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Abstract 

In proteins, the proline ring exists predominantly in two discrete states. However, there is also a 

small but significant amount of flexibility in the proline ring of high-resolution protein structures. 

We have found that this sidechain flexibility is coupled to the backbone conformation. To study 

this coupling, we have developed a model that is simply based on geometric and steric factors, and 

not on energetics. We show that the coupling between ϕ and χ1 torsions in the proline ring can be 

described by an analytic equation that was developed by Bricard in 1897, and describe a computer 

algorithm that implements the equation. The model predicts the observed coupling very well. The 

strain in the Cγ-Cδ-N angle appears to be the principal barrier between the UP and DOWN pucker. 

This strain is relaxed to allow the proline ring to flatten in the rare PLANAR conformation.  
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Introduction 

We are interested in understanding the variations in the conformations of the proline ring that are 

observed in the Protein Data Bank. It is well known that the proline ring exists in two predominant 

states (Ramachandran et al. 1970; Altona and Sundaralingam 1972). However, a recent study has 

found that within these states in peptides, there is a significant amount of flexibility (Chakrabarti 

and Pal 2001). This flexibility is coupled directly to the backbone. What is the nature of this 

coupling? To answer this question, we have measured proline ring conformations in high-

resolution protein structures, and we give a detailed analysis of the degrees of freedom in the 

proline ring. Our modeling strategy is based on the Bricard equation of the flexible tetrahedral 

angle (Bricard 1897). It has recently been used to solve the problem of tripeptide loop closure 

(Coutsias et al. 2004). Here, we apply the Bricard equation to the five-membered ring of proline to 

generate proline ring conformations. We test our model against the observed structures of the 

proline ring. 

DeTar & Luthra (DeTar and Luthra 1977) argued that the proline ring exists in essentially two 

discrete states, even though proline is a five-membered ring, which has, in principle, a continuum 

of available conformations (Altona and Sundaralingam 1972). There is also some evidence of a 

rare PLANAR conformation (EU 3-D Validation Network 1998). These discrete states are known 

as the UP and DOWN puckers of the proline ring and have been reproduced in force-field 

calculations (Ramachandran et al. 1970; DeTar and Luthra 1977). However, as these calculations 

use generic force fields, constraints due to geometry cannot be separated out from constraints due 



to other energetic factors. Using our analytical approach, we can determine which constraints are 

due to geometry and which are due to other energetic factors. 

Proline is unique amongst the naturally-occurring amino acids in that the sidechain wraps around 

to form a covalent bond with the backbone, severely restricting the backbone. Because of the 

restricted backbone, proline is used in nature in many irregular structures such as β-turns and α-

helical capping motifs (MacArthur and Thornton 1991; Chakrabarti and Pal 2001; Bhattacharyya 

and Chakrabarti 2003) and proline restricts the backbone conformation of neighboring residues 

(Schimmel and Flory 1968; MacArthur and Thornton 1991). Modeling these structural motifs 

requires an accurate description of the proline ring. There have been many force-field calculations 

of the proline ring (Ramachandran et al. 1970; DeTar and Luthra 1977; Summers and M. 1990; 

Némethy et al. 1992). Whilst the restriction on the ϕ torsion angle has been reproduced 

(Ramachandran et al. 1970; Summers and M. 1990), the coupling of the backbone to the proline 

ring has not. Modeling the coupling and flexibility in the proline ring can be important, for 

example in constrained ring peptides (unpublished results). Our geometric model of the proline 

ring captures both these features. It is an efficient algorithm that should be easily implemented in 

models of structural motifs involving proline.  



 

Results  

Proline ring conformations in the PDB 

In order to determine the conformations of proline, we chose a high-resolution subset of the PDB 

(Berman et al. 2000) provided by the Richardson lab (Lovell et al. 2003) of 500 non-homologous 

proteins. These proteins have a resolution of better than 1.8 Å where all hydrogen atoms have 

been projected from the backbone and optimized in terms of sidechain packing. Following the 

Richardsons, we eliminate conformations having a B-factor greater than 30 and we only accept 

proline residues that contain all atoms, including the hydrogens. We define the trans-Pro isomer 

by ω: 90° < ω < 220°. Due to the predominance of the trans-Pro isomer (4289 counts) over the 

cis-Pro isomer (236 counts), we have focused mainly on the trans-Pro isomer.  

In the proline ring, there are five endo-cyclic torsions (χ1, χ2, χ3, χ4, and χ5) (Figure 1a). If we 

assume planar trigonal bonding at the N atom and tetrahedral bonding at the Cα atom then ϕ = χ5 - 

60°. This is approximately satisfied as the observed relationship between the χ5 and ϕ torsions are 

relatively linear (Figure 1b; see also (Chakrabarti and Pal 2001)). The two discrete states in the 

proline ring are referred to as the UP and DOWN puckers (Milner-White 1990). UP and DOWN 

refers to whether the Cγ atom is found above or below the average plane of the ring. The four 

atoms Cα, Cβ, Cδ and N are found close to a planar conformation and can serve as the plane of the 

proline ring (Chakrabarti and Pal 2001). Another way to characterize the puckers is by the sign of 



the χ torsions, UP (negative χ1 and χ3, positive χ2 and χ4) and DOWN (positive χ1 and χ3, 

negative χ2 and χ4). In this study, we follow DeTar & Luthra (DeTar and Luthra 1977) in using 

χ2 to determine the pucker, especially since the observed values of χ2 have the largest magnitude 

amongst the χ torsions. However, we also want to include the PLANAR conformation in our 

analysis. Hence our definition is UP (χ2 > 10°), DOWN (χ2 < -10°), and PLANAR (-10° < χ2 < 

10°).   

Table 1 lists the parameters of the pyrrolidine ring in the trans-Pro isomer – the χ torsions, bond 

lengths and bond angles. The bond lengths have little variation; the standard deviation is 0.021 Å. 

The bond angles, on the other hand, do show some variation. The greatest variation is in the Cβ-

Cγ-Cδ angle, which has a standard deviation of 2.6°, almost twice that of some of the other angles. 

This angle is the most flexible because its central atom, the Cγ atom, is opposite to the atoms in the 

Cα-N bond, which, in turn, bond to three other heavy atoms. This is in agreement with DeTar & 

Luthra (DeTar and Luthra 1977) who found that most of the mobility in the proline ring observed 

in crystal structures is found in the Cγ and Cβ atoms, and to a lesser extent in the Cδ atom.  

The PDB shows significant correlations between the ϕ and χ torsions (Table 1). We plot some of 

these distributions, χ1 vs. ϕ (Figure 2a), χ3 vs. χ2 (Figure 3a) and χ4  vs. χ3 (Figure 3b). They 

consist of two lobes of high density with sparse density between the lobes. Although not evident 

in the correlations, we also found that the χ torsions are coupled to the bond angles (see Figure 4a-

c). The strongest coupling is found in Cβ-Cγ-Cδ vs. χ2 (Figure 4b), which has the shape of an 

inverted parabola. In the following sections, we model the observed couplings in the proline ring 

conformations. 



The average χ torsions are near zero, while their standard deviations are large. This is because the 

proline ring conformations are split into two dominant conformations. We see a double peak in the 

χ2 frequency distribution (Figure 4d), which makes the χ2 torsion a good discriminator between 

the UP and DOWN conformations. The peaks have an asymmetric shape. The ϕ torsion, on the 

other hand, is not a good discriminator of the UP and DOWN conformations (Figure 2c). Table 2 

lists the averages of the torsions and bond angles for the two different conformations. Between the 

UP and DOWN puckers, the bond angles are identical, and the χ2 values have virtually the same 

magnitude but different signs. The other χ torsions also change sign. 

Table 2 lists the averages and standard deviations of the torsions and bond angles of the cis-Pro 

isomer. The bond angles of the UP and DOWN pucker in cis-Pro are similar to those of trans-Pro. 

The χ torsions have the same sign but the magnitude differs by a few degrees. In the cis-Pro 

isomer, the DOWN pucker is massively favored over the UP pucker (see 2f). Also, for the DOWN 

pucker, ϕ has shifted further to the left in the cis-Pro isomer (Figure 2f) compared to the trans-Pro 

isomer (Figure 2c). This difference is due to a Cα
i-1-C steric clash that disfavors conformations of 

ϕ > -70°, and hence favors the DOWN pucker (Pal and Chakrabarti 1999). Another discrepancy 

appears in the correlation of χ5 vs ϕ (Figure 2e), where the observed distribution deviates for the 

most negative values of ϕ from the slope that corresponds to ideal trigonal bonding at the N atom 

and ideal tetrahedral bonding at the Cα atom. Otherwise, we find that the coupling between the 

internal χ torsions is consistent with those of the trans-Pro isomer (data not shown). 



The Bricard equation for the tetrahedral angle 

According to our PDB statistics, the bond lengths in the proline ring do not vary significantly. 

However, there is a small amount of variation in some of the bond angles. For the 5 atoms of the 

ring, there are 5 × 3 = 15 degrees of freedom (DOF). Six of these are due to the absolute position 

and rotation, which are irrelevant for us. Fixing 5 of the bond lengths imposes 5 constraints. Thus 

the number of degrees of freedom for a ring with fixed bond lengths is 15 – 6 – 5 = 4. If we also 

fix 3 of the bond angles, then we will have 4 – 3 = 1 DOF. We do this below, and we find that 

modeling proline ring conformations in one dimension is sufficient to understand the observations 

described in the previous section. 

We can identify a tetrahedral angle in the five-membered proline ring by placing the apex at the 

Cα atom. Thus the Cγ, Cδ, Cβ and N atoms define the different faces of the tetrahedral angle at Cα 

(Figure 1b). We can then make use of the Bricard(Bricard 1897) equation of the flexible 

tetrahedral angle. The Bricard equation relates two adjacent dihedral angles of the side faces (σ 

and τ) with the four apical angles (α, η, ξ and θ) of the tetrahedral angle (see Figure1b). It is 

 cos θ + cos η cos ξ cos α  = sin α ( sin ξ cos η cos σ + cos ξ sin η cos τ )  

                  + sin ξ sin η ( sin τ sin σ + cos α cos τ cos σ ) 

If we fix the α, η, ξ, θ apical angles of the tetrahedral angle then the Bricard equation gives the 

relationship between the σ and τ dihedral angles of the tetrahedral angle (Figure 1c) and the 

tetrahedral angle has one DOF. By introducing the projective transformation: u= tan σ/2, v = tan 



τ/2; the Bricard equation becomes a quadratic polynomial in both u and v. Therefore for each 

value of u (resp. v), there are in general two values of v (resp. u). Thus, there will in general be 2 

solutions when we solve for one of the dihedral angles σ or τ in terms of the other (Coutsias et al. 

2004). The full details of the derivation of the Bricard equation can be found in Coutsias et al. 

(Coutsias et al. 2004). 

How can we understand the DOF in the flexible tetrahedral angle? Assume first that the Cγ-Cδ 

distance is not fixed. As the other bond lengths are fixed, the triangles containing the α, η, and ξ 

angles are fixed (Figure 1b and 1c). Consequently, the two degrees of freedom are (i) the τ 

dihedral angle, or the rotation of the Cγ atom around the bond Cα-Cβ which preserves the triangle 

Cα-Cβ-Cγ, and (ii) the σ dihedral angle, or the rotation of the Cδ atom around the bond Cα-N which 

preserves the triangle Cα-Cβ-Cγ (cones in Figure 1c). The variation of τ and σ will change the Cγ-

Cδ distance. The conformations of a flexible tetrahedral angle correspond to the coupled values of 

τ and σ that give the fixed value of the Cγ-Cδ distance.  

Constructing proline ring conformations 

We now apply Bricard’s equation of the tetrahedral equation to the proline ring. We first fix the 

four apical angles (Figure 1b). This effectively fixes 3 of the 5 bond angles, where the remaining 2 

bond angles will be coupled. The choice of which bond angles to fix will determine the identity of 

the σ and τ dihedral angles.  



We first place the apex of the tetrahedral angle at the Cα atom. We then fix the bond angles 

centered on the N and Cα atoms as these atoms are part of the backbone, and are bonded to three 

other heavy atoms. Of the remaining three angles, the Cβ-Cγ-Cδ is the most flexible, so we leave 

this angle free. Of the two remaining angles, we fix the Cδ-N-Cα angle as this will the make the σ 

and τ dihedral angles identical to the χ1 and χ5 torsions of the proline ring (compare Figure 1a 

and 1c). As χ5 is related to ϕ by planarity, we now have an equation that relates ϕ to χ1. Thus, to 

construct proline ring conformations:  

1. We set the apical angles. For the proline ring, we use the parameters of the average 

conformation of the UP pucker in Table 2. We set α = N-Cα-Cβ = 103.7°,  η = ∠ Cα-Cβ-Cγ 

= 103.8° and ξ = Cδ-N-Cα = 111.3°. Keeping the bond angles and bond lengths fixed, we 

use basic trigonometry to calculate the Cα-Cγ and Cα-Cδ distances. These two distances, 

combined with the Cγ-Cδ bond length, give θ = Cγ-Cα-Cδ = 36.3° (Figure 1b). 

2. We have now obtained the 4 apical angles (α, η, ξ and θ) of the Bricard equation. For a 

given value of ϕ, we convert ϕ to χ5 = ϕ - 60° and solve the Bricard equation for χ1, 

which requires the following coefficients: 

  A = - cos α sin ξ sin η cos χ5 + sin α sin ξ cos η 

  B = - sin ξ sin η sin τ 

  C = cos θ - cos α cos ξ cos η - sin α cos ξ sin η cos χ0 



 Using these coefficients, we have a condition  

  If | C / √(A2 + B2) | > 1 then there is no solution for that value of ϕ.  

 Otherwise, we calculate  

  τ1 = arcos(C / √(A2 + B2)).  

  If B > 0 then  

   τ0 = -arcos( A / √(A2 + B2) )  

  else   

   τ0 = +arcos( A / √(A2 + B2) ).  

 For the UP pucker, we set χ1 = τ0 - τ1, and for the DOWN pucker, set χ1 = τ0 + τ1. 

Obviously, there is only one solution if τ1=0, which represents the inflection point 

between the UP and DOWN puckers. 

3. We now have the χ1 and χ5 torsions. Given the backbone atoms N, C, Cα atoms, we use 

the χ5 torsion, the bond lengths and angles of the proline ring (Table 1) to place the Cδ and 

Cβ atoms. Subsequently, we use the χ1 torsion to project the Cγ atom from the Cβ atom. 



Modeling the proline ring 

Using the algorithm above, we generated the set of allowed proline ring conformations, varying ϕ 

from -180° to 0° in steps of 0.1°. From this set of conformations, we extract the model curves. The 

model curves for the ring angles are cyclic, due to the quadratic nature of the solution (Figure 2a, 

3a&b, 4a&b). The two main lobes of observed density lie along different parts of the cyclic curves 

with the exception of the region of low density between the two lobes. The fit to the cyclic curves 

is most evident in the plot of χ4 vs. χ3 (Figure 3b) where the slopes of the two main lobes lie 

along the cyclic curve, which is different to the slope connecting the two lobes. We conclude that 

the flexibility within the UP and DOWN pucker is consistent with the flexibility in a five-

membered ring with fixed bond lengths and three fixed bond angles. As the χ2 distribution (Figure 

3a) and the ϕ distribution (Figure 2a) lie within the limits of the curve, the range of the torsions is 

determined by the geometry of the five-membered ring.  

Although the ϕ torsion is not a good discriminator between the UP and DOWN pucker, this is an 

advantage in generating proline conformations. In the graph of χ1 vs. ϕ, the lobes are found along 

the top and bottom of the cyclic model curve (Figure 2a). As the Bricard equation gives two 

solutions of χ1 for every value of ϕ, the two solutions will automatically correspond to the UP and 

DOWN pucker.  

Some of the properties of the model based on the flexible tetrahedral angle can be anticipated by 

the pseudo-rotation of cyclic rings (Altona and Sundaralingam 1972). However, there are 

advantages in our approach compared to the pseudo-rotation approach. Although the pseudo-



rotation implicitly contains the two-fold degeneracy in the proline ring geometry, our formulation 

shows this explicitly. Also, the pseudo-rotation angle formulas require 2 semi-empirical 

parameters. We can derive all necessary parameters directly from the bond lengths and angles of 

the proline ring. 

The strain responsible for puckering 

The reason that proline populates two distinct states, the UP and DOWN pucker conformations, 

must be due to some type of strain. Previous calculations have typically explored these 

conformations by force-field energy minimizations (Ramachandran et al. 1970; DeTar and Luthra 

1977; Summers and M. 1990; Némethy et al. 1992). However, such studies do not tell us what 

factors are due to sterics and geometry and what factors are due to other energies. The question is: 

what interaction in the proline ring gives the energy barrier between the UP and DOWN pucker?  

As most of the flexibility in the proline ring lies in the Cβ, Cγ and Cδ atoms, we focus on the 

variation of the Cα-Cβ-Cγ, Cβ-Cγ-Cδ and Cγ-Cδ-N angles. (Figure 4a-c). We use our model to 

investigate how the geometry of the closed five-membered ring restricts these angles. In the set of 

proline conformations generated in the section above, only the Cβ-Cγ-Cδ and Cγ-Cδ-N angles vary 

as we had fixed the Cα-Cβ-Cγ angle. We thus obtain the curves of Cγ-Cδ-N vs. χ2 (Figure 4c) and 

Cβ-Cγ-Cδ vs. χ2 (Figure 4b). For the Cα-Cβ-Cγ variation, we recalculate the cyclic curves where 

we fix the Cγ-Cδ-N angle instead of the Cα-Cβ-Cγ angle, and place the apex of the tetrahedral angle 

at the N atom. We thus obtain the curve of Cα-Cβ-Cγ vs. χ2 (Figure 4a).  



We first note that in all three model cyclic curves, the two lobes of observed density lie on the 

curves. The differences are found in the region of sparse density in the PLANAR region (χ2 ~ 0°). 

In the curves of Cβ-Cγ-Cδ vs. χ2 (Figure 4b) and Cα-Cβ-Cγ vs. χ2 (Figure 4a), the model curves 

follows the observed data, even in the sparse region χ2 ~ 0°. In contrast, the model curve of Cγ-Cδ-

N vs. χ2 deviates far below the data points near χ2 ~ 0° but coincides with the data at the UP and 

DOWN pucker.  

All three bond angles tend toward the tetrahedral bonding angle of 109.5°. The geometry of the 

closed five-membered ring restricts the Cγ-Cδ-N bond angle in the PLANAR region, but relaxes 

the Cγ-Cδ-N bond angle at the UP and DOWN pucker. In contrast, the Cβ-Cγ-Cδ and Cα-Cβ-Cγ 

angles in both the model curve and the data are quite relaxed in the PLANAR region, as the bond 

angles are close to the tetrahedral bonding angle. Thus, the ring geometry mostly restricts the Cγ-

Cδ-N bond angle in the PLANAR region. We conclude that the Cγ-Cδ-N bond angle strain at χ2 ~ 

0° is the main energetic barrier between the UP and DOWN pucker.  

Planar conformations of the proline ring 

We now analyze the PLANAR conformations of the proline ring. The models presented above fix 

three of the five bond angles, leaving two angles variable. However, the data shows that there are 

three mobile atoms, the Cβ, Cγ and Cδ atoms (Figure 1b). All three angles that are centered on 

these three atoms should be variable. To model this, we generate the family of curves giving the 

variation of Cβ-Cγ-Cδ vs Cγ-Cδ-N for each value of Cα-Cβ-Cγ. 



The Bricard equation only has solutions for the range 33° < Cα-Cβ-Cγ < 111° (see Figure 5a). For 

Cα-Cβ-Cγ angles approaching the lower limit at Cα-Cβ-Cγ = 33°, the curves get larger. These 

conformations have completely unrealistic bond angles. The limit at Cα-Cβ-Cγ = 111° corresponds 

to a completely flat proline ring. For values of Cα-Cβ-Cγ angles approaching the limit at 111°, the 

curves get smaller, which in the graph of χ1 vs. ϕ (Figure 5a, compare with Figure 2a) approaches 

the point ϕ = -60° and χ1 = 0°. We plot the family of curves for Cβ-Cγ-Cδ vs. χ2 (Figure 5b, 

compare with Figure 4b) and Cγ-Cδ-N vs. χ2 (Figure 5c, compare with Figure 4c). The curve with 

the smallest cycle has the highest values of Cγ-Cδ-N. Thus, as the proline ring approaches the 

region χ2 ~ 0°, the proline ring strains the Cα-Cβ-Cγ angle to the maximum in order to relax the 

Cγ-Cδ-N steric strain. This flattens the proline ring, which in the χ1 vs. ϕ plot (Figure 5a), pushes 

the conformation towards ϕ = -60° and χ1 = 0°. This explains the pattern of sparse density 

between the two lobes in the PLANAR conformation (Figure 2a).  

Energy calculations of the barrier between the puckers 

As we have identified the Cγ-Cδ-N bond angle strain as the crucial interaction in the closed five-

membered ring, we calculate the energy of the ring using a standard Cγ-Cδ-N bond angle potential. 

We use E = 70 * ( (108.5 - Cγ-Cδ-N) π / 180 )2 kcal/mol (CHARMM22 parameters (Mackerell et 

al. 1998)). Using the set of allowed ring conformations generated above, we calculate the energy 

of this term. In Figure 4d, we plot energy vs. χ2 (grey) where the minimum of the energy curve 

coincides with the observed peaks in the χ2. Other energy terms did not improve the match where 

for example, differences in Lennard-Jones terms were negligible. We also plotted the energy vs. ϕ 

for the UP and DOWN puckers (Figure 2c). The minimum energy at ϕ ~ -80° for the UP pucker is 



reasonably close to the observed peak for the UP pucker. However, the minimum energy at ϕ ~ -

40° for the DOWN pucker is not at the observed distribution of the DOWN pucker. This 

discrepancy is due to the Oi-1-O steric clash in the backbone (Ho et al. 2003) that disfavors values 

of ϕ > -50° and thus pushes the minimum of the DOWN pucker towards ϕ  ~ -60°. 



Discussion 

We have shown that the conformations of the pyrrolidine ring of proline can be understood in 

terms of the geometry of a five-membered ring. This geometry can be reduced to that of a flexible 

tetrahedral angle, which we solve using the Bricard equation. Using this equation, we present an 

algorithm for generating proline conformations from a protein backbone. This algorithm can be 

easily generalized to other five-membered ring systems. 

The Bricard equation for proline gives an analytical relationship between the backbone ϕ and χ1 

torsions of the proline ring. This relationship captures the coupling of the backbone to the proline 

ring. For a given backbone conformation, the algorithm generates two symmetric conformations 

of the proline ring, which correspond to the UP and DOWN puckers. Adding only a Cγ-Cδ-N bond 

angle energy term (from CHARMM) is sufficient to explain the barrier between the UP and 

DOWN puckers. This is an exact algorithm, which only requires knowledge of the bond lengths 

and angles, and does not require any energy minimization. We show that the method describes 

well the conformations of proline that are observed in a high-resolution dataset from the Protein 

Data Bank. 
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Tables 

Table 1. The parameters of the pyrrolidine ring of proline in the trans-Pro isomer and correlations 

with the ϕ and χ torsions.  

 <x> ± σn ϕ χ1
 χ2

 χ3
 χ4

 
χ5 

 
ϕ -64.2 ± 10.0° 1.00 -0.66 0.57 -0.49 0.28 0.81 
χ1 -0.1 ± 26.8°  1.00 -0.99 0.96 -0.83 -0.78 
χ2 2.1 ± 36.5°   1.00 -0.99 0.91 0.67 
χ3 -3.3 ± 32.2°    1.00 -0.95 -0.57 
χ4 3.5 ± 17.3°     1.00 0.30 
χ5 -2.2 ± 9.8°      1.00 
 
N-Cα 1.464 ± 0.012 Å 0.07 -0.05 -0.08 0.07 -0.07 0.06 
Cα-Cβ 1.530 ± 0.012 Å -0.05 -0.04 0.00 0.00 0.01 -0.02 
Cβ-Cγ 1.501 ± 0.021 Å -0.03 0.04 -0.01 0.02 -0.03 0.05 
Cγ-Cδ 1.513 ± 0.017 Å -0.06 -0.02 0.04 -0.04 0.03 -0.01 
Cδ-N 1.476 ± 0.011 Å -0.03 -0.04 0.02 -0.02 0.02 -0.02 
   
Cα-Cβ-Cγ 103.9 ± 1.8° -0.03 0.06 0.02 -0.02 0.02 -0.01 
Cβ-Cγ-Cδ 104.5 ± 2.6° -0.13 0.01 0.12 -0.11 0.09 -0.06 
Cγ-Cδ-N 102.7 ± 1.3° -0.12 0.01 0.17 -0.18 0.17 -0.16 
Cδ-N-Cα 111.5 ± 1.2° -0.12 0.06 0.11 -0.11 0.11 -0.10 
N-Cα-Cβ 103.7 ± 1.4° 0.15 -0.02 -0.08 0.07 -0.06 0.04 

  



Table 2. Torsions and bond angles [°] for the different puckers.  

 PLANAR  UP  DOWN 
 
    trans-PRO  
 
counts 216 2160 1913  
 
ω 180.5 ± 5.3 179.5 ± 3.6 180.5 ± 4.0 
 
ϕ -66.8 ± 11.1 -58.9 ± 7.3 -69.8 ± 9.3 
χ1 4.6 ± 12.2 -24.9 ± 8.3 27.5 ± 7.5 
χ2 -3.1 ± 10.2 36.7 ± 8.6 -36.3 ± 7.7 
χ3 0.4 ± 6.0 -33.8 ± 7.3 30.6 ± 7.7 
χ4 2.7 ± 7.0 18.6 ± 6.6 -13.6 ± 8.0 
χ5 -4.6 ± 11.2 3.7 ± 7.2 -8.6 ± 7.8 
 
Cα-Cβ-Cγ 106.7 ± 1.8 103.8 ± 1.7 103.7 ± 1.6 
Cβ-Cγ-Cδ 108.9 ± 1.8 104.0 ± 2.4 104.4 ± 2.4 
Cγ-Cδ-N 104.7 ± 1.5 102.6 ± 1.3 102.8 ± 1.2 
Cδ-N-Cα 112.4 ± 1.5 111.3 ± 1.1 111.6 ± 1.1 
N-Cα-Cβ 105.3 ± 1.7 103.7 ± 1.4 103.4 ± 1.3 
 
    cis-PRO  
 
counts  19   29  188    
 
ω -3.35 ± 5.35 -1.80 ± 4.42 1.01 ± 5.80 
 
ϕ -88.2 ± 16.1 -68.5 ± 10.2 -82.2 ± 10.3 
χ1 25.5 ± 11.7 -18.0 ± 11.2 33.9 ± 5.7 
χ2 -18.1 ± 9.2 32.6 ± 11.6 -38.4 ± 6.2 
χ3 3.8 ± 4.8 -34.0 ± 8.9 27.6 ± 7.5 
χ4 13.3 ± 7.2 23.5 ± 6.3 -6.1 ± 8.3 
χ5 -24.5 ± 11.4 -3.7 ± 8.4 -17.3 ± 7.3 
 
Cα-Cβ-Cγ 104.7 ± 2.2 104.7 ± 1.6 102.8 ± 1.7 
Cβ-Cγ-Cδ 107.6 ± 1.7 104.3 ± 2.4 104.3 ± 2.0 
Cγ-Cδ-N 104.9 ± 3.1 102.2 ± 1.8 103.1 ± 1.3 
Cδ-N-Cα 110.5 ± 2.7 111.2 ± 1.2 111.4 ± 1.5 
N-Cα-Cβ 104.0 ± 3.1 103.7 ± 0.9 102.7 ± 1.5 



Figure Legends  

Figure 1. Schematic of the proline ring. (a) The torsions in the proline ring. χ5 and ϕ measure 

different torsions around the same central axis. (b) The tetrahedral angle in the proline ring has the 

apex at the Cα atom and the N, Cβ, Cγ and Cδ atoms define the faces of the tetrahedral angle. The 

apical angles α, η, ξ and θ are also shown. (c) After fixing α, η and ξ, the degrees of freedom 

consists of the σ and τ dihedral angles racing out two cones. Fixing θ will couple the values of σ 

and τ.  

Figure 2. Distributions involving the ϕ torsion. For the trans-Pro isomer, (a) Plot of χ1 vs. ϕ, the 

curves represent the model based on the flexible tetrahedral angle, (b) Plot of χ5 vs. ϕ where the 

line corresponds to conformations where there is ideal trigonal planar bonding at N and ideal 

tetrahedral bonding at Cα, (c) the distributions of ϕ for the DOWN pucker (red) and the UP pucker 

(yellow). (d), (e) and (f) are the corresponding plots for the cis-Pro isomer. The colors of the curve 

represent the UP pucker (red) and the DOWN pucker (yellow). The energy curve in (c) is due to 

the CHARMM Cγ-Cδ-N angle term. 

Figure 3. Correlations in the χ torsions. (a) χ3 vs. χ2 and (b) χ4 vs. χ3. The model curve passes 

through the two lobes of high density, where it is clear that the slope of the two lobes are 

determined by the model curve and is different to the curve formed by the sparse density of points 

in between. The colors of the curve represent the UP pucker (red) and the DOWN pucker 

(yellow). 



Figure 4. Bond angle strain in the proline ring as a function of χ2 for (a) Cα-Cβ-Cγ, (b) Cβ-Cγ-Cδ 

(c) Cγ-Cδ-N. In the disfavored region at χ2 ~ 0°, the model values of Cγ-Cδ-N are found 

significantly below the observed values. This is the key strain that separates the puckers. χ2 

frequency distributions for (d) the trans-Pro isomer (e) the cis-Pro isomer. The energy curve in (d) 

is due to the CHARMM Cγ-Cδ-N angle term. 

Figure 5. Family of curves for different values of Cα-Cβ-Cγ in (a) plot of χ1 vs. ϕ, (b) Cβ-Cγ-Cδ vs. 

χ2 and (c) Cγ-Cδ-N vs. χ2.  The parameterization of each curve is set for Cα-Cβ-Cγ in the range 50° 

< Cα-Cβ-Cγ < 110° in (a) 5° steps; and in (b) & (c) 2° steps. The curves with large cycles 

correspond to small Cα-Cβ-Cγ angles, whilst the curves with small cycles correspond to large Cα-

Cβ-Cγ angles As Cα-Cβ-Cγ approaches 111°, the curves in (a) collapse to the point χ1 = 0°, ϕ = -

60°, in (b) to χ2 = 0°, Cβ-Cγ-Cδ ~ 104°, and in (c) to χ2 = 0°, Cγ-Cδ-N ~ 109° and At this limit, the 

proline ring is planar. 
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Figure 5. Family of curves for different values of Cα-Cβ-Cγ in (a) plot of χ1 vs. ϕ, (b) Cβ-Cγ-Cδ vs. 
χ2 and (c) Cγ-Cδ-N vs. χ2.  The parameterization of each curve is set for Cα-Cβ-Cγ in the range 50° 
< Cα-Cβ-Cγ < 110° in (a) 5° steps; and in (b) & (c) 2° steps. The curves with large cycles 
correspond to small Cα-Cβ-Cγ angles, whilst the curves with small cycles correspond to large Cα-
Cβ-Cγ angles As Cα-Cβ-Cγ approaches 111°, the curves in (a) collapse to the point χ1 = 0°, ϕ = -
60°, in (b) to χ2 = 0°, Cβ-Cγ-Cδ ~ 104°, and in (c) to χ2 = 0°, Cγ-Cδ-N ~ 109° and At this limit, the 
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