan(Æ=2), we arrive at a system of three biquadrati(quadrati in two variables) equations in ui = tan(taui=2):P1(u3; u1) := 2Xj;k=0 p(1)jk uj3uk1 = 0; (13)P2(u1; u2) := 2Xj;k=0 p(2)jk uj1uk2 = 0; (14)P3(u2; u3) := 2Xj;k=0 p(3)jk uj2uk3 = 0; (15)where the oeÆients p(1)jk , p(2)jk , and p(3)jk are de�ned in terms of the �xedangles �i, �i, �i, �i�1, and Æi�1. These oeÆients and all other oeÆientsthat follow below are derived in Appendix B.Before proeeding with solving this system, we address the expeted num-ber of solutions. Although the lassial Bezout theorem bounds the numberof zeros of a system of polynomial equations by the produt of their degrees(here 43 = 64), a sharper result, referred as the \Bernshtein-Kusnirenko-Khovanskii (BKK) Theorem" [35℄ is known, whih takes advantage of thefat that the above polynomials are not the most general 4th-degree polyno-mials in variables ui; i = 1; 2; 3 (e.g., terms like u4i , u3iuj or u2iujuk are not16



present) and gives for the above system the upper bound as 16. Althoughwe will not present the easy proof here, we must mention that this theoremis sharp, meaning that the number 16 is realizable for some sets of values ofthe oeÆients. In the following disussion we arry out the elimination ofvariables in two steps in a similar manner as in Ref. [12℄, taking advantageof the fat that eah polynomial is bivariate so that variables an be elimi-nated one at a time. The �nal univariate polynomial is of order 16. Giventhe previous disussion, no redundany an be present in this polynomial ingeneral and all 16 solutions have potential physial signi�ane. We havefound at most 10 real solutions when we introdue varianes in the peptidetorsion and bond angles, in ontrast to previous works [13, 12℄ in whih atmost 8 solutions were found in the rigid planar tripeptide ase. However,given the rarity of suh ases (3 in 1 million for the database we explored[36℄) robustness issues may play a role. This does not mean that exeptionalases may still not be found where the number of distint real solutions is16. We are urrently investigating this question.The method of resultants (see Appendix C) is used to redue the aboveequations to an equation for a single variable. In short, the variable u1 is�rst eliminated from Eqs. (13) and (14) to giveR8(u2; u3) = 4Xj;k=0 qjkuj2uk3 = 0; (16)and u2 is eliminated from Eqs. (15) and (16) to giveR16(u3) = 16Xj=0 rjuj3 = 0: (17)More spei�ally, Eq. (16) is obtained by rewriting Eqs. (13) and (14) asP1(u3; u1) = 2Xk=0Lk(u3)uk1and P2(u1; u2) = 2Xj=0Mj(u2)uj1;where Lk := Lk(u3) and Mj := Mj(u2) are themselves quadratis in u3 andu2, respetively. (See Appendix B.) 17



The resultant of the two biquadratis P1 and P2 whih eliminates u1, isgiven by the determinantR8(u2; u3) = ��������� L2 L1 L0 00 L2 L1 L0M2 M1 M0 00 M2 M1 M0 ���������= 4Xj;k=0 qjkuj2uk3 = 0: (18)We now write R8(u2; u3) as a quarti in u2 introduing the funtionsQj(u3), quartis in u3: R8(u2; u3) = 4Xj=0Qj(u3)uj2;and Eq. (15) as P3(u2; u3) = 2Xj=0Nj(u3)uj2;where the Nj are quadratis in u3. The �nal resultant, whih eliminates u2to give a degree 16 polynomial in u3 is given byR16(u3) = ��������������
N2 N1 N0 0 0 00 N2 N1 N0 0 00 0 N2 N1 N0 00 0 0 N2 N1 N0Q4 Q3 Q2 Q1 Q0 00 Q4 Q3 Q2 Q1 Q0

��������������= 16Xj=0 rjuj3 = 0: (19)One key advantage of the redution to polynomial form arried out inthe previous subsetions is the availability of reliable software for the de-termination of polynomial zeros. The solution an be arried out by eitherdiretly solving the polynomial equation, or by redution to the solution of ageneralized eigenproblem [21℄. For ompleteness we give a brief desriptionof both shemes below. In our studies, the diret solution has proved to bemore eÆient. 18



2.1.4 Diret solution and Sturm hainsWe use the polynomial solution pakage available from ACM [37℄. Thispakage uses Sturm's method [15℄ to determine the number of real zeroswithin an arbitrary interval. The intervals are biseted and re�ned until allthe solutions are put in separate, tight intervals. The solutions are thenre�ned using a seant method.2.1.5 Generalized eigenproblem formulationThe above polynomial equation an be formulated as a generalized eigen-problem. Following Manoha [21℄, we write R16(u3) as a determinant of amatrix polynomial with matrix oeÆients Sk:det 4Xk=0Skuk3! = 0; (20)whih is equivalent to det (Bu3 �A) = 0 (21)with B := 0BBB� I 0 0 00 I 0 00 0 I 00 0 0 S4 1CCCA ; A := 0BBB� 0 I 0 00 0 I 00 0 0 I�S0 �S1 �S2 �S3; 1CCCA (22)where all bloks are of size 6 � 6. The resulting generalized eigenproblem,u1BZ = AZ, an be solved with the LAPACK routine dggev.f, for example.It is also possible to take advantage of the sparsity of the matries A, B, ifdesired.2.2 Generalizations of the method2.2.1 Non-ontiguous C� atomsAs is lear in Fig. 1, the loop losure proess involves three rotations aboutthe axes C�i{C�i+1 (i = 1; 2; 3) and three onstraints relating these rotationsthat ensure that the bond angles between the two rotatable bondsNi{C�i andC�i{Ci at the C�i are set. The hain of atoms intervening between the C�i isrotated rigidly. The problem is ompletely haraterized by giving the angles19



Figure 5: General hain loop losure.�i between the virtual bonds (whih, together with one of the edges, say C�i{C�i+2, ompletely haraterize the triangle C�i, C�i+1, C�i+2), the angles �i�1,�i formed by the rotatable bonds at eah C�i and the edges of that triangle,as well as the dihedrals Æi. Nowhere in this onstrution is any assumptionmade about the intervening struture, nor are any suh assumptions impliitin the derivation of the loop losure equations. Therefore the algorithm anbe applied without modi�ation to moves involving arbitrary triads of C�atoms (Fig. 5), i.e., the angle parameters �i, �i, �i, and Æi that ompletelydetermine the problem are de�ned in the same way as in Figs. 3 and 4 (a)from the three atoms at eah vertex of the C� triangle. This is a new featurerelative to other algorithms. Of ourse more general moves beome possiblenow, where some of the intervening dihedrals are also hanged, modifying theparameters of the basi triangle. To illustrate this additional exibility weonsider in the next subsetion the simplest suh move, namely the hange ofone additional dihedral. This introdues a ontinuous DOF to the problem,and it forms the basis of a Monte Carlo move.
20



Figure 6: Deformation of C� triangle due to a dihedral (�) perturbation.Changes in �i angles due to the triangle deformation are shown.2.2.2 Additional dihedral angleWe now onsider a method of �nding alternative loal strutures when anarbitrary dihedral angle is hanged. Six angles need to be adjusted to om-pensate the hange suh that the hain struture is unhanged beyond theloal region. Conerted angle perturbations of this kind an be used aselementary moves in Monte Carlo simulations to inrease the sampling eÆ-ieny. A simple way is to adjust 6 onseutive angles adjaent to the driverangle [7℄. The terminal atom position is hanged (either C�1 or C�3 in Fig.1) in this ase, and the 6 angle loop losure problem an then be solved withthe hanged C� triangle geometry. Here we desribe a more general andexible method of ompensating the angle hange, in whih 6 dihedrals tobe adjusted are allowed to be separated in pairs arbitrarily in sequene, andthe driver angle an be plaed anywhere in between the adjusting dihedralpairs.Fig. 6 shows a ase in whih the driver angle � is plaed on the lefthand side of the C� triangle, as an example. As before, we onsider three�i rotations separately, and then apply the �i onstraints. This is possiblebeause the net e�et of the driver angle rotation in our simpli�ed piture21



is to hange some of the parameters for the C� triangle geometry that areindependent of �i rotations. The geometri parameters for the base of thetriangle, C�3C�1; �3; �3, are invariant beause they are �xed by onstraints,and those for the right side of the triangle, C�2C�3; �2; �2, are also invariantbeause rotation due to the angles on the left side does not hange the relativeorientation of the atoms on the right. Those for the left side, C�1C�2; �1; �1,hange beause the driver angle rotates N2 and C�2, but not C�1 and C1.Due to the hange in C�1C�2, ẑi (i = 1; 2) and �i (i = 1; 2; 3) hange. Eq.(8) an be then derived with the hanged parameters.These exible onerted loal moves are expeted to improve eÆieny ofonformational searh. A Monte Carlo with Minimization method has beenemployed together with the onerted moves desribed above, and severalfoldimprovement in eÆieny has been observed ompared to existing searhmethods (See Setion 3.3).2.3 Bond angle perturbationsSo far we have �xed bond lengths, bond angles, and peptide torsion anglesat their anonial values in the loop losure algorithm, although there is nolimitation on what spei� values have to be used. However, real proteinsexhibit a range of values depending on their hemial environment. When therigid loop losure method is used to sample strutures for real proteins, somestrutures annot be sampled if the exibility in bonds and angles is ignored.This fat was �rst notied by Bruoleri and Karplus (BK) [24℄. To test howmuh the rigid sampling an over the real protein struture spae, three-residue strutures were deleted arti�ially from the Top500 database of highresolution, non-redundant protein strutures [36℄, and our exat loop losurealgorithm was used to �ll the gaps. About 27.5 % of the gaps ould not be�lled with the rigid sampling. (The bond lengths and angles used are NC� =1:45 �A, C�C = 1:52 �A, CN = 1:33 �A, 6 NC�C = 111:6o, 6 C�CN = 117:5o,and 6 CNC� = 120:0o.) BK developed a searh method to �nd minimal bondangle variations to lose a given loop. Our method is used to vary peptidetorsion angles as well as bond angles, sine we now have a more generalformula. We also present a muh simpler, eÆient method of perturbingbond angles, where no extensive searh is involved.We �rst present a method in whih the minimum of the polynomial ismoved by angle hanges so that the minimum at least touhes the axis to giveroots, in a similar spirit to BK. The angles are perturbed by the minimum22



amount (so as to minimize the energy penalty). We then show a fastermethod that makes use of the knowledge of the diretion of angle hangethat maximizes the probability of having loop losure solutions. This methodonly determines the sign of angle hange, but not the minimum magnitude.2.3.1 Perturbation by angle searhThe minimum of the polynomial and the derivatives of the minimum withrespet to perturbed angles are omputed, and a steepest desent searh isperformed to bring down the polynomial minimum to equal to or less thanzero. A more sophistiated LBFGS minimization algorithm was tried, butthe eÆieny was similar. The steepest desent iteration is terminated whenloop losure solutions are found, pre-set maximum angle perturbations arereahed, or maximum number of iterations (set to 200) is reahed.The polynomial minimum is obtained by �nding roots of R016(u) = 0and omparing the polynomial values at the roots. The derivatives of theminimum with respet to perturbed angles are omputed by a �nite di�er-ene method. The minimum at the perturbed angles are omputed by aNewton-Raphson minimization starting from the urrent minimum. Severalparameters are introdued to aelerate the steepest desent iteration. Thestep size of the steepest desent minimization is inreased or dereased (bya fator of fi or fd) depending on whether the previous iteration dereasedor inreased the minimum. The initial step size is hosen so that the largestomponent of angle hange is equal to di. At eah iteration, the largest angleomponent hange is restrited to be at most dm. fi = 9, fd = 0:1, di = 0:1,and dm = 0:0001 were hosen by trial and error to maximize the number ofloop losure solutions for the ylopentapeptide example below. It is alsofound that angle perturbations prior to steepest desent help in �nding moreloop losure solutions. For example, when the C� triangle annot be formedor is formed marginally beause the base length C�1{C�3 is too short or toolong to be reahed with the anonial bond angles, the angles are perturbedby the maximum amount to to allow for longer or shorter base lengths. Inaddition, when it is found that there exists no solution for the two-one sys-tem for any vertex (see Setion 2.3.2 and Appendix A), angles are adjustedto maximize the overlap of the two-ones as in the next subsetion.
23



2.3.2 Simple perturbation methodWe now present a simple bond angle perturbation method that does notrequire searhing the bond angle spae, thus solving the loop losure problemonly one. This an be aomplished by examining the omponents of thesimple piture in Fig. 1. Fig. 9 (a) in Appendix A shows �i�1 rotation ofr̂�i�1 and �i rotation of r̂�i . Eah vetor traes a one, so we all it a two-one system. The two vetors have to satisfy the bond angle onstraint Eq.(7), and this limits the aessible ranges of �i�1 and �i values. These rangesdepend on the loal geometry determined by �i�1, �i, �i, and �i. Eah vertexof the triangle in Fig. 1 has a two-one system, so there are three two-onesin all. The loop losure solutions are determined by the intersetion of theallowed �i�1/�i regions in the three two-one systems. By onstrution, �idoes not hange the triangle geometry or any other parameters, but varies theaessible ranges of �i�1/�i. It is possible to determine whether to inrease orderease �i to maximize the aessible ranges at eah two-one, whih in turnmaximizes the overlaps of two-one systems, and the possibility of losing theloop. This is done by lassifying the two-one types depending on how theextrema of �i�1/�i are arranged, and determining the e�et of �i hange onthe extrema. The details are provided in Appendix A.3 Results and DisussionIn this setion we present an appliation of the angle perturbation methodin subsetion 3.1, then give two appliations of the analytial loop losure,to longer loop modeling and Monte Carlo Minimization, in subsetions 3.2and 3.3, respetively.3.1 Test of the angle perturbation methodsWe apply the perturbation methods presented in Setion 2.3 to the three-residue gaps arti�ially deleted from the Top500 strutures [36℄. When �xedanonial angle parameters are assumed and the loop losure algorithm isapplied to �ll the three-residue gaps, 22,981 (27.5 %) out of total 83,327gaps don't have loop losure solutions. (Those loops inluding proline havebeen exluded in this test.) The number of missed gaps dereases dramat-ially with the simple perturbation method of Setion 2.3.2: 1,249 (1.5 %)and 469 (0.56 %) with the maximum angle variation of 5 and 10 degrees,24



respetively. Note that only 3 NC�C angles have been varied here. The fullangle perturbation of Setion 2.3.1 misses 209 (0.25 %) and 23 (0.028 %)for the maximum allowed perturbation 5 and 10 degrees, respetively, when9 angles are varied (3 NC�C, 2 C�CN , 2 CNC�, and two peptide torsionangles). In summary, the simple perturbation method is suessful in over-ing most of the onformational spae realized in the database, and the fullangle perturbation an push the limit to almost perfetion. Computationtime inreases only a few perent even with the full searh method for thistest beause most of the loops have solutions, and only a few iterations areneeded for angle searh. Computation time inreases more with perturba-tions when there are more ases in whih loop losure solutions are not foundsuh as when applied to loop modeling or for exhaustive sampling as in theylopentapeptide example below.Next we onsider the ylopentapeptide Gly-Gly-Gly-Pro-Pro examplefor whih G�o and Sheraga [38℄ and Bruoleri and Karplus [24℄ sampledthe onformational spae. The two Pro � angles are frozen, the two Pro  angles are varied with a grid of 5 deg, and the remaining 6 Gly �/ torsionsare solved for. We use the same bond lengths and angle parameters asBK, and 346 loops are losed when no perturbation is used. BK losed1,507 and 1,565 loops with their fast and slow bond angle searh method,respetively, varying 9 bond angles with maximum variation of 5 degrees. Ourfull perturbation method loses 1,517 loops when the same 9 angles (3NC�C,3 C�CN , 3 CNC�, inluding two bond angles outside the C� triangle) arevaried with the same 5 degree maximum variation. Inluding perturbationsin the additional 3 peptide torsional angles loses 1,594 loops. Our full searhmethod is thus omparable to that of BK in the number of losed loops, andour ability to add the peptide torsion DOFs inreases the overage of theonformational spae slightly. The simple 3-angle perturbation loses 819losed loops, whih is twie as many as those obtained without perturbation(346), but only half of those obtained with full perturbation. The totalomputation time inreases steeply with inreasing perturbation level: 0.26,0.56, 17.6, and 24.0 seonds for no perturbation, simple 3-angle perturbation,9-angle, and 12-angle perturbations, respetively, when saled to an AMD1800+ MP proessor.
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3.2 Appliation to loop modelingAnalytial loop losure �nds a disrete set of loop onformations for a threeresidue loop, but a longer loop has a ontinuous set of possible losed looponformations. Sampling a longer loop therefore requires a strategy to samplethe extra DOFs to be oupled with the analytial loop losure. The extraDOFs ould be sampled either randomly or in an informed way. When thesampling is random, unfeasible onformations due to unfavorable �/ anglesor steri lashes would be sreened out in later stages of loop preditionalgorithms, but it would be more eÆient if suh strutures are exludedduring the loop sampling stage. We employ an existing loop onstrutionalgorithm [31℄ whih performs this by sampling in the allowed regions of the�/ map in a disrete manner and sreening possible side hain lashes usinga rotamer library. This algorithm (as implemented in the program PLOP[31℄) is used to build the N-terminal and the C-terminal branhes exept forthe three residue gap in the middle of a loop, and the analytial loop losurealgorithm is used to lose the branhes.The performane of our oupled algorithm is ompared to the reent workof Canutesu and Dunbrak alled CCD (yli oordinate desent) [39℄. TheCCD algorithm is a numerial loop losure algorithm whih is similar in spiritto the \random tweak" method [29℄, solving �rst-order equations iteratively,but it is more robust and eÆient. We take the same test set as in Table 2 ofRef. [39℄, whih onsist of 10 loops eah with lengths of 4, 8, and 12 residues(total of 30 loops) hosen from a set of non-redundant X-ray rystallographistrutures. The omparison is summarized in Table I. The average of the bestbakbone RMSD obtained from CCD is 0.56, 1.59, and 3.05 �A for 4, 8, and12 residue loops, respetively, with average omputing time per losed loopof 31, 37, and 23 milliseonds on an AMD 1800+ MP proessor. Our oupledalgorithm gives better average minimum RMSDs of 0.40, 1.01, and 2.34 �A,in almost two orders of magnitude less omputing time (0.56, 0.68, and 0.72milliseonds per loop when saled to the same proessor). In addition, theminimum RMSD for individual test loops is better for 25 out of the 30 asesin Table I. The onditions under whih we perform the omparison atuallydisfavor our algorithm beause we generate fewer loops. With CCD, theloops are obtained from 5000 trials (thus about 5000 loop andidates, giventhat the algorithm an lose the loops 99.8 % of the time). However with ouralgorithm, the exat number of loop andidates is not the ontrol parameterof the algorithm but rather the sampling resolution in the �/ map. As the26



4 residue loops 8 residue loops 12 residue loopsLoop CSJD CCD Loop CSJD CCD Loop CSJD CCD1dvjA 20 0.38 (4548) 0.61 1ruA 85 0.99 (2516) 1.75 1ruA 358 2.00 (4148) 2.541dysA 47 0.37 (2234) 0.68 1tqA 144 0.96 (1754) 1.34 1tqA 26 1.86 (3968) 2.491eguA 404 0.37 ( 170) 0.68 1d8wA 334 0.37 (1686) 1.51 1d4oA 88 1.60 (1802) 2.331ej0A 74 0.21 (1564) 0.34 1ds1A 20 1.30 (3506) 1.58 1d8wA 46 2.94 (3906) 4.831i0hA 123 0.26 ( 342) 0.62 1gk8A 122 1.29 (2362) 1.68 1ds1A 282 3.10 (1162) 3.041id0A 405 0.72 ( 528) 0.67 1i0hA 145 0.36 (1452) 1.35 1dysA 291 3.04 (2306) 2.481qnrA 195 0.39 (1064) 0.49 1ixh 106 2.36 (4448) 1.61 1eguA 508 2.82 (2106) 2.141qopA 44 0.61 (4284) 0.63 1lam 420 0.83 (2200) 1.60 1f74A 11 1.53 (3048) 2.721ta 95 0.28 ( 418) 0.39 1qopB 14 0.69 (3384) 1.85 1qlwA 31 2.32 (4780) 3.381thfD 121 0.36 (2958) 0.50 3hbD 51 0.96 (1838) 1.66 1qopA 178 2.18 (2014) 4.57Average 0.40 (1181) 0.56 Average 1.01 (2525) 1.59 Average 2.34 (2924) 3.05Table 1: Minimum RMSD (in �A) of the andidate loops with our algorithm(CSJD) and the CCD algorithm. CCD results are taken from Table 2 ofRef. [39℄. 5000 trials were performed per test loop with the CCD, so theminimum is among about 5000 losed loops. With CSJD, the number ofandidate loops is taken to be always less than 5000 for eah test loop, andshown in the parentheses.sampling resolution is inreased, the number of loop onformations inreases.For this omparison, we generate less than 5000 loop andidates for eah testase, sometimes far less, whih disfavors us in the omparison. The numberof loop andidates for eah test loop is also shown in Table I.The oupled algorithm is also ompared with the algorithm as presentedin Ref. [31℄ whih does not use the analytial loop losure and ontinues thedisrete �/ sampling instead to lose the loop, whih we all \numerial"losure here. When the same resolutions, thus the same sets of onformationsfor the residues outside of the 3-residue losure segment, are used, the aver-age best RMSD obtained is 0.29, 1.66, and 3.25 �A with omputation timeper loop of 0.73, 1.60, and 106 milliseonds. Exept for the short 4-residueloops, whih are easy both for the numerial and analytial losure due to thesmall number of DOFs, the analytial losure gives better RMSD in ordersof magnitude shorter time per loop onformation, espeially for the longest12 residue loops. This is expeted beause the analytial losure an losebranhes more eÆiently for the given sampling resolution for the branhes.The number of onformations generated by the analytial losure method(whih in essene has in�nite sampling resolution) is muh higher than thenumber generated by the algorithm without analytial losure. The averagenumber of losed loops with the numerial losure is 459, 236, and 42 for the4, 8, and 12 residue loops, respetively, ompared to 1181, 2525, and 292427



with the analytial losure at the �xed branh sampling resolutions. In thetests performed here, in whih the maximum number of loop andidates isheld �xed at 5000, this is atually disadvantageous for the analytial losure,beause more loops are generated using oarser sampling for the non-losureresidues. When a maximum of 5000 loops are generated, the numerial lo-sure thus gives better RMSD (0.27, 1.04, and 1.89 �A) although with longeromputing time per loop (8.5, 6.1, and 23 milliseonds). This implies thatthe optimal number of losed loops to be sampled is di�erent for the analyt-ial and numerial losure, and more loop andidates must be sampled withthe analytial losure. Clustering algorithms an be used to remove the re-dundanies in the andidates before more expensive re�nement and resoringsteps [31℄.Finally, adding the bond angle perturbations is found not to a�et thebest RMSD ompared to no perturbation, although more losed loops arefound. Produing more high quality loops by a biased perturbation thatsamples desired regions of �/ would be more useful for loop modeling.3.3 Appliation to loop optimization using Monte CarloMinimizationWe employ the loal moves desribed in Setion 3.2 as a perturbation strategyin the Monte Carlo Minimization (MCM) method of Li and Sheraga [40℄,and apply the method to the global energy minimization of a protein loop.MCM is a global optimization method by whih loal energy barriers anbe overome with energy minimization of the perturbed struture before aMetropolis riterion [41℄ is applied.We now take advantage of the fat that some steri barriers that arehard to overome by random moves of individual atoms ould be bypassedby oordinated moves of multiple atoms. It has been reported that addingsuh onerted moves in Metropolis Monte Carlo simulations improves thesampling eÆieny [2, 3, 5, 6, 7℄. Our loal moves are more general than thosepreviously applied to MC simulations, but it is straightforward to apply thesemoves to MC. The same Jaobian as in [3, 7℄ needs to be inluded to satisfythe mirosopi reversibility. Here we apply the onerted moves to MCMfor the �rst time, and show signi�ant improvement in eÆieny in �ndingthe global minimum.Several other strategies for loal moves have been applied to the loop28



optimization problem (see referenes in Ref. [42℄), and among these, LoalTorsional Deformation (LTD) [42℄ has been one of the most eÆient methodsof perturbing yli or loop strutures when ombined with MCM. In LTD,torsion angles are perturbed only loally, i.e., no bonds are rotated beyond theperturbed region. In addition, only those perturbations that keep the bondbetween the last perturbed atom and the �rst unperturbed atom within aring losure range (0.5 - 3.5 4 �A) are onsidered [42℄. In our approah, onetorsion angle (� or  ) in the loop is perturbed, and six other torsion angles(three pairs of � and  ) are adjusted to keep the perturbation loal. Theperturbed onformations thus do not have any large strains due to unrealistibond angles or bond lengths. Suh a move is ompared with LTD below.3.3.1 ResultsIt is not intuitively obvious whether using perturbations exatly satisfyinggeometrial onstraints (Exat Loop Closure, ELC) would be signi�antlymore eÆient than approximate perturbations like LTD, beause a physialenergy funtion an orret for the inaurate geometry in the proess ofenergy minimization. Figs. 7 and 8 show that the moves based on our ex-at loop losure (ELC) atually greatly enhane the performane of MCMompared to approximate LTD in �nding low energy onformations. Fig. 7illustrates that ELC �nds the (putative) global minimum about three timesfaster than LTD, and Fig. 8 shows that ELC has a muh higher probability of�nding the orret global minimum than LTD when the optimization startswith a random initial struture. The details on the simulations are presentedin Setion 3.3.2.If keeping the bakbone geometry within physially reasonable rangesimproves eÆieny, the same is expeted for side hains. We thus draw theside hain torsion angles from a rotamer library. The rotamer probabilitydistributions in the bakbone dependent rotamer library of Dunbrak et al[43℄ are used to perturb side hain torsion angles. This rotamer methodis ompared with \random" side hain perturbation method. Employing arotamer library improves the performane: average lowest energies foundafter 10 runs of 1000 MCM iterations with rotamer and random methodsare respetively, -2478.5 and -2477.2 kal/mol for ELC, and -2473.2 and -2463.7 kal/mol for LTD for the same initial loop struture as in Fig. 7.Computations in Figs. 7 and 8 were both performed with the side hainrotamer library. 29
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Figure 7: ELC �nds the putative global energy minimum more eÆientlythan LTD. 10 MCM runs (1000 iterations, or minimizations, for eah) areshown. Eah run starts from the same initial onformations, whih is 3.8 �Afrom the rystal struture. The ordinate represents the lowest energy foundup to that iteration number.
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3.3.2 MethodsThe energy funtion used is EEF1 [44℄ whih is the CHARMM 19 polarhydrogen fore �eld with a Gaussian impliit solvation model. An 8-residueloop (84-91) in Turkey egg lysozyme (pdb ode 135l.pdb) is taken for thisstudy beause the (putative) global minimum of this loop is loated verylose to the rystal struture (about 0.3 �A). The loop RMSD is measured asthe root mean square deviation in the main hain atoms of the loop when thethree stem residues on both sides of the loop are optimally superimposed.The L-BFGS-b algorithm [45℄ by Zhu et. al. is used for energy minimizationwith the gradient tolerane of 1 kal/mol�A.The details of modeling and parameters for both ELC and LTD are asfollows. Hydrogen atoms are modeled on the rystal struture and the stru-ture is energy minimized to remove bad ontats with harmoni onstrainson heavy atoms with the fore onstant 5 kal/mol. The resulting strutureis 0.1 �A from the rystal struture. All other atoms are �xed exept forthe loop atoms in MCM. The temperature parameter kT for MCM is setto 1 kal/mol for both ELC and LTD. In ELC, we hoose three residues inthe loop randomly whose �/ angles ompensate for the hange of a drivertorsion angle, whih is also hosen randomly within the triangle formed bythe three residues. The driver angle � is hanged with uniform probabilityin the range [� � f1�, � + f1�℄. f1 = 0:7 was found to be optimal. Out ofthe multiple loop losure solutions, the losest solution to the urrent stru-ture in RMSD is seleted for the perturbation step in MCM. In LTD, fouronseutive �/ angles are perturbed with uniform probability in the range[�� f2�, �+ f2�℄, where f2 = 0:8 was found to be optimal. We also tried 3-4one or two onseutive angle movements following Ref. [42℄, but they wereless eÆient. However, it has to be mentioned that omparisons of algo-rithms is not always straightforward, with a lot of parameters and tehnialdetails that an be varied. For both LTD and ELC, eah side hain is per-turbed independently with the probability 1/8, and the side hain rotameris seleted from the bakbone dependent rotamer library with the bakbonedependent probability. The random side hain perturbation method perturbseah side hain torsion angle independently with the probability 1/8, and theangle value is drawn from a uniform range around the urrent value [�� f�,�+ f�℄, where f = f1 for ELC and f = f2 for LTD.
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4 ConlusionsThe bonded near-neighbor fores in a protein an be grouped into roughlythree ategories with respet to strength: hard fores assoiated with bondlengths, intermediate fores assoiated with bond angles, and soft fores as-soiated with the �/ dihedrals and side hain angles. The fores assoiatedwith the ! dihedral of the peptide bond an be plaed in the intermediaterange. In onsidering a polypeptide hain it is tempting to onentrate onmotions assoiated with the \soft" DOFs, i.e., those assoiated with �/ .The other DOFs an be assumed to vary to a limited degree, although theyan be �xed to arbitrary values as far as the geometri analysis is onerned.The onformational spae of a tripeptide unit (exluding N1 and C3) anbe seen as the Cartesian produt of two irles, i.e., a torus. Exploring theonformation spae of this simple system is straightforward in terms of the�/ dihedrals. However, adding a onstraint suh as �xing the distanebetween C�1 and C�3 introdues a relationship between the two dihedrals,Eq. (11), and this interdependene (\Rotation Transfer Funtion" or RTF)forms the basis of the analytial approah followed in this paper. In general,�xed-distane onstraints, whether resulting from NMR measurements forstruture determination or as part of a strategy for exploring onformationspae, imply sets of suh transfer funtions among angle DOFs and, whenombined with the other \almost-rigid" onstraints in a maromoleule, leadto a redution in the dimensionality of the spae of allowed motions. Al-lowing for small variability of additional DOFs provides a searh algorithmwith more room to maneuver, replaing barriers by narrow, passable orri-dors. Suh onstraint-ompatible onformations form the natural low-energyterrain that needs to be explored thoroughly. Choosing oordinates that de-sribe this terrain eÆiently, is an essential part of this exploration, sine theredution in dimension omes at the prie of ompliated topology. Clearly,these ideas need not be limited to bakbone motions, and extending themto side hains is essential if NMR derived distane onstraints are to be in-luded. In that regard we view the tripeptide loop losure and the variantspresented here as one of many possible appliations of the distane-anglerelationship expressed by the basi RTF.Several generalizations of the method presented here are possible. Forexample, the transfer funtions are Fourier polynomials in the other anglevariables as well. A redution of these to polynomial form would lead to anew polynomial system, now in several additional variables. The zero sets33



beome higher dimensional objets and new methods an be brought to bearfor �nding losure solutions. We hose to treat these variables by simplesearh methods here, but a more omplete searh would be required if forexample some energy riterion is inluded in the perturbation proess.The main advantage of a �= searh method is that it avoids searhingonformations that introdue distortions of the hard DOFs. The bene�t ofthe method in reduing the size of the searh spae is not seriously a�etedif small variations in additional DOFs are allowed. Thin slivers of on�gura-tions replae the �= hypersurfaes, so that the volume of the allowed spaeis still dramatially redued. In order to take full advantage of the intimateonnetion between the onerted moves idea and the true kinemati DOFsof the hain, a strategy of hoosing moves should be informed about the e�etof these moves vis. steri lashing with the rest of the hain as well as sidehain plaement. A possible extension ould be the inorporation of obstaleavoidane and other similar ideas from roboti motion planning.A Two-one systems and the Rotation Trans-fer FuntionIn the body frame of the three �xed C�i atoms, the C�iNi unit vetor r̂�i�1and the C�iCi unit vetor r̂�i lie on ones about the C�i�1C�i and C�iC�i+1virtual bonds, respetively, assuming �xed bond lengths, angles, and dihedral!. See Fig. 9 (a) The �i�1 and �i rotations are not independent beause thebond angle NiC�iCi must be �xed (or in a limited range in general). If we anthink of the ones of possible loations of the bonds about their orrespondingvirtual axes, then we must think of the angle onstraint between the twobonds as a �xed distane ondition between two generatries of these onesas shown in Fig. 9 (a). Clearly, to eah position of one bond there an beat most two positions for the other. Sine the four angles �; �; �; � areonstant, the alternative positions desribe the possible onformations of thetetrahedral formed by these four angles in Fig. 9 (b).The ranges of these positions an hange harater and transit from bothhaving one onneted omponent (Fig. 10 (a)) to where one of them splitsto two disjoint arms (Fig. 10 (b)).At eah two-one, the �i�1 and �i rotations are related by the �i bond34



Figure 9 (a): The two ones at a double rotatable bond juntion. The blakirle denotes the C� atom, the blak oval on the � -one the end of the C�Cunit vetor, and that on the �-one the end of C�N unit vetor. The dashedlines are the virtual bonds between the C� atoms, and the line between theovals shows the �xed distane onstraint.
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Figure 9 (b): The angles at a double rotatable bond juntion
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Figure 10 (a): A type of two ones (type IIb) in whih both C (on the � -one)and N (on the �-one) trae onneted segments. The blak irles denoteextreme positions of the N and C atoms. The white irle is the C positionorresponding to the N at the blak irle onneted to it by a line.
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Figure 10 (b): A two-one type (type IIIb) in whih the C atom (on the� -one) traes two disjoint segments, and N (on the �-one) traes the wholeirle.
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angle onstraint r̂�i � r̂�i�1 = os �; (23)whih results in Eq. (8) rewritten omitting subsripts for simpliity:os � + os � os � os� =sin�(sin � os � os � + os � sin � os �)+ sin � sin �(sin � sin� + os� os � os �): (24)To see the �{� relation more expliitly, � := �i is solved for given � :=�i�1, or � given � . Arranging Eq. (24) as at os � + bt sin � = t gives� = �o � aros(t=qa2t + b2t ); (25)where at = os� sin � sin � os � + sin� os � sin �;bt = sin � sin � sin�;t = os � + os� os � os � � sin� sin � os � os �;os �o = at=qa2t + b2t ;sin �o = bt=qa2t + b2t : (26)Given � , � is expressed as� = �o � aros(s=qa2s + b2s); (27)where as = os� sin � sin � os � + sin� sin � os �;bs = sin � sin � sin �;s = os � + os� os � os � � sin� os � sin � os �;os �o = as=qa2s + b2s;sin�o = bs=qa2s + b2s: (28)Eq. (25) has two solutions if jt=qa2t + b2t j < 1, one if = 1, and none if> 1. The range of � in whih solutions exist is determined by �1 and �239



whih are two roots of 2t = a2t + b2t , and likewise for � . The roots an alsobe found by noting the following geometrial relations:r̂�i�1 � ẑi = os(� � �);r̂�i � ẑi�1 = � os(� � �); (29)whih give os(� � �) = sin� sin � sin�� os � os�; (30)os(� � �) = sin � sin � sin�� os � os�: (31)Eqs. (30) and (31) have roots if the following onditions are satis�ed:[os(� � �) + os(� + �)℄[os(� � �) + os(�� �)℄ � 0; (32)[os(� � �) + os(� + �)℄[os(� � �) + os(�� �)℄ � 0: (33)We all the roots of Eqs. (30) and (31) �� and ��. When there exist roots,there are six two-one types depending on the sign (�) of eah root.I. No solutionIIa. �+, �+IIb. ��, ��IIIa. �+, ��IIIb. �+, ��IVa. �+, ��IVb. ��, �+It an be seen that in the ase of IIa, inreasing � inreases the allowablerange of �/� , and dereasing � inreases the range for IIb (See Fig. 10 (a)).This fat is used in the simple perturbation method desribed in Setion2.3.2. For other two-one types, the � values are inreased in the perturbationalgorithm.The �i�1{�i relationship is more ompliated than the �i{�i relationship(�i = �i + Æi), but more detailed understanding of the �{� relationship atthe juntion of the two rotatable bonds is useful. First, it makes it possible40



to predit the e�et of bond angle perturbations, as desribed in Setion 4.2.Seond, it also reveals the geometrial restrition on the side hain loation,espeially C�, due to the orrelated movement of Ni, C�i, and Ci atoms asdesribed by orrelation of the �i�1 and �i rotations. To demonstrate this,in Fig. 10, we show the �{� relationship and the orresponding C� positionsobtained from the anonial tripeptide geometry, and ompare with thoseextrated from the struture database Top500 [36℄. Figs. 11 (a) and 11 (b)show possible ranges for �{� and C� when � is �xed at 90o (this value of � hasthe maximum density in the � distribution in the database). The databasepoints are for � = 90 � 0:5o. Clearly the theoretial �{� urve omputedfrom the anonial bond angles shows exellent agreement with the databasepoints, the large majority of strutures lustering about the Ramahandranallowable portion of the �{� urve. (Fig. 11 (a)) Reonstruting C� usinganonial angles shows also lose agreement. (Fig. 11 (b)) This is the uni-modal ase (also illustrated in Fig. 10 (a)) and it is the most ommonlyourring on�guration in the database. Figs. 11 () and 11 (d) show an ex-ample of a bimodal ase (also illustrated in Fig. 10 (b)), for � = 111o, whihis lose to the seond density maximum in the distribution of �. Here wesee a small disrepany, indiating that the struture is stressed, i. e., someof the parameters are o� their typial values. The stress turns out to beeven stronger if one ompares the C� distribution in the database to that re-onstruted assuming typial angle values. We are studying these propertiesfurther, together with their possible appliation to side hain optimizationespeially when bakbone exibility is also taken into aount.B CoeÆients of the polynomialsEq. (8) is written as a double Fourier series0 = ai + bi os �i�1 + i os �i+ di os �i�1 os �i + ei sin�i�1 sin �i ; (34)where the oeÆients areai = � os �i � os �i os �i�1 os�ibi = sin�i sin �i�1 os �ii = sin�i os �i�1 sin �i41
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Figure 11 (a): The �{� relationship given by the Rotation Transfer Funtionfor � = 90o and typial values of � = 111:6o; � = 16:63o; � = 19:13o, plottedtogether with �-� values in the database.
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Figure 11 (b): Plot of the loation of C� as omputed from the �{� values inthe theoretial urve of Fig. 11 (a), against C� positions from the database,both shown in spherial oordinates.

43



-200 -100 0 100 200 300

σ

-300

-200

-100

0

100

200

τ

No perturbation
5 deg perturbation
-5 deg perturbation
From Database

Figure 11 (): Same as Fig. 11 (a), but for � = 111o. Two more urves with� perturbation of 5o and �5o are shown together, whih improve �t to thedatabase points. The ase is bimodal, although its harater shifts as � ishanged.
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Figure 11 (d): The C� plots orresponding to the situation in Fig. 11 ().di = os�i sin �i�1 sin �iei = sin �i�1 sin �i :Now introdue the half-angle formulas Eq. (9, 10) into (34) to arrive ata system of three biquadratis in wi, ui, i = 1; 2; 3;0 = ai + bi 1� w2i�11 + w2i�1 + i1� u2i1 + u2i+ di1� w2i�11 + w2i�1 1� u2i1 + u2i + ei 2wi�11 + w2i�1 2ui1 + u2i ;or equivalently:0 = ai(1 + w2i�1)(1 + u2i ) + bi(1� w2i�1)(1 + u2i ) + i(1 + w2i�1)(1� u2i )+ di(1� w2i�1)(1� u2i ) + ei4wi�1ui;Expanding and regrouping results in Eq. (11):Aiw2i�1u2i +Biw2i�1 + Ciwi�1ui +Diu2i + Ei = 0 (35)45



where Ai = ai � bi � i + di = � os �i � os (�i � �i�1 � �i)Bi = ai � bi + i � di = � os �i � os (�i � �i�1 + �i)Ci = 4ei = 4 sin �i�1 sin �iDi = ai + bi � i � di = � os �i � os (�i + �i�1 � �i)Ei = ai + bi + i + di = � os �i � os (�i + �i�1 + �i) :We now eliminate the variables wi: using the twist transformation, Eq. (12),wi = ui +�i1��iui ; �i = tan Æi=2 ;in Eq. (35) we �ndAi  ui�1 +�i�11��i�1ui�1!2 u2i+Bi  ui�1 +�i�11��i�1ui�1!2+Ci ui�1 +�i�11��i�1ui�1ui+Diu2i+Ei = 0(36)Finally, the derivation of the oupled biquadrati polynomials Eqs. (13),(14), and (15), is arried out by multiplying through by (1��i�1ui�1)2 andregrouping. Sine � = sin Æ1 + os Æ ; �2 = 1� os Æ1 + os Æ ;we multiply the resulting expressions through by (1+ os Æi�1)=2 to arrive atthe expression for the oeÆients:p(i)22 = � os �i � os �i�1 os (�i � �i)� os Æi�1 sin �i�1 sin (�i � �i)p(i)21 = �2 sin Æi�1 sin �i�1 sin �ip(i)20 = � os �i � os �i�1 os (�i + �i)� os Æi�1 sin �i�1 sin (�i + �i)p(i)12 = �2 sin Æi�1 sin �i�1 sin (�i � �i)p(i)11 = 4 os Æi�1 sin �i�1 sin �ip(i)10 = �2 sin Æi�1 sin �i�1 sin (�i + �i)p(i)02 = � os �i � os �i�1 os (�i � �i) + os Æi�1 sin �i�1 sin (�i � �i)p(i)01 = 2 sin Æi�1 sin �i�1 sin �ip(i)00 = � os �i � os �i�1 os (�i + �i) + os Æi�1 sin �i�1 sin (�i + �i) :46



Eqs. (13), (14), and (15) are now rewritten asP1(u3; u1) = 2Xk=00� 2Xj=0 p(1)jk uj31Auk1 = 2Xk=0Lkuk1;P2(u1; u2) = 2Xj=0 2Xk=0 p(2)jk uk2!uj1 = 2Xj=0Mjuj1;and P3(u2; u3) = 2Xj=0 2Xk=0 p(3)jk uk3!uj2 = 2Xj=0Njuj2;where Lk := Lk(u3) := 2Xj=0 p(1)jk uj3;Mj :=Mj(u2) := 2Xk=0 p(2)jk uk2;and Nj := Nj(u3) := 2Xk=0 p(3)jk uk3:The resultant of P1 and P2, whose vanishing guarantees a ommon rootin u1, is given by the determinantR8(u2; u3) = ��������� L2 L1 L0 00 L2 L1 L0M2 M1 M0 00 M2 M1 M0 ���������= ����� L2 L0M2 M0 �����2 � ����� L2 L1M2 M1 ����� ����� L1 L0M1 M0 �����Sine all the non-vanishing elements are produts of two quadratis in u2 andtwo quadratis in u3, the resultant is a biquarti in these variables, and hasthe form R8(u2; u3) = 4Xj;k=0 qjkuj2uk3 :Here, the 5 � 5 = 25 quantities qjk are found in terms of produts of theajk := p(1)jk and bjk := p(2)jk by expressing R8 as a sum of six tensor produts.47



We write R8 as a quarti in u2 introduing the funtions Qj, quartis inu3: R8 = 4Xj=0 4Xk=0 qjkuk3!uj2 =: 4Xj=0Qjuj2 :The �nal resultant, whih eliminates u2 to arrive at a degree 16 polynomialin u3 is given by: R16 = det(S)where the matrix S is given as:S(u3) := 4Xk=0Skuk3 = 0BBBBBBBB� N2 N1 N0 0 0 00 N2 N1 N0 0 00 0 N2 N1 N0 00 0 0 N2 N1 N0Q4 Q3 Q2 Q1 Q0 00 Q4 Q3 Q2 Q1 Q0
1CCCCCCCCA (37)so that Sk := 0BBBBBBBB� 2k 1k 0k 0 0 00 2k 1k 0k 0 00 0 2k 1k 0k 00 0 0 2k 1k 0kq4k q3k q2k q1k q0k 00 q4k q3k q2k q1k q0k

1CCCCCCCCA(where we de�ned ij := p(3)ij , with i3 = i4 = 0, i = 0; 1; 2). These matriesan be used diretly in the matrix polynomial approah whih �nds thesolutions as eigenvalues of a "ompanion" matrix penil. The omputationof the polynomial oeÆients for the diret approah requires some additionalomputations desribed below. We proeed by a Laplae expansion [46℄ ofEq. (37) by omplementary minors of order 3. First we rearrange the rowsof S:detS = ��������������
N2 N1 N0 0 0 00 N2 N1 N0 0 00 0 N2 N1 N0 00 0 0 N2 N1 N0Q4 Q3 Q2 Q1 Q0 00 Q4 Q3 Q2 Q1 Q0

�������������� = � ��������������
N2 N1 N0 0 0 0Q4 Q3 Q2 Q1 Q0 00 0 N2 N1 N0 00 N2 N1 N0 0 00 Q4 Q3 Q2 Q1 Q00 0 0 N2 N1 N0 :

��������������= � X1�i1<i2<i3�6(�1)i1+i2+i3 detS(1; 2; 3; i1; i2; i3) detS(4; 5; 6; i4; i5; i6)48



where S(1; 2; 3; i1; i2; i3) is the 3 � 3 submatrix of S formed by elements inrows 1; 2; 3 and olumns i1 < i2 < i3. Also, i4 < i5 < i6 and i3; i4; i5 di�erfrom i1; i2; i3. We introdue the 3� 5 submatrixP := 0B� N2 N1 N0 0 0Q4 Q3 Q2 Q1 Q00 0 N2 N1 N0 1CAand the 3� 3 minors T (i; j; k) formed by the olumns i, j and k of P . Then,the Laplae expansion of S in terms of the minors based on rows 1,2,3 andtheir omplements from rows 4,5,6 [46℄ an be written ompatly in the form:detS = T (1; 2; 3)T (3; 4; 5)� T (1; 2; 4)T (2; 4; 5) + T (1; 2; 5)T (2; 3; 5)+ T (1; 3; 4)T (1; 4; 5)� T (1; 3; 5)T (1; 3; 5) + T (1; 4; 5)T (1; 2; 5)The omputation of the resultant proeeds with the 9 quantities T (i; j; k)above. Sine they are sums of produts of terms of the form N�N�Q theyare polynomials in u1 of degree 8. We list the expressions for these belowin terms of the Ni; Qj involved. One the T 's have been omputed, we needto ompute the produts above, i.e. we need to ompute 6 binary produtsof polynomials of degree 8. A ertain amount of fatoring an be utilized tofurther redue the operational ount of this proedure.We give now the T (i; j; k):T (1; 2; 3) = ������� N2 N1 N0Q4 Q3 Q20 0 N2 ������� = N2 ����� N2 N1Q4 Q3 �����T (1; 2; 4) = ������� N2 N1 0Q4 Q3 Q10 0 N1 ������� = N1 ����� N2 N1Q4 Q3 �����T (1; 2; 5) = ������� N2 N1 0Q4 Q3 Q00 0 N0 ������� = N0 ����� N2 N1Q4 Q3 �����T (1; 3; 4) = ������� N2 N0 0Q4 Q2 Q10 N2 N1 ������� = �N2 ����� N2 N1Q2 Q1 ������Q4N0N1T (1; 3; 5) = ������� N2 N0 0Q4 Q2 Q00 N2 N0 ������� = �N2 ����� N2 N0Q2 Q0 ������Q4N2049



T (1; 4; 5) = ������� N2 0 0Q4 Q1 Q00 N1 N0 ������� = �N2 ����� N1 N0Q1 Q0 �����T (2; 3; 5) = ������� N1 N0 0Q3 Q2 Q00 N2 N0 ������� = �N1 ����� N2 N0Q2 Q0 ������N20Q3T (2; 4; 5) = ������� N1 0 0Q3 Q1 Q00 N1 N0 ������� = �N1 ����� N1 N0Q1 Q0 �����T (3; 4; 5) = ������� N0 0 0Q2 Q1 Q0N2 N1 N0 ������� = �N0 ����� N1 N0Q1 Q0 �����From these expressions, whose omputation involves only 4 distint 2 � 2determinants, we an ompute the �nal polynomial. This omputation anbe done analytially, by deriving the lengthy expressions for the oeÆientsof the �nal polynomial in terms of the oeÆients of the original polynomi-als. These analytial expressions an be useful, espeially if one wants tostudy the e�et of varying parameters on the behavior of the solution of thetripeptide loop losure. For the alulations reported in this paper, the om-putation of the oeÆients was done numerially. In this ase, it is optimalto ompute the 8-th degree polynomials assoiated with eah of the T (i; j; k)and then ompute the 6 polynomial produts (whih an be easily reduedto 5 polynomial multipliations with appropriate fatorizations).C Systems of polynomials and ResultantsThe resultant of a system of polynomials in several variables is a neessaryand suÆient ondition for the existene of a ommon solution. For twopolynomials, Fm(u) and Fn(u) of degreesm and n, to have a ommon solutionu they must have a fator in ommon, i.e. there must exist polynomials g(u)and h(u) of degrees � n� 1 and � m� 1 respetively suh thatgFm + hFn = 0 :This leads to a system ofm+n linear homogeneous equations for determiningthe oeÆients of g and h, and the resultant is the determinant of the matrix50



assoiated with that system. We demonstrate how this works for two seondorder equations in a single variable. Letf1(u) = a2u2 + a1u+ a0 = 0f2(u) = b2u2 + b1u+ b0 = 0 :If these have a ommon root, say u�, they must be of the formf1(u) = a2(u� u�)(u� u1) = 0f2(u) = b2(u� u�)(u� u2) = 0so that there exist two polynomials of degree 1, g(u) = b2(u�u2) and h(u) =�a2(u� u1) suh that g(u)f1(u) + h(u)f2(u) = 0 : (38)Sine the roots are assumed unknown, we simply writeg(u) = g1u+ g0 ; h(u) = h1u+ h0and Eq. (38) beomes(g1u+ g0)(a2u2 + a1u+ a0) + (h1u+ h0)(b2u2 + b1u+ b0) = 0or, grouping like powers of u together(g1a2+h1b2)u3+(g1a1+g0a2+h1b1+h0b2)u2+(g1a0+g0a1+h1b0+h0b1)u+(g0a0+h0b0) = 0whih an be written in the equivalent form� g1 g0 h1 h0 �0BBB� a2 a1 a0 00 a2 a1 a0b2 b1 b0 00 b2 b1 b0 1CCCA0BBB� u3u2u1 1CCCA = 0so that the left and right null vetors give, respetively, the oeÆients of thetwo fator polynomials and the (ommon) zero of the original pair. The rankde�ieny of the oeÆient matrix (and the vanishing of its determinant, i.e.,the resultant) is the neessary and suÆient ondition for the existene ofthese null vetors. 51



One the vanishing of the determinant above has been established, �ndingu is straightforward; disarding the third equation implied above for the rightnull-vetor (sine it is dependent on the others), and moving the olumnassoiated with the omponent 1 to the right hand side, we solve the resultingsystem for u using Cramer's rule:
u = ������� a2 a1 00 a2 �a00 b2 �b0 �������������� a2 a1 a00 a2 a10 b2 b1 �������The above tehnique is applied to Eqs. (18) and (19) to give u2 and u1,one u3 is obtained:

u2 =
������������ N2 N1 N0 0 00 N2 N1 N0 00 0 N2 N1 00 0 0 N2 �N00 Q4 Q3 Q2 �Q0

������������������������ N2 N1 N0 0 00 N2 N1 N0 00 0 N2 N1 N00 0 0 N2 N10 Q4 Q3 Q2 Q1
������������
;

where Nj and Qj are funtions of u3 as desribed in Appendix B, and
u1 = ������� L2 L1 00 L2 �L00 M2 �M0 �������������� L2 L1 L00 L2 L10 M2 M1 ������� ;where Lj and Mj are funtions of u3 and u2, respetively, also given inAppendix B. 52
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