
Algorithmic Search for Flexibility

using

Resultants of Polynomial Systems

Robert H. Lewis

Fordham University, New York

http://www.bway.net/˜lewis/

E. A. Coutsias

University of New Mexico

Albuquerque NM, USA

Abstract

This talk describes the recent convergence of four topics: polynomial

systems, flexibility of three dimensional objects, computational chemistry,

and computer algebra. We discuss a way to solve systems of polynomial

equations with resultants. Using ideas of Bricard, we find a system of

polynomial equations that models a configuration of quadralaterals that

is equivalent to some three dimensional structures. These structures are

of interest in computational chemistry, as they represent molecules. We

then describe and demonstrate an algorithm that examines the resultant

and determines ways that the structure can be flexible. We review some

ideas about flexibility, from Cauchy (1813) to Bricard (1893) to Connelly

(1977) to Steffan (1980).

1

Four themes:

• Flexibility of three dimensional shapes

- 2D examples (triangle, quadralateral)

- Cauchy (1812)

- Bricard (1897)

- Connelly (1978)

- Steffan (1979)

• Computational chemistry

- peptides

- E. Coutsias, University of New Mexico

• Systems of polynomial equations

- Bezout (1730 - 1783)

- Dixon (1867 - 1955)

• Computer algebra

2

Systems of Polynomial Equations

Everyone knows about systems of linear equations:

3x + 4y − 2z = 0

5x + 2y − 3z = 5

−x + 3y + z = −4

They become matrix problems. One way to solve is Cramer’s Rule:

Let M = [[3 4 -2

5 2 -3

-1 3 1]]

and

Let M ′ = [[0 4 -2

5 2 -3

-4 3 1]]

Then

x = Det(M ′)/Det(M) = (-18) / (-9) = 2

i.e., the system of 3 equations in 3 vars has been replaced by 1 equation

in 1 var

A x = B where B = Det(M ′) and A = Det(M)

y and z have been eliminated.

Same idea to solve for y, z.

Also Gaussian elimination, which finds x, y, z at once.

3

A variation is to allow parameters. For example, replace the equations

above with

3x + 4y − 2z = a

5x + 2y − 3z = b

−x + 3y + z = c

same idea, but M ′ now contains a, b, c. Answer is:

x = (11a − 10b − 8c)/(-9)

But what about polynomial equations?

Resultants

A method for solving systems of polynomial equations

f1(x, y, z, . . . , a, b, . . .) = 0

f2(x, y, z, . . . , a, b, . . .) = 0

f3(x, y, z, . . . , a, b, . . .) = 0

.

First Case: We have n equations in n − 1 variables x, y, z, We also

have a number of parameters a, b, c,

A resultant is a single polynomial derived from the system of poly-

nomial equations that encapsulates the solution (common zero) to the

system. We want to eliminate the variables and have one polynomial –

4

the resultant – in the parameters. For a common solution to the system,

it is necessary (and often sufficient) that this resultant vanish.

Second case: We have n equations in n variables xi, i = 1, n. Then

one of them, say x1, is considered a “parameter” to bring this into the

previous form. The resultant is therefore an equation in that one variable;

the others have been eliminated.

• The Sylvester Matrix is the best known way to compute a resultant.

Others: Macaulay, sparse, etc. (a big subject.)

• Better: Bezout, Cayley, and Dixon, via Kapur, Saxena, and Yang

As refined and expanded below to avoid the spurious factor problem,

this method has succeeded in solving many polynomial systems that oth-

ers have found intractible.

Analogy:

Resultants are like Cramer’s Rule.

Grobner Bases are like Gaussian elimination.

We will discuss:

• The Bezout-Cayley-Dixon-KSY resultant method.

• The spurious factor problem, and a method to attack it.

• Flexible polygons and polyhedra; applications.

• Algorithmic method to detect flexibility.

• Results and demos.

5

The Cayley-Dixon-Bezout-KSY Resultant Method

Here is a brief description. More details are in [KSY].

To decide if there is a common root of n polynomial equations in n − 1

variables x, y, z, . . . and k parameters a, b, ...

f1(x, y, z, . . . , a, b, . . .) = 0

f2(x, y, z, . . . , a, b, . . .) = 0

f3(x, y, z, . . . , a, b, . . .) = 0

.

• Create the Bezout-Dixon matrix, n× n, by introducing some new vari-

ables t1, . . . , tn−1 into the equations in a certain way.

• Compute cd = determinant of the Bezout-Dixon matrix (a function of

the new variables, variables, and parameters).

• Form a second matrix M by extracting the coefficients of cd relative to

the variables and new variables. This matrix can be large; its size depends

on the degrees of the polynomials fi. Its entries are polynomials in the

parameters only.

• Ideally, let dx = the determinant of M . If the system has a common

solution, then dx = 0. dx is the “Dixon Resultant” and involves only the

parameters.

• Problem: the second matrix need not be square, or might have det = 0

identically. Then the method appears to fail.

6

• However, we may continue [KSY], [BEM]: Find any maximal rank sub-

matrix; let ksy = its determinant. Existence of a common solution implies

ksy = 0.

• ksy = 0 is a not quite good enough; one must be aware of spurious

factors, i.e., the true resultant is usually only a factor of ksy.

All computations below were done with the author’s

computer algebra system Fermat [Lew], which excels as

polynomial and matrix computations of this sort. Recent

independent tests show that Fermat is the fastest system for gcd of mul-

tivariate polynomials. Fermat is available for Windows, Mac, Linux, and

Unix.

7

The Spurious Factor Problem

To emphasize the last point above: The solution we want is an

(often) small factor of the determinant ksy as described above. Often we

want very much to avoid computing the entire determinant because

(1) it is gigantic, sometimes too large to even be stored in RAM.

(2) even if we had it, we would want to factor it.

• We often wish to avoid simply computing the determinant of the second

Dixon matrix M . Instead we systematically begin to column normalize

the matrix M .

• To avoid creating large messy denominators (rational functions) we pull

out denominators from each row as soon as they arise. Then later we

factor out gcds whenever possible from the numerators in each row and

column.

• We keep track of all denominators and gcds so discovered. We check

often to see if some poly in the denominator list has a common gcd with

some poly in the numerator list; if so we divide it out. In the end, the

denominator list must be all 1. The product of the numerator list is

Det[M].

Simple example:

Given initially

M0 = (9 2

4 4)

numerators: denominators:

8

We factor a 2 out of the second column, then a 2 from the second row.

Thus:

M0 = (9 1

2 1)

numerators: 2, 2 denominators:

We change the second row by subtracting 2/9 of the first:

M0 = (9 1

0 7/9)

numerators: 2, 2 denominators:

We pull out the denominator 9 from the second row, and factor out 9

from the first column:

M0 = (1 1

0 7)

numerators: 2, 2, 9 denominators: 9

We “clean up” by dividing out the common factor of 9 from the numer-

ator and denominator lists; any 1 that occurs may be erased and the list

compacted. Since the first column is cannonically simple, we are finished

with one step of the algorithm, and have produced a one-smaller M1 for

the next step.

M1 = (7)

numerators: 2, 2 denominators:

The algorithm terminates by pulling out the 7:

numerators: 2, 2, 7 denominators:

9

As expected (since the original matrix contained all integers) the denom-

inator list is empty. The product of all the entries in the numerator list

is the determinant, but we never needed to deal with any number larger

than 9.

Notes:

• The numerator list is not unique. Had we started by factoring 4 out of

the second row at the first step, the final numerators would have been 4,

9.

• If the determinant is irreducible, the final list of numerators must be

trivial, i.e. just that one polynomial. But if it is not irreducible, there is

no guarantee that the final list of numerators will be nontrivial.

• The “clean up” step, in which we look for a common gcd among the

numerator and denominator lists, can be scheduled in various ways, and

this can have a noticeable affect on those lists. Frequent cleaning up tends

to keep the denominator list smaller.

• It is sometimes not necessary to run the algorithm to completion. For

one reason, it may be desirable to stop at a stage Mi when the numerator

list is rather large but the denominator list is empty. Perhaps a deter-

minant method applied to Mi is now more feasible. Another reason to

stop early is that by analyzing the original problem, one may recognize a

factor in the numerator list as the desired answer.

• We reiterate that the total CPU time with this method is not always

less than that of a standard determinant method; sometimes it is much

more. But there are cases when it is very successful indeed.

10

Flexibility in Polygons and Polyhedra

• A very old question.

• Consider triangles, quadralaterals, parallelograms. Rods connected by

pins that are free to pivot:

• Chemical models.

• Cauchy’s paper (1812). Convex polyhedra implies rigid.

• Bricard’s paper (1897). What if not convex? Octahedron. His three

examples are not embeddable in 3-space; they’re self-intersecting.

• So: question was left unanswered, do there exist flexible poyhedra in

3-space that “hold water”? Note: flexible means continuously movable,

not just “shaky” or infinitesimally movable.

• Robert Connelly (1978) gave first example, surprising a lot of people,

18 triangular faces.

• Steffen (1979) found a flexible polyhedron with only 14 triangular faces

and 9 vertices. Maksimov (1995) proved that Steffen’s is the simplest

possible flexible polyhedron composed of only triangles.

11

Why Do We Care?

Like many aspects of 19th century mathematics, all of this was con-

sidered passe for for most of the 20th century.

But now:

• robotics

• computational chemistry, protein folding

Disclaimer: I am not a chemist! Protein folding is a big field!

12

Algorithmic Approach

We want to write a program that will determine conditions for a geometric

figure to be flexible.

Bricard shows that his octahedron problem is equivalent to flexibility of

this two-dimensional problem of three quadralaterals:

Corners A, B, C, D, F are freely hinged. AD, DC, CB, BA, GF, FE, HI

are rigid rods. The joints at G, H, I, and E can pivot.

There are three ways for this to be flexible:

• all three are parallelograms.

• two are similar, other is parallelogram.

• two are “kites” (rhomboids).

Our Method: Label the sides e, b, s1, . . . , s9. Find equations re-

lating the sides to the three angles a, b, g at the base. Eliminate

most of the variables, get resultant. Find a way to tell from the

resultant if the figure is flexible.

13

Solution: Finding the equations is elementary. The variables are ca,

sa, cb, sb, cg, sg (sines and cosines). Label the vertices, write equations

for each distance:

cx := b + s9 ∗ cg;

cy := s9 ∗ sg;

gx := s7 ∗ ca;

gy := s7 ∗ sa;

hx := e + s8 ∗ cb;

hy := s8 ∗ sb;

....

ix := b + s3 ∗ cg;

iy := s3 ∗ sg;

[d] := [(sa2 + ca2 − 1,

(dx − cx)2 + (dy − cy)2 − s2
4,

sg2 + cg2 − 1,

(ix − hx)2 + (iy − hy)2 − s2
6,

sb2 + cb2 − 1,

(fx − gx)2 + (fy − gy)2 − s2
5)];

6 equations, 6 variables, 11 parameters. Three eqs. are quite messy!

Apply Dixon to the six equations in [d], eliminating all

variables but ca.

< first demo >

14

M is 44 × 44, rank 29. The method described above takes 45 minutes,

yields an array of numerators with more than 20 entries, ending with

number of terms:

..., 190981, 190981. The last two are equal.

The determinant of the 29×29 matrix, as the product of these, is gigantic,

not computable. The resultant res(ca) has 190981 terms, degree 14 in ca

(after dividing out factor of ca2 + 1) but only even exponents.

How to determine if it’s flexible?

Plugging in any set of values for the 11 sides yields an equation in the

one variable ca that could be solved numerically. So what?

If the right values are plugged in, there are continuously many

values that work for ca.

Idea: flexibility implies infinitely many solutions for

res(ca). Thus, every coefficient in the resultant must

vanish.

That could be thought of as yielding eight new equations in the eleven

sides – big mess.

< second demo >

15

Algorithm:

(1) Kill each coefficient of ca in turn, starting at the highest, the coef of

ca14. Do so by looking for contents, linear parameters to solve for, or

difference of squares. When a substitution is found, plug it in, reducing

the degree of res. Continue. We think of this as a procedure Solve(res,ca).

(2) If none of the ideas in (1) works, try to kill the coefficient by invoking

the entire algorithm on it, relative to each variable in the coefficient. So,

this subprocedure of Solve works by calling Solve(cof, si) within a loop.

(3) Use a suitable data structure to keep track of all the substitutions.

Example:

(s9 ∗ s8 − s7 ∗ s6)ca2 + (s4
2 − s3

2)ca + s8 − s6. irreducible.

A solution is s9 = s7, s8 = s6, s4 = s3

There is no guarantee this will work.

[It does; finds all three known solutions. Maximum stack depth is 28.]

16

Future Work:

By writing everything in terms of the tangent of half-angles, we can

reduce the problem from six to three equations:

a1 ∗ t21 ∗ t22 + b1 ∗ t21 + 2c1 ∗ t1 ∗ t2 + d1 ∗ t22 + e1,

a2 ∗ t22 ∗ t23 + b2 ∗ t22 + 2c2 ∗ t2 ∗ t3 + d2 ∗ t23 + e2,

a3 ∗ t21 ∗ t23 + b3 ∗ t21 + 2c3 ∗ t1 ∗ t3 + d3 ∗ t23 + e3

The ti are the half-angle tangents of the three base angles of before.

The parameters ai, bi, . . . are quadratic functions of the eleven sides. For

example,

a1 = e2 + s2
2 + s2

7 − s2
5 − 2e ∗ s2 + 2e ∗ s7 − 2s2 ∗ s7

which is a product of two linear terms.

Idea: Find the resultant of this system of three. It has 5685 terms. Apply

algorithm as before. Should be faster?

No! Now we must try things like a1 = 0 or a1 = −d3 − e2. Those were

never used when the parameters were actually the sides. Tricky.

17

References:

[B] Bricard, Raoul, Memoire sur la theorie de loctaedre articule, J. Math.

Pures Appl. 3 (1897), 113-150 (English translation: http://www.math.

unm.edu/vageli/papers/bricard.pdf).

[BEM] L. Buse, M. Elkadi, and B. Mourrain, Generalized resultants over

unirational algebraic varieties. J. Symbolic Comp. 29 (2000), p. 515-526.

[C1] E. A. Coutsias, C. Seok, M. J. Wester and K.A. Dill, Resultants and

Loop Closure, International Journal of Quantum Chemistry 106 (2005),

no. (1), 176-189.

[C2] E. A. Coutsias, C. Seok, M.J. Jacobson, K.A. Dill, A Kinematic View

of Loop Closure, Journal of Computational Chemistry 25 (2004), no. 4,

510 - 528.

[KSY] D. Kapur, T. Saxena, and L. Yang, Algebraic and geometric rea-

soning using Dixon resultants. In: Proc. of the International Symposium

on Symbolic and Algebraic Computation. A.C.M. Press (1994).

[Lew] Robert H. Lewis, Computer algebra system Fermat.

www.bway.net/̃ lewis/

[LB] R. Lewis and S. Bridgett, Conic Tangency Equations Arising from

Apollonius Problems in Biochemistry. Mathematics and Computers in

Simulation 61(2) (2003) p. 101-114.

[LS] R. Lewis and P. Stiller, Solving the Recognition Problem for Six Lines

Using the Dixon Resultant. Mathematics and Computers in Simulation

49 (1999).

18

