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Using the Navier-Stokes equations to model the flow in a thermosyphon, one arrives
at a sequence of bifurcation problems. We have derived a model where, in the case of
a circular loop, the first Fourier modes exactly decouple from all other Fourier modes,
leaving a system of three coupled nonlinear PDEs that completely describe the flow in
the thermosyphon. We have characterized the flow through two bifurcations, identifying
periodic solutions for flows of Prandtl number greater than 19, a much lower value than
predicted previously. Because of the quadratic nonlinearity in this system of equations,
it is possible to find the global stability limit, and we have proved it is identical to the
first bifurcation point.

The numerical study of the model equations is based on a highly accurate Fourier-
Chebyshev spectral method, combined with asymptotic analysis at the various bifurcation
points. Three-dimensional computations with a FEM CFD code (MPSalsa), are also
pursued. All three approaches are in close agreement.

1. Introduction

When a closed vertical loop of fluid is heated from below, a sequence of bifurcations
ensues, leading from pure conduction, to a convective unidirectional flow, to periodic or
chaotic flow. This is the problem of convection in a closed-loop thermosyphon, also called
a natural convection loop. This problem has implications for hydrothermal circulation
in the earth’s crust Torrance(1979), as well as engineering relevance for the performance
of heating/cooling systems Japikse(1973). Moreover, it offers useful insights into general
convective phenomena. The problem is appealing because of the possibility of observing
complicated behavior in a physically simple system.

Pioneering work in this field was done by Keller(1966) and Welander(1967) who iden-
tified that unsteady flow results directly from the dynamics of the system, rather than
from an unsteady force. Recent mathematical models by Veldzquez(1994) and Rodriguez-
Bernal & Van Vleck(1998) focus on the transition to complex dynamics. These works have
modeled viscous and inertial terms with friction factors, leading to predictions of com-
plex dynamical behavior in qualitative agreement with observations. Also, recent work
by Yuen & Bau(1996) has used feedback to control the onset of chaos.

The approach taken in our work is to derive a reduced system of PDEs describing
convection in a slender hoop. We apply techniques of asymptotic analysis in combination
with highly accurate spectral numerical methods to analyze this system, derived from the
Navier-Stokes equations in the Boussinesq approximation by averaging around the loop.
Validation of the predictions of the reduced model requires comparison with numerical
simulations of the full, 3-dimensional system, and the code MPSalsa Salinger et al.(1999),
Salinger et al.(1996), Shadid et al.(1999), developed at Sandia National Laboratories to
compute solutions to reacting flow problems on massively parallel computers, is used
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to carry out such comparisons. Good agreement is found between asymptotic analysis,
simulations of the reduced model and three-dimensional FEM calculations, in the ranges
where the latter are feasible.

Under our main assumption, the mean radius of curvature of the loop is supposed to be
large compared to the radius of a cross-section of the tube. Then centrifugal effects can be
ignored, so that the shape of the loop enters only via the gravity function. The equations
that result are equivalent to those where the flow takes place in a straight tube where
gravity acts as a function of axial distance along the tube. In the case where the shape of
the loop is circular the first Fourier modes exactly decouple from all other Fourier modes,
leaving a system of three coupled nonlinear PDEs that completely describe the flow in the
thermosyphon. This is in contrast to existing models, which use truncations, adjustable
parameters, and other simplifications that are avoided in the present formulation.

Two dimensionless parameters characterize the process, the Grashof number Gr (2.17),
which is proportional to the thermal gradient ©® and the Prandtl number Pr (2.15) which
is a property of the material, the ratio of kinematic viscosity v to thermometric conduc-
tivity k. Linearizing about the numerically computed purely conducting trivial state, one
arrives at an eigenvalue problem from which convection is found to onset as a pitchfork
bifurcation at a critical value of the Grashof number, Gr,. This value is independent
of the Prandtl number. Using energy methods, we formulate a variational problem that
proves that the trivial solution is globally stable for Gr < Gr,. We use continuation
in Grashof number to numerically follow the convecting branch and also linearize the
flow about the numerically computed convective state to determine the onset of a Hopf
bifurcation at a second critical value, Grp, > Gr,. The location of this bifurcation and its
character is shown to be dependent on Pr. By numerically estimating the coefficients of
a Landau equation describing the weakly nonlinear evolution of perturbations about the
convective state near the Hopf bifurcation point we show that the bifurcation is subcrit-
ical for Prandtl numbers less than ~ 19 and supercritical for Prandtl numbers greater
than ~ 19. For comparison we mention that the Prandtl numbers for water, alcohol, 777
and glycerine, respectively, are 6.75, 16.6, 7?? and 7250, Landau & Lifshitz(1999).

The outline for this paper is as follows. In Section 2, we give a derivation of our PDE
model, followed by a further simplification to a Lorenz-like ODE model presented in
appendix A. Section 3 analyzes the pitchfork bifurcation in each model and gives a proof
of the global stability of the trivial branch up to this first bifurcation point. Section 4
analyzes the Hopf bifurcation. Section § tracks the periodic solution in the ODE model
and discusses such a tracking in the PDE model. In Section 6 we present the numerical
framework that we use in this research. Section 7 summarizes our findings.

2. Problem Formulation

We study flow in a closed loop thermosyphon—a tube which is bent into a vertical
closed loop, heated symmetrically from below. The cross-section of the tube and the
shape of the loop can be arbitrary. For simplicity, the present formulation will focus on
a circular cross-section and a circular loop.

We assume that the radius of the tube is small compared to its length, so that we
can think of the flow as if it takes place in a straight tube with gravity a function of
the axial distance along the tube. Periodic boundary conditions are imposed on all the
model variables (see figure 1).

Begin with the Boussinesq equations

V-u=0 (2.1)
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FIGURE 1. Problem geometry

% +u-Vu+V (%) =vV?u+ go(T — Tp)e, (2.2)
86—1; +u-VT = kV?T. (2.3)

where u is velocity, p is pressure, T is temperature, and ¢ is time, and we have the
parameters p (density), v (kinematic viscosity), g (gravity), « (thermal expansion), and
K (thermometric conductivity). Ty is a reference temperature. Then enforcing that the
flow has only an axial velocity component and writing the gravity function f (2%2), one
arrives at the equations

ow
= 0 (2.4)
Sw o (p\ _ 5 21z
o "o (;) =vVwta(l —Th)ef ( 7 ) (29
T = T _ _,
o twg, =V T (26)

Here w is axial velocity and z is the axial direction.
The equation of continuity implies that w = w(z,y,t), and so

a [p 2z,
% (;> —a(T - To)f(T) = F(z,y,1) -
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Upon integration over the length L of the loop, periodicity of p implies that

L/2

F(Z';th) :_% (T(x,y,z,t)—To)f (27r—z> dz
L J_r) L
and we arrive at
0w _ 9% " (e, 0,8) — Ty) £(8)d8 = vV2w (2.7)
ot 2r ) .

or 2w OT _ 4n? 9T
VT + o ——
o T T 0 ( 17 962 )
Now V2 is the two dimensional (z,y) Laplacian operator and § = 2%
Boundary conditions are

T(x7 y’ 05 t) = T('CE’ y’ 0 + 27T7 t)

w(z,y,t) =0 on 9S8

T(x,y,@,t) =T+ T’wall(e) on 0S .
The following step distinguishes the present model formulation from other models. For

a circular loop, set f(8) = sin§. Introducing ¢(x,y) and 1(z,y), the mode-1 Fourier sine
and cosine coefficients of T'(x,y,0,1):

$ay) = 5o [ sin®) (T(a.,6.0) o) a9

—7

W) = 5= [ cos0) (T(w,9,0,0) = To) o

—7

and multiplying the heat equation by sin @ and cos@ respectively and integrating from

—m to 7, find
0 2r 5 4
o - Fow=r (V- Tr0) 29)
o w2
o + _¢, (v%p - ) . (2.10)

Notice that these two modes completely decouple from the rest of the Fourier modes.
There is no truncation involved, and therefore this formulation is exact for the given loop
assumptions.

After integrating, the momentum equation (2.5) is given by:

ow

N — gag = vV2w. (2.11)
The boundary conditions are
,¥) =0 on 0S
1
=5/ sin(0)Tyan(0)dd = Ag on 8S
1

cos(0)Twau(6)dd = Ay on 0S

o )
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where Ag and A; are the mode-1 Fourier sine and cosine coefficients of Ty,q1(6), respec-
tively. Impose that Ty, is an even function of 8, so Ay = 0. Then for simplicity drop
the subscript, denoting A; = A.

Define the dimensionless variables by

¢=Ap
Y= Ay
2
_ gaR Anw
2
R% .
t=—1
v
z = RE
y =Ry
Inserting these into equations 2.9 - 2.11 gives:
Pr% — Griw = V2p — 0% (2.12)
Pr% + Gréw = V2 — 021 (2.13)
0w _ Pré = Vi (2.14)
ot B '

where the parameters are the diffusion ratio Pr (Prandtl number) (2.15), the aspect ratio
o (2.16), and the control parameter Gr (Grashof number) (2.17):
v

Pr=-— 2.1
=2 (215)
2
o= ”TR , (2.16)
R 2wgaR*A
_R _ 2.1
Gr Pr v2L (2.17)

where R is the Rayleigh number. The system given in 2.12—2.14 is the reduced PDE
model that is the focus of this study. In appendix A we present a further reduction to
an ODE model, the Lorenz system, Lorenz(1963).

3. Stability of the Trivial Solution

Here we provide the analysis of the linear stability of the trivial solution. Expand the
system 2.12—2.14 about the steady solution by

® %o o1
Y | = % |+e| 1 | +0().
w wWo w1

Consider the expansion in a neighborhood of the critical Grashof number, Gr = Gr).
The zero order solution is given by

%o 0
o | =1

Wo 0
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and the first order solution is

o) Y81Jo(o17)
¢1 = a1 0
w1 P’I'J() (’701’!‘)
The critical Grashof number is given by
4
— Jo1
Grp = Pr

Details of the analysis are left to an appendix.

3.1. Global Stability of the Trivial Branch

We will analyze the global stability of the trivial solution. There is a limit in the param-
eters (Grashof number and Prandtl number) below which any perturbation will settle
to the trivial solution. This limit is identical to the pitchfork bifurcation point found
in appendix B. Because we will show that the trivial branch is globally stable up to
the pitchfork bifurcation point, this provides a proof that the pitchfork bifurcation is
supercritical, in agreement with the formal perturbation analysis presented in appendix
B.

The proof of global stability will proceed as follows. First we will define an energy
function that depends on a parameter A. The rate of change of energy can be maximized
by a function Gr()) of the Grashof number, and each value of A corresponds to a different
energy rate. We will show that this rate of change of energy is always negative. Then
maximizing this function of Grashof number over all values of A, we find the optimal
energy function, that is, the one that gives the largest value of Gr for which a decay-
ing energy rate can be guaranteed. This value of Gr is the global stability limit, and
corresponds to the pitchfork bifurcation point.

The equations are

Pr¢; = Gruwy + V3¢ (3.1)
Pri; = —Grwe + V21 (3.2)
wy = Pré 4+ Viw (3.3)
along with boundary conditions
$(1) = w(1) = 0
$1)=1.

To facilitate the analysis, rescale equations 3.1-3.3 so that the Grashof number appears
symmetrically. Define

w = VGri.
Then equations 3.1-3.3 become
Proy = VGring + V3¢ (3.4)
Pripy = —V/Grig + V¢
@y = VGrPré + V2.
For simplicity, we will drop the “on the w.

Consider a disturbance (q@, 0, ) about the base flow (¢o, %o, wo); for the trivial branch,
this base flow is (0,1, 0), so that

(6,9, w) = (0 + ¢, 1+ 1,0+ ).
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The disturbance to the base flow satisfies:

“ VvVGr . VGr - 97
o = Prw+ Pr wy + Vg
. VGr - .
b = = Lipg + V)

Pr

Wy = VGrPré + V.

From here on we drop the hat notation.
Now form a family of energy functions that depend on the parameter A:

E={¢") + (W) + Mw?), (3.7)

where the (-) notation is a volume integral, [i, -dV :

<¢t7¢) + <¢t;¢) + A(ujtauj) =

vGr 1 . 1 .

_ P _ 2 - 2 2 ]

L (w,8) + WGTPr(g,u) + o-(V29,8) + o (V2,6) + N(V2w,w)

Use Green’s identity to rewrite the Laplacian terms, using that the disturbance satis-
fies null boundary conditions, and the Reynolds transport theorem to rewrite the time

derivative terms. This leads to the following theorem:

Theorem 3.1For equations 3.4—3.6, the energy defined by the family of curves 3.7 sat-
isfies the following equation.

1 1
08 YO (14 APr?) (w0,8) = = (V0P) — =(VUP) ~ A(VuP).  (39)

This equation is made up of the energy dissipation terms (the gradient terms) and the
energy production terms. We wish to find the balance between dissipation and production
terms so that the total rate of change of energy will always be negative, keeping in mind
that this equation defines the energy for a family of curves, one for each .

First we will show that for each A there is a maximum Grashof number where this rate
of change of energy is always negative. Then we will maximize this over all A to find the
optimal energy function.

Equation 3.8 is of the form

o€ , B
%= | Feyyav =

where y = (¢,4,w)T. Notice that J is a quadratic functional; it is because of this that
the following analysis holds.

It is clear that for Gr = 0, % is negative, and that for small values of G, there is still
decay. There is a critical value of Gr where there will cease to be decay; one can employ
the Calculus of Variations to calculate this critical value.

First we will formulate the problem as a minimization problem. The critical Gr is

bounded above if the ratio of the dissipation to production is bounded below. That is,

VGr < min <—P%<|v¢|2> — A(IVEP) - /\(|Vw|2)> |

@ (1 + )\Prz) (w, @)

The “decay constant lemma” proved by Joseph Joseph(1976) guarantees the existence of
a lower bound for this ratio.



8 Elizabeth Burroughs, Evangelos Coutsias, Louis Romero

One can use the Calculus of Variations to solve this minimization problem, and this
yields an eigenvalue problem. Taking the first variation of J, one gets

d

The solutions y satisfy null boundary conditions. Using the Fundamental Lemma, of the
Calculus of Variations, the Euler-Lagrange equation must be satisfied:
d

Fo- o

Fy =0,
which is the eigenvalue problem

—~— 1+ APr’ 2 o,

2 o,
P—rvw_o

Pr

The equation for ¢ decouples and is independent of Gr. Now notice that this is of the
same form as the eigenvalue problem solved in the linear stability analysis of the pitchfork
bifurcation, equation B 1. The solutions of this eigenvalue problem have the form

()= (2 )t

where v = yo1,k = 1,2,3,... is a zero of the Jy Bessel function. From V?¢ = —~3, ¢
and V2w = —~, w obtain the condition

2
JGr (ﬂ> 6+ 20V = 0.

o VGr(1 4 APr?)|
(¥85) (1 +apr?) —X 3

The result is stated as a theorem.

Theorem 3.2The critical Gr is given by the following equation.

45, Pr

G =Tarey

FEach value of X corresponds to a Grashof number that is the maximum value for which
the energy will always decay. Take the derivative with respect to A to find the value of A

that maximizes Gr. This is easily seen to be A = 53, leading to

4
Yok
Gr < =22,
- Pr
Depending on the specific root 7,1 of Jo, the decay rate has a negative extremum at

4
Gr = %2%. However, only the value k = 1 corresponds to a maximum, as is shown below.

3.2. Details of the Mazimization

The first variation has only determined that there is an extremum; it must be shown
that there is a maximum. Use the following theorem Gelfand & Fomin(1991):
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Theorem 3.3If P(z) > 0 and [a,b] contains no conjugate points to a, then fab Ph'? +
Qh%dz is positive definite for all h(z) such that h(a) = h(b) = 0.

A conjugate point @ to a is defined as a point for which —%Ph’ + @Qh = 0 has a
solution that vanishes for x = a and & = @ but is not identically 0.
The original formulation is of the form

/ Py + Qy*av,
174

where P(z) is
. o.—1 -1
dla‘g[P_ra P_ra _)‘]

For the region to contain no conjugate points, choose the first Bessel zero, s = s¢,1, and
then the rate of change of energy, %, is negative definite, so the extremum found is a
maximum.

The global stability limit for the trivial solution is identical to the linear stability limit
for this non-convective branch, which in terms of Ra is

Ra, = fyél.

4. Stability and Bifurcation of the Convective Branch

In this section, we will examine the linear stability of the convective branch and per-
form a bifurcation analysis of the Hopf bifurcation. We use a weakly nonlinear stability
analysis to examine the solution in a neighborhood of a steady state solution. Assuming
completeness of the eigenfunctions of the linearized system, a solution can be expanded

u(r,t) = Z Aeritu(r) + cec.,
i

where c.c. denotes the complex conjugate. The system under consideration in this analysis

¢
is 2.12—2.14. Denoting the solution u = | ¢ | , write the system as
w
0
6_ltl + Lu = Nu.

Let L denote the extension of the operator L, interpreted as a distribution, where
(Lu,v) = (u, L*v)

for all u in L2 and all test functions v in the domain of L*. Then one can use Fredholm’s
Alternative Theorem Keener(1995):

Theorem 4.1Fredholm’s Alternative Theorem R A
For the differential operator L, the solution Lu = f exists if and only if (f,v) =0 for
all v for which L*v = 0.

Additionally, we employ a multiple time-scale analysis, allowing 7 = €2t. The slow
time scale is suggested by the dependence of the most unstable eigenvalues on Gr in the
vicinity of Gr,. The base state is time independent, and in this analysis one considers
perturbations that can depend on the “slow” time, 7.

The goal is to identify the nonlinear behavior of the solution near the bifurcation point.
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4.1. Linear Analysis

We recscale the time variable so that the bifurcating periodic solution has frequency 1.
Then, the bifurcation frequency will enter the system explicitly. To do this we make the
substitution s = wt, and using the notation

write the system as follows:

(wDd, — IV? — A)u = GrF(u),

with
0 10
Fu)=usMu=u3 |-1 0 0] u,
0 00
Pr 0 0
D=0 Pr 0f,
0 0 1
0 00
A=]10 0 0
Pr 0 0

Expand the solution

u = ugy(r) + euy (s,r) + O(e?).
Consider the expansion in a neighborhood of the critical Grashof number, Gr = Gr,.
Expand the frequency as

w = wg + ew; + O(€?).
This leads to the system
((woDas —IV? - A) + GwlDas) (110 + 6111) =
(U3,0Mll0 + GU3’0MUO)€J0111) Gry,

where the Jacobian is given by

0 Uz U2,0
Jo=|—u3zo 0 —wuipl,
0 0 0

and the operators at each order are
Lo = woeDd, —IV? — A

Ll = wlDas.

See the appendix for details. Solutions at each order are computed numerically.

4.2. A Numerical Scheme to Extract Landau Coefficients

We can continue this analysis up to order €2, allowing us to get a characterization of the
bifurcation. At this order we arrive at a Landau equation
da(1)

ST = jaa(r) + Bla(r)Fa(r)
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. As an alternative to computing the coefficients numerically, we can use the following
numerical scheme to extract the Landau coefficients.

It is the signs of the real parts of o and § in the equation that determine whether the
bifurcation is sub- or supercritical. Writing a(7) = r(7)e?(") and o and g as a, + ic,
Br + ip;, respectively, gives

d
o _ jor + Berd
dr

Y — o+ pir.
-

Compute the time integration of the full equations, with an initial value of ug + €Ay;,
where ug is the convective solution at the bifurcation point and Aj; is the imaginary
part of the eigenvector associated with the leading eigenvalue at the bifurcation point.

Note that this is just a particular choice of constants in the O(€) solution
(e +ic;)e™° (A, +iAy;) + cc.
At every time ¢, compute the solution ®(r,t). The solution must take the form
®(r,t,7) = ug + €(a() (A1, +iA1;)e™°" + c.c.) + (exponentially decaying modes).
Extract the values a(7), given Ay, Ay;, and wp. In terms of r and 6, this is the equation

(I)(’I“,t,’]') — U _

€
2((rcos6Aq, —rsinfAq;) cos(wot) — (r cosOAq; + rsinfA;,) sin(wot)).

Integrating q"f“‘) over a period against cos(wpt) and sin(wgt) respectively will yield

2(rcosBA1, —rsinfAy;) and —2(r cosfAy; +rsinfAy,). Solve this system of two equa-
tions in two unknowns to find r cos 6 and rsin § at each point t,, n = 1,2,3,.... Extract
r, = r(t;) from these and formulate the least squares problem

dr .
— =jo,r + B

dr
and solve for the constants a, and (.. Approximate
dr _ r(tngr) = r(th—1)

4
E(tn) = 227 [ wo + O(€%).
(See Bergeron et al.(2000) for another discussion of the use of this method of extracting
Landau coefficients.)

Simple linear analysis will give an estimate of the coefficient a,.. We will compare this
to the one found by the above extraction method as a check of accuracy.

We will now report data obtained on the full PDE system using this method. Results
from running this extraction procedure at different Prandtl numbers for various Grashof
numbers are given in table 1. Solutions decay for 10 periods before data is collected (the
time step used is 10™%) to allow the next most unstable mode to decay. Notice the good
agreement between the linear analysis and the extracted linear coefficient «; for the cubic
coefficient the equation is scaled so that 8 x (Gr. — Gr) should be consistent, and this is
the case. (The formula for computing % is second order, explaining the error present in
calculating the linear coefficients.)

Figure 2 shows the ratio of ¢ for various Prandtl numbers for Gr approximately 2%
below Gr.. From the Hopf bifurcation theorem, when this ratio is positive the bifurcation
is subcritical and when it is negative the bifurcation is supercritical. For Pr near 19 the
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Gr linear a, extract a, extract 3,
Pr=7 Gry =351.7679
345.0 —4.80 x 107% —4.80 x 10~* 0.738 x 10~*
341.0 —4.85 x 107* —4.85 x 10™* 0.457 x 10~*
Pr=15 Gry, = 200.6050
196.0 —6.33x107% —6.33 x107* 0.197 x 10~*
194.0 —6.36 x 107* —6.36 x 10~* 0.129 x 10~*
Pr=20 Gr, = 227.9197
223.0 —4.00 x 107* —4.01 x 10~* -0.065 x 10~*
221.0 —4.02x 107* —4.02 x 10~* -0.045 x 10~*
232.8358 3.91x107% 392x107* -0.079 x 1074
234.8358 3.90 x107% 3.90x107* -0.058 x 1074
TABLE 1. Landau coefficients for the PDE system
N  extract a, extract 3,
Pr=7 Gr =345
32 —4.80 x 107* 0.738 x 1074
64 —4.80 x 10~* 0.809 x 1074
128 —4.80 x 10~% 0.702 x 104
Pr=15 Gr =196
32 —6.33x107* 0.197 x 1074
64 —6.33x107* 0.196 x 1074
128 —6.33 x 10* 0.199 x 10~*
Pr =20 Gr =223
32 —4.01 x 107* -0.065 x 10~*
64 —4.01 x 107* -0.069 x 10~*
128 —4.00 x 10* -0.073 x 10~*

TABLE 2. Landau coefficients as computed for various mode discretizations N

bifurcation changes criticality from sub- to supercritical. While the Lorenz equations do
predict a supercritical Hopf bifurcation, they predict the change at a much higher Prandtl
number (on the order of P = 200 Note that P=200 corresponds to Pr=7?7 while P=19
corresponds to 7?7, and experimental verification is feasible). The difference between the
present model and the Lorenz model is significant in this respect.

5. The Supercritical Hopf Bifurcation

This model captures periodic behavior of the flow in the thermosyphon in a parameter
value range that is not found in Lorenz-type models, specifically, the change from a
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F1GURE 2. The ratio of Landau coefficients for the PDE model indicating the criticality of the
Hopf bifurcation
</
“

F1GURE 3. Plots of solution vs. Gr. for Pr < Pr., Pr = Pr., Pr > Pr., respectively.

sub- to supercritical Hopf bifurcation at a Prandtl number of = 19. This is a significant
difference between the models and is evidence that, in particular for flows with Pr greater
than 19, the reduction to the Lorenz equations is not an accurate model of the flow.
The point (Pr.,Gr.) is the most interesting point in parameter space. Here the branch-
ing becomes singular, with a Landau equation of the form
5

da
— =o1a+ asa”.
dr
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In the vicinity of this critical point, the equation is of the form

a _ 3 5
— =oa+ aza” + asa”.

dr

where a3 is very small; this corresponds to the first sketch in figure 3. In the neighborhood
of this critical Prandtl number, the bifurcation diagram has a progression similar to that
shown in figure 3. For values of Pr just below Pr, there is a subcritical bifurcation. This
bifurcation must turn around, because of the global stability limit. At Pr., the structure
is quartic. At Pr > Pr,, the bifurcation is supercritical.

With this result, the opportunities for further research with this model are abundant.
The immediate questions that arise are

(a) Expand the solution in the parameter Pr. What is the characterization of the
Landau equation governing this change from sub- to supercritical?

(b) Is there chaotic behavior above Pr.?

(¢) Is there periodic behavior below Pr.?
Answers to these questions will provide more insight into the dynamics of the flow as
captured by this model.

6. Numerical Analysis

We numerically compute the solution to the system 2.12-2.14 at given Pr and Gr
numbers. The primary method of discretization is the pseudospectral method, briefly
described below. More complete discussion can be found, for example, in the works of
Gottlieb and Orszag Gottlieb & Orszag(1977), Fornberg Fornberg(1998), and Canuto et
al Canuto et al.(1988).

Following the notation of Gottlieb and Orszag, for each ¢, u(z,t) is an element of a
Hilbert Space H with an inner product and a norm. For each ¢ > 0, u(z,t) is a member
of the subspace B of H where functions in the subspace satisfy the boundary conditions
of the problem.

In this work we expand the solution

M

u(z) = Z amTm ()

m=0
where
T (z) = cos(m arccos(x))
are the Chebyshev functions. One gets the expansion coefficients

an = 2 /1 w(z) T (2)(1 —x)*%dm
en J_q

with o =2,¢, =1,m > 1.

The method used here is a spectral collocation (pseudospectral) method. In this
method, the expansion functions are not required to satisfy the boundary constraints.
Rather, the boundary constraints are imposed as conditions for determining the expan-
sion coefficients. Then make the residual zero at as many spatial points as possible.

This code uses the Gauss-Lobatto points, z; = cos ’Tﬁj, and so the Chebyshev expansion
is a cosine expansion where one can use a Fast Fourier Transform.

We will discuss two particular aspects of this numerical method: the preconditioning
by an integral operator and the boundary constraints. The derivative operator is an ill-
conditioned triangular matrix, whereas the integration operator is a banded matrix. Then
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preconditioning the system by the appropriate order n integration operator results in a
favorably conditioned system. The first n rows of the system become zero, and one can
replace these with row vectors associated with the boundary constraints. See Coutsias
et al.(1995) for further details.

6.1. Time-dependent Solver

To investigate the transient and steady state behavior of the system, we implement a
time-dependent solver. The spatial component is discretized using the pseudospectral
method and the temporal component, as is customary in the use of spectral methods to
solve PDEs, using a finite difference method. This code is described below.

6.2. General Discussion

Consider the equation
0
Pra—? =Lu+ f(r,t) + N(u)
where f(r,t) is a forcing term and N (u) is a nonlinear term. This code computes Lu and
f(r,t) implicitly and N(u) explicitly. Thus the Implicit-Explicit (IMEX) scheme Ascher
et al.(1995) is given by

1 0
P
A—Z Y ™t = a4 S BN () (6.1)
k=—r k=—r
to get
0
At At At
n+l _ —y n+l _ _ n+k b N n+k t n+1
i = Lt = 3 (ot NG )+ B

where u” indicates the solution at time step n and the coefficients a and by, are given
in appendix C.

6.3. The Helmholtz Operator

Now implement the above procedure where L is a Helmholtz operator. In this code, there
are two operators, one for temperature and one for velocity. In considering the equation
governing the evolution of the temperature variables, L = V2 — ¢2I and equation (6.1)
becomes

o? 1
1 At)I — AtVHu ! =
((1+ Pra; ] Pra; Vu
0
1 —apu™th 4 iAtka(MH'k) + L Atf(r,t)"
ar Pr Pra; ’

In the equation governing the evolution of the velocity variables the operator is the
Laplacian, L = V2, and equation (6.1) becomes

0

1 1 1 1
- At 2 n+l _ _ n+k At t n+1.
(Pr Pra; v ) v Pra; kz ( @kt ) * ai f(rt)

6.4. Inverting the Helmholtz Operator

In the solution of the system, one must invert the operator. Again, there are two different
operators in this code, and each is inverted as follows.



16 Elizabeth Burroughs, Evangelos Coutsias, Louis Romero

In the equation governing the evolution of the temperature variables, let o = 5 jal At

and =1+ %At. Thus one must solve an equation of the form
(BT —aV?u =g

where g contains the nonlinear terms. In cylindrical coordinates one arrives at

(BI — a%[@,«r&«])u =g

(BR — o[0?r — 8,])u = Ry

(BBfyR + a[Bpa) — Rigp))u = By Ry
where B represents the preconditioning matrix that is an integral operator, the subscript
[+] denotes the number of top rows that are zero rows, and R represents the matrix that
is multiplication by r. See appendix D for details.
In the equation governing the evolution of the velocity variable, let v = %7" Thus one
must solve an equation of the form

(VI = aV*)u =g,

again, where g contains the nonlinear terms. In cylindrical coordinates one arrives at

(~I - a%[@rr&])u =g

(YR — a[0?r — 8,])u = Rg
(73[22]R + a[B[Q] - R[2]])u = B[QQ]Rg.

6.5. The Code

To solve the system 2.12-2.14, the code performs the following steps.

e Initialize boundary values and boundary constraints

o Initialize variables

e Create and factor operators
while(t < tstop)

o Evaluate nonlinear terms in point space
o Precondition ¢ and ¢ variables and their right hand sides
o Time step and solve for ¢, 1
o Precondition right hand side for w
o Time step and solve for w
end while
Velocity profiles and time-series plots that result from this code are given in section 7.2.

Discussion of the use of implicit-explicit schemes is found in the paper by Ascher et
al, Ascher et al.(1995).

The Newton code, discussed in the next section, provides verification of steady state
results obtained via the time dependent code. In particular, for a given discretization,
Gr and Pr, time steps of a size that will find the same solution as the Newton code are
employed.

As an alternate means to find the steady state flow, we have developed a Newton
code that directly finds a steady state flow. This code has the advantage over the time-
dependent solver of quickly locating a steady state solution, and the matrices used in
the Newton code are used in finding the eigenvalues of the system, making the task of
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locating eigenvalues trivial. However, this code cannot be of use in analyzing transient
phenomena or in analyzing time-dependent flows.

6.6. General Discussion

For the system 2.12—2.14, in the limiting case ¢ = 0, the problem is formulated so that
a steady solution can be found.

Pr¢; = V3¢ + Grypw
Priyy = V9 — Grow
w; = V2w + Pr¢
Set the time derivatives to 0. One can write the resulting system as

VZ(u) + F(u) =0

where
¢ Gryw
u=| ¢ |;F(u=| —-Grow
w Pr¢

At each iterate update the current solution u™ by du:
VZ(u" + §u) + F(u" + du) = 0.
Using Taylor’s theorem gives
V2(6u) + Fu(u™)du = —(V?u" + F(u")),

which leads to the system

V2 0 Gruw™ Gry" 8¢
Vv? + | —Grw™ 0 ~Gr¢™ o | =
V2 Pril 0 0 ow
v2 ¢n Gmpn,wn
_ V2 wn + _Gr(ﬁnwn
A& w” Pro™

For ease of notation, define the right hand side to be g. At each iterate u™ is known and
the task is to solve for du.

Now, in this case, use the vector u in Chebyshev modespace, and so in the usual way
(see appendix D) write the spectral operators to get the system:

R-B
R-B +
R-B

B’R 0 Gruw™x  Gry"x Y0

B’R —Gru™x 0 —Gr¢"x | =

B’R Prlx 0 0 ow

B2R

B%R g,

B’R

where * signifies convolution. The Newton code forms these matrices and solves this
system. However, a further simplification must be made in order to solve the system.
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Because the function u is an even function, the symmetry of the system is important in the
method of solution. The operator has nonzero entries in (even row, odd column) positions
(counting from 0 so that matrix entries correspond to the Chebyshev polynomials). The
right hand side has nonzero entries in odd row positions. The solution must be an even
function, so it has entries in the even row positions. If one were to attempt to solve the
system with the zeros that exist due to symmetry, the operator would be singular and
one would not be able to do it. Instead, pack the system, keeping only the odd row, even
column entries. One is then able to solve this system, which is half as large as the original.
We use the Lapack routines dgeco and dgesl to factor and solve the system, respectively.

6.7. The Code

The code performs the following steps.

Read in parameters, vector u

Create B, R,I, B’R

Make Laplacian

Make preconditioner

Enter the loop while error > tol

Create convolution

Precondition convolution

Create , precondition packed operator
Implement boundary constraint on operator
Create, precondition rhs

Implement boundary condition on rhs
Pack rhs

Factor

Solve

Update u , error

O 0O 0O 0O 0O OO0 O o

6.8. The FEigenvalue Problem
Again, consider the system 2.12—2.14,
Préy = V3¢ + Grypw
Pryy = V) — Grow
w; = Vw + Pro
Assuming a separable solution, the solution is
u = u(r)e.
Expanding the solution in powers of € gives
u =1y + eu; + O(€?).

Then the order € system is

\v& 0 Grwyx  Grip b1
V2 + | =Gruix 0 —Groy* 1
V2 Prlx 0 0 w1

Pr ¢1

— A Pr b

I w1
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FI1GURE 4. The location of the Hopf bifurcation in the PDE model

This is the generalized eigenvalue problem Ax = ABx. Note that the left hand side
matrices are identical to those formed for the Newton iteration; thus one only need
create the mass matrix B of time-dependent coefficients in order to solve the eigenvalue
problem. We use the Lapack routine dggev to compute the generalized eigenvalues and
the left and right eigenvectors.

Results from the implementation of this eigenvalue code are found in section 7.4.

Using this code one can map the locus of the onset of the Hopf bifurcations for a given
Prandt]l number. Graphs of this bifurcation diagram are shown in 4.

7. Conclusions
7.1. Bifurcations

For the initial bifurcation (section B), the critical Grashof number is found to be Gr, =

4
}%; that is, one can view the critical parameter as Ra. = 73;. This is in qualitative

agreement with models that use the Lorenz equations, where the initial bifurcation point
is at the constant R = 1. Using equation A, the Lorenz equations predict that the system
will become convective at Ra = 64; in fact, from our analysis, it becomes unstable at
Ra =~ 33, so the Lorenz equations overpredict the region where the trivial solution is
stable.

The Lorenz equations predict that the Hopf bifurcation exists at Gr = %; for
Pr = 7, for example, this is Gr = 140.8, where our analysis shows it is unstable at
Gr = 350; here, the Lorenz equations underpredict the region where the convective
solution is stable. Compare the curves of the predicted Hopf bifurcation, by the Lorenz
equation in figure 5 and calculated with the PDE model in figure 4. Both exhibit a
vertical asymptote as a lower bound, but the shape of the curve differs significantly as
Pr grows. Figure 4 shows the location of the Hopf bifurcation as a function of Prandtl
number. Notice that there is a vertical asymptote to the right of Pr = 5. That is, there is
a region of Pr values for which there is no Hopf bifurcation. This result is in qualitative
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FIGURE 5. The location of the Hopf bifurcation in the Lorenz equations, in terms of the
dimensionless parameters Pr and Gr

agreement with the Lorenz equations. However, there appears to be no upper limit where
there ceases to exist a Hopf bifurcation.

Now, there does seem to be significant difference between the Lorenz model and our
reduced PDE model in predicting whether the Hopf bifurcation is sub- or supercritical. As
discussed in section 4.2, our PDE model predicts that the Hopf bifurcation is subcritical
for Prandtl numbers less than ~ 19 and supercritical for Prandtl numbers greater than
that. The Lorenz equations, on the other hand, predict that the Hopf bifurcation is
subcritical for this entire range of values. Noting the significant difference in the shape
of the curves 4 and 5, it seems clear that the Lorenz model is not as accurate a model
for flow in a thermosyphon for large Prandtl numbers.

7.2. Velocity and Temperature Profiles

Running the time integration code allows us to view the transient nature of the system,
as well as observe the converged profiles at the final steady state.

First we will comment on the profiles for Pr=1. There is no Hopf bifurcation at this
Prandtl number. The profiles for all variables maintain a parabolic-like shape for low
Grashof numbers, although for a large Grashof number, Gr = 100, (figure 7) the profile
for ¢, the sine coefficient of temperature, has flattened. At a much higher Grashof number,
Gr = 350 (figure 8) it has formed a “dip,” where the maximum value is no longer at the
center. This grows more extreme as Grashof increases. When Gr = 550 (figure 9) the dip
has become so severe that there it is almost zero at the center. Notice, then, that in the
corresponding velocity profiles, that this action serves to slow the flow down, and that it
remains a parabolic-like velocity profile where the maximum velocity is quite small.

Contrast this to the scenario for a higher Prandtl number, Pr = 7, where the Hopf
bifurcation does occur. Near the Hopf bifurcation point, Gr = 350 (figure 10) the velocity
profile is not a parabolic profile; rather it has developed a “dip.” Notice that it is the ¢
component of temperature that drives this change. These profiles clearly show how the
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FIGURE 6. Velocity and temperature profiles at Prandtl=1, Grashof=35

Lorenz model will not accurately capture the dynamics of the flow in the regions where
the profiles are not parabolic.
Figure 11 illustrates the similarity in the velocity profiles for various Prandt]l numbers.

7.3. Bifurcation Diagram

In figure 13 the bifurcation diagram is shown for Pr = 7. Notice that the thermosyphon
runs most efficiently for Grashof number around 10. For values of Grashof greater than
10, the velocity slows. From the temperature profiles shown in figures 6— 9, this loss of
efficiency is seen as the ¢ component develops a quartic profile.
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Velocity and temperature profiles at Prandtl=1, Grashof=350
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FIGURE 9. Velocity and temperature profiles at Prandtl=1, Grashof=550



A New Model of the Dynamics of the Flow in a Thermosyphon

(o]

—-0.1

FIGURE 10.

Z0.5 o 05 1
r
Velocity and temperature profiles at Prandtl=7, Grashof=350
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FIGURE 11. Velocity profiles at the Hopf bifurcation point for various Prandtl numbers.
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FIGURE 15. Eigenvalues at Pr=7, Gr=300.

7.4. Eigenvalue Results

Table 3 illustrates the convergence of the eigenvalues with mesh refinement. Notice that
for a variety of Gr numbers, 32 modes is sufficient to find the eigenvalue to 8 significant
figures. This is not the case for the eigenvectors, however. In some cases, there are steep
slopes in the eigenvector profiles, requiring a higher resolution.

Plots 14 — 15 demonstrate the discrete spectrum of the discretized operator.
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Gr=4

N A1 Ao )\3

16 —0.11986932 —0.82616942 —4.20077833
32 —0.11986928 —0.82616942 —4.20077531
64 —0.11986928 —0.82616942 —4.20077531
128 —0.11986928 —0.82616942 —4.20077531
Gr=5

16 3.3436286822 x 102 —0.82616942 —4.16298621
32 3.3436286827 x 102 —0.82616942 —4.16298317
64 3.3436286827 x 102 —0.82616942 —4.16298317
128 3.3436286827 x 102 —0.82616942 —4.16298317
Gr =10

16 —0.38966583 + 1.06623072: —4.22920743 + 0.83528015¢ —6.71435768
32 —0.38967750 + 1.06625057: —4.22924245 + 0.83529406¢ —6.71433609
64 —0.38967750 + 1.06625057: —4.22924245 + 0.83529406¢ —6.71433609
128 —0.38967750 + 1.06625057: —4.22924245 + 0.83529406¢ —6.71433609
Gr =50

16 —0.29153807 + 3.22110087: —4.08359747 + 2.68818657: —7.10593143
32 —0.29158500 + 3.22112920; —4.08324280 + 2.68805007¢ —7.10590921
64 —0.29158500 + 3.22112920: —4.08324280 =+ 2.68805007¢ —7.10590921
128 —0.29158500 + 3.22112921; —4.08324280 + 2.68805007¢ —7.10590921
Gr =300

16 —2.86 x 1072 £ 7.76286427i —3.98176664 + 7.04824907; —7.06274178
32 —2.74 x 1072 £ 7.76272788; —3.98493589 + 7.05070856; —7.06544438
64 —2.74 x 1072 £ 7.76272788 —3.98493592 + 7.05070859; —7.06544440
128 —2.74 x 1072 £ 7.76272788i —3.98493592 + 7.05070859; —7.06544440
Gr =350

16 —2.30 x 1072 £+ 8.34640116¢ —3.95978468 + 7.604651515 —7.03438673
32 —8.37 x 10™* £ 8.34580017i —3.96462820 + 7.60592416; —7.03555062
64 —8.37 x 10™* +8.345800167 —3.96462826 + 7.60592417; —7.03555065
128 —8.37 x 107* £ 8.34580016¢ —3.96462826 + 7.60592417; —7.03555065

TABLE 3. The first three eigenvalues of flow in a thermosyphon with Pr = 7.0 N=number of
modes.
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7.5. Three-Dimensional Calculations With MPSalsa

We will discuss the numerical methods used by MPSalsa to locate steady state solu-
tions of Equations (2.1)—(2.3), the formulation of the eigenvalue problem and the Cayley
transform method, and the numerical solution of the eigenvalue problem.

7.6. Spatial Discretization and the Non-linear Solve

A full description of the numerical methods in MPSalsa used to locate steady state
solutions of Equations (2.1)—(2.3) is available in Shadid(1999) and the references listed
therein. A brief overview is presented in this section.

A mesh of quadrilaterals for 2D problems and hexahedra for 3D problems is gener-
ated to cover the domain. Although the code allows for general unstructured meshes,
this problem uses structured meshes. For parallel runs, the mesh is partitioned using the
Chaco code Hendrickson & Leland(1995) in a way that will distribute work evenly while
minimizing communication costs between processors. A Galerkin/least-squares finite el-
ement method Hughes et al.(1989) (GLS-FEM) is used to discretize the time-invariant
versions of the governing partial differential equations (2.1)—(2.3) into a set of nonlin-
ear algebraic equations. This formulation includes a pressure stabilization term so that
the velocity components, temperature and pressure fields can all be represented with
equal order nodal basis functions. GLS-FEM is a consistent stabilized scheme because
when the exact solution is inserted, the Boussinesq equations are satisfied exactly. The
code uses bilinear and trilinear nodal elements for two and three dimensional problems,
respectively.

Discretization of (2.1)—(2.3) results in the matrix equation

(8 OB (8 D)) o

where u is the vector of fluid velocity components and temperature unknowns, p is the
pressure, M is the symmetric positive definite matrix of the overlaps of the finite element
basis functions, K, 7 is the stiffness matrix associated with velocity and temperature,
C(u) is the nonlinear convection, D is the discrete (weak) gradient, D is the discrete
(weak) divergence operator and K, is the stiffness matrix for the pressure. G,K,, N are
stabilization terms arising from the GLS-FEM. The vectors g and h denote terms due
to boundary conditions and the Boussinesq approximation.

The resulting nonlinear algebraic equations arising from setting the time derivative
terms to zero are solved using a fully coupled Newton-Raphson method Shadid et al.(1997).
An analytic Jacobian matrix for the entire system is calculated and stored in a sparse
matrix storage format. At each Newton-Raphson iteration, the linear system is solved
using the Aztec package Tuminaro et al.(1999) of parallel preconditioned Krylov iterative
solvers. The accuracy of the steady state solve is set by the following stopping criterion,

1
RN
(NZ (elez|+eA < 1.0,

where er and €4 are the relative and absolute tolerances desired, J; is the update for
the unknown z; and N is the total number of unknowns. We use relative and absolute
tolerances of 107° and 1078, respectively, for this study. In Aztec the code exclusively
uses an unrestarted GMRES iteration with a non-overlapping Schwarz preconditioner
where an ILU preconditioner is used on each sub-domain (each processor contains one
sub-domain). These methods enable rapid convergence to both stable and unstable steady
state solutions. The scalability of these methods to large system sizes and numbers of
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processors is demonstrated by the solution of a 16 million unknown model on 2048
processors Burroughs et al.(2001).

7.7. The Discretized Figenvalue Problem and Cayley Transforms

The GLS-FEM results in a spatial discretization of the Navier-Stokes equations with
the Boussinesq approximation. This leads to a finite dimensional system of differential
algebraic equations of the form

Bx = F(x), x(0) = xo, (7.2)

where the matrix B is singular (due to the divergence free constraint) and x is a vector

containing the nodal values of the velocities, temperature and pressure at the nodes of

the finite element mesh. Because of the stabilization terms in the GLS discretization, B,

the matrix associated with the time derivative term in (7.1), is a non-symmetric matrix.
Solve the generalized eigenvalue problem

ABz = J(x5)z = Jz. (7.3)

that arises from the linearization of (7.2) about the steady state. The matrix J(x;) is
the Jacobian of F(-) linearized about x,. Assume that the eigenvalues are ordered with
respect to decreasing real part; real(Ai41) < real();). If all the eigenvalues of (7.3) have
negative real parts, the steady state is stable.

Use a Cayley transform to find the eigenvalues +; of the system

(J—0oB) '(J—uB)z =z

that are related to the eigenvalues Ay, of (7.3) via

Ab— .
Z:Ak——g i:].,...,n;k:].,...,’n/
Choose o > 0 and p = —o; we choose the value of o so that it is of similar magnitude

to the imaginary part of the eigenvalue of interest, and so that ¢ > Re(\;). This trans-
formation has the property of mapping a A in the right half of the complex plane (i.e.
an unstable mode) to a 7 outside the unit circle, and those on the left half plane (i.e. a
stable mode) to a v inside the unit circle. That is,

real(A) > 0 = ||y]| > 1.0, and real(\) < 0 = ||v|| < 1.0.

Since Arnoldi’s method will converge more rapidly to those eigenvalues with larger mag-
nitudes, this is a very desirable property for calculating eigenvalues for use in linear
stability analysis.

Further details are available in the papers Lehoucq & Salinger(2001), Burroughs et al.(submitted
2002).

7.8. Three-dimensional Results

We will compare results for the most unstable eigenvalue from the spectral eigenvalue
code presented in chapter 6 with the results computed using the finite element code. In
MPSalsaset g = 3 =k = v = 1 and f(6) = cos(6). The mesh has & by & mesh divisions
around a cross-section and N + % mesh divisions about the circumference of the loop.
Results for various values of IV are reported in tables 4, for Pr = 1 and 5 for Pr = 7. For
the finest mesh, there are 185,220 unknowns, solved on 64 processors of the Sandia-Intel
TFlop machine (ASCI Red) with 333 MHz Pentium processors. The code converges to
the steady state easily using a zero initial guess. The number of GMRES solves for each

eigensolver iteration is approximately 240. The time to compute eigenvalues on the finest
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N Raiherm = 30 Ratherm = 32.5 Ratherm =35 Ratherm = 37.5
20 -0.758 -0.533 -0.316 -0.108
40 -0.389 -0.163 0.054 0.264
80 -0.303 -0.078 0.139 0.348
asymptotic -0.306 -0.082 0.133 0.341

TABLE 4. The first eigenvalue of flow in a thermosyphon with Ry =1, Ry = 10, Pr = 1.0,
1;7—62 x (N + 25) uniform mesh

N Raiherm =30 Ratherm = 32.5 Ratherm = 35 Ratherm = 37.5
20 -0.176 -0.123 -0.0705 -0.0189
40 -0.0967 -0.0370 0.0171 0.0704
80 -0.0713 -0.0158 0.0387 0.0923
asymptotic -0.0753 -0.0205 0.0345 0.0865

TABLE 5. The first eigenvalue of the trivial branch for flow in a thermosyphon with Ry =1,
Ry =10, Pr=17.0 N? o (N + £) uniform mesh

’ 16

mesh is 2671 seconds for Ra=30. Once N is large enough, there is good agreement between
the asymptotic and numerical results. Notice that the critical value is independent of
Prandt]l number, and this is confirmed by the three-dimensional calculations.

7.9. Summary

An examination of flow in a thermosyphon has been conducted using a new PDE model
of flow in a thermosyphon. In the case of a circular loop, the first Fourier modes exactly
decouple from all other Fourier modes, leaving a system of three coupled nonlinear PDEs
that completely describe the flow in the thermosyphon. This is in contrast to all existing
models, which use truncations, adjustable parameters, and other simplifications that are
avoided in this formulation.

The use of this model has allowed the identification of stable periodic flows that are not
found using Lorenz-type ODE models. In particular, this model has identified periodic
solutions for flows of Prandtl number greater than 19.

The trivial solution was found to be globally stable for all Prandt]l numbers for Ra < 74,
where v is the first zero of the Jy Bessel function. This global stability limit coincides
with the location of the first bifurcation, indicating the onset of convection in the ther-
mosyphon.

Appendix A. Reduction to the Lorenz model

The Lorenz equations Lorenz(1963) are a set of ordinary differential equations that,
for certain parameter values, provide a simple model of flow in a thermosyphon. Most
reported investigations of the thermosyphon problem use a reduction to the Lorenz equa-
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tions. This type of model exhibits the flow pattern of convection leading to oscillation
and chaos. We will compare the simplified PDE model (2.12—2.14) to the Lorenz model
by imposing a parabolic profile on each of the variables and substituting this into the
equations. For simplicity, we will neglect the curvature term on the right hand side of
the ¢ and ¢ equations.

It is the assumption of a parabolic profile that leads to the most significant limitations
of the Lorenz model. In the flow profiles shown in section 7.2, one can see that for high
values of the Grashof number the profiles deviate dramatically from a parabolic profile.
The PDE model proves to be a better model for capturing the nature of the flow in this
region.

To derive the Lorenz model, substitute into (2.12), (2.13), and (2.14)

w(r,t) = w(t)(r* = 1)

$(r,1) = $()(r* — 1)
¢(7‘a t) = ¢0 + ’(ﬁ(t)(?j - 1)a

and integrate over a circle of radius 1 to get:

do = —8i + Pré

dt
d¢ _8&)_@4},\ G’f’ipo’w
dt Pr 3Pr Pr
dip 8 ~ 2Gr..
PR T
Now to correlate these equations to the Lorenz system, introduce
. _ 3P
= X
Y~ 16R
3t
==Y
¢ 2R
»_ 3tho
=—7
v 2R
P
t==T
8
Pr=P
64R
Gr=——
o P
to arrive at the set of equations
dX
— =—-PX+ PY
dT *
dy
2 Yy —
I +RX -XZ
dzZ
— =—-Z+ XY.
a7 + XY

which correspond to the Lorenz system (see Tritton(1988)).
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Appendix B. Pitchfork Analysis
B.1. The Steady State Problem

Considering zero order terms gives

o 0 1 0\ [¢o 0 0 0\ [/¢o
Vi [ | +Grp | =1 0 O o |wo+| 0 0 0] |%]=0
wWo 0 00 wo Pr 0 0 Wo

along with boundary conditions

%o 0
o | =1
Wo 0

The solution to this boundary value problem is easily found to be

B.2. The Linear Problem

At order € one has the system

¢1 0 0 GTp ¢1
Vil ]+ 0 0 0O ¥ ] =0 (B1)
wy Pr 0 O wy

along with null boundary conditions on the perturbation variables. The equation for ;
decouples to give

v2¢1 = 03
which has solution

Y1 = 0.

The variables ¢; and w; are described by the system
v2 ¢1 — 0 —Grp ¢1
w1 —Pr 0 w; )
Using Bessel functions
¢1,n _ C1
( W1,n B C2 Jn(”}’an‘)

Jn(Yam) =0

where

leads to the eigenvalue problem

_,72 aly _ 0 -Gry c1
nm o\ ¢y —Pr 0 e/

Satisfying the condition

772nn _GTP =0
—Pr 2 1T
Tmn
gives the critical parameter value for the pitchfork bifurcation,
4
~
G — mn A
"= pp

Grp is a minimum at g1, the first zero of the zero-order Bessel function. Note that
this result correlates to the pitchfork bifurcation one finds in the Lorenz equations, where
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the pitchfork bifurcation is a function of the Rayleigh number. Because Gr = ﬁ—ﬁ, this
result can be written

Ray, = 7p;.
) _ Vo1
Co Pr |-

Appendix C. Hopf analysis
C.1. Steady State Problem

Considering the zero order terms gives

The eigenvector is given by

L()ll() = GT’hU370M110

Solve the system to get the solution

This equation is solved numerically using the time-dependent solver and Newton algo-
rithm described in section 6.

C.2. Linear Problem
At order € one has the system
(LO - Gthg)u1 = —Llllo.

Note that ug is a steady solution, so Lijuy = 0. Compute u; by solving the resulting
eigenvalue problem to get

u; = a1 A(r)e’® + a;A(r)e

and wyq. This eigenvalue problem is solved numerically using the eigenvalue code discussed
in section 6.8.

C.3. Bifurcation Analysis

Continue with the analysis, now including higher order terms. Making the substitutions
s = wt and T = €25, write the system as follows:

(wDd; + €D, — IV? — A)u = GrF(u).
Expand the solution
u =uy(r) + eus (s, 7,7) + €us(s, 7,7) + Eus(s, 7,7) + O(e).
Expand the Grashof number as
Gr = Gry, + jé?,

where j = +1, with j = +1 corresponding to Gr > Grp, and j = —1 corresponding to
Gr < Gry. Expand the frequency as

W =wo + €wp + 62(,02.
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This leads to the system

((woD8s — IV? — A) + ew1 DO + €* (w2 D5 + DI;)) Z efuy, =
k=1

n k—1 n
<u370Mu0 + Zék(z u3,k_lMul) + Z GkJ(]llk) (G’f‘h +j€2).
=1 k=1

k=1 =
The operators at each order are
Lo = woD8; — IV? — A
L1 = wlD(’)s
Ly =ws DOy + DO,

L3 = w3DO,; + w1 DO,.

The systems at each order are:

e O(e%):
Louy = GrpuzoMug
o O(e):
(Lo — GrpJo)ur = —Liug
e O(e?)
(Lo — Grido)ua = —Liuy — Loug + Graus 1 Mus + jusoMug
e O(e?):

(Lo — G’I’hjo)ll3 = —L3uy — Lyuy — Louy + G’I’h’LL372M111 + GT‘hU3’1M112 + jJ()lll.

We now outline the steps in the asymptotic analysis. Compute ug by solving the steady-
state equations to get a solution ug(r). Because ug is independent of time Liug = Loug =
L3110 =0.

At order e,

(LO - G’th())lll =0.

Compute u; by solving the eigenvalue problem to get
u; = a(t)A(r)e®® +a(r)A(r)e™*

and wy.
At order €2,

(LO — G’l‘hJ())ll2 = —L]_ll]_ + GTh’LL3’]_MU]_ +jU370Mu0.

The term L;u; will produce expressions in e, which are resonant terms. Then to sup-
press these resonant terms choose w; = 0. The other terms on the right hand side will
produce expressions in €%, e?*, and e~2%*, so compute the solution u, using the method
of undetermined coefficients, by solving a system Lu = b for each of the harmonic terms.

Formulate the O(e®) problem and use Fredholm’s Alternative Theorem to find a solv-
ability condition. We now proceed with a discussion of the analysis as outlined.
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C.4. Steady State Problem

This solution was discussed in section C.1:

C.5. Linear Problem

This solution was discussed in section C.2:

U1
u; = [us | =a(r)AL(r)e® +a(r)A(r)e .
Us1

C.6. Second Order Problem
At order €2, the right hand side is
jU30Mu0 + GrhU31Mu1 .

Examine each term. First,

U30U20
JuzoMug = j | —uzou1o0
0

which is known from the order €® equation. Second,

GT’hU31M111 = GTh (aA316i8 + aA31€_is)M(GA1€is + &Ale_is)

A31A21 A31A21 .
= 2aaGry, | —Az31411 | + a2Grh —As31 A e2is
0 0
‘ Ag1 Ay .
+ L_IZGT'h —A31Aqq 6_213,
0
so the right hand side is
U3zoU20 A31A21
j | —usou1o | + 2|a|2Gtheal —A31 A
0 0
A31A21 i A§1A21 .
+ G2G7'h —A31A11 6223 + d2GTh —A31A11 6_223.
0 0

Solving with this right hand side leads to a solution

U12
uy = [ uae | = Bo(r) + (a®Ba(r)e** +c.c.),
U3z2
where
Bo = jbg” (1) + lal*bg” (1)

is the solution of a real operator with a real right hand side, and so is real.

37
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C.7. The Landau Equation
Apply Fredholm’s alternative at order €3; adopting the notation used in Joseph Joseph(1976)

(a-l_))z/va-l_)dV

T
[a,b] = % /0 (a- bydt.

Solve the adjoint homogeneous problem,
(Lo — GrpJo)*z =0
and then require for solvability that f, the right hand side at order €3, satisfies
[f,z] =0.
The order € right hand side is
—Louy + GrruzaMuy + Grrusi Mus + jJouy.
Examine each term. First,
—Lou; = —(w2DOs + DO;) [aAleis + &Ale*is]
= —wyD[aiA e — aiA e "] — [%DAleis + %the‘is].
Second,

GryusaMuy = Gry(Bsg + a®B32e®® + a>Bzoe )M (aA e + aAje )
Jbi(i%)) (aAgleis) + b:(;%) (azﬁAgleis) + (026332A216i5)
= G’I‘h —J (bgt) (aAueis) + bg%) (G2C_lA11€is) + (Cl2(_1332/_111€is)) + c.c.
0

Third,

GriusiMuy = Gry, (aAgleis)M(jb((]l) + |a|2b(()2) + ange%)

ibSE) (aAs1€®) + b5 (a2GAslei®) + j(a*aBay A e™®)
=Grn | b\Y(adsie®) + b2 (a2aAs1ei®) + (a2aByp Az ei®) | +cc
0

Lastly,

uzoA21 +uz0ds \
jJ()lll = ja —U30A11 - U10A31 e’ + c.c.
0



A New Model of the Dynamics of the Flow in a Thermosyphon 39

So the right hand side is
. ; da )
— wyD[aiAe*” + c.c.] — [EDAW” +c.c.]
Jbg})) (ClAgl eis) =+ Jb{(-}?)) (a2dA21 eis) + (anB32A21 eis)
+Grp | — (b:%) (aAneis) + bg%) (CL2L_1A116iS.) + (aQ&ngflneis)) + c.c.
0
]bgt) (ClA3]_eis) + ]bg%) (a26A3leis) + (GZC_IBQQA:;]_GZ.S)
+ Grh bgt) (G/A316is) + bg%) (a26A3 leis) + (a26B12A31€is) +c.c.
0

uzo A1 +uz0ds1 \
+ ja —uzgA11 — u10ds1 | €¥¥ +c.c.
0

Now enforce
[f,z] =0.

Compute the time integral of this solvability condition first; then the only non-zero
components are constant in time (s). These terms are

b 4 L A4
da 30 21 20 4131
—wyDaiAy -z — —DA; -z + jGrpa | BV 4,, | -2+ iGrra | p{V) 4 -7
dr 30 10 131
0 0
usoAa1 + uz0Asy bg,%)Am
+ja | —ugpAi1 — u10ds1 | Z + Grypa’a bg%)An " Z
0 0
bSy) Azt Bsy Agy + Bay Az
+ GTha2L_l bg%)ASI -Z+ GT‘hGQC_l Bg2A11 + Blegl - Z.
0 0

Now compute the volume integral of these terms and set it to zero, arriving at an ODE
in a:
da . N
ag— = jaa + Balal (C1)
dr
where the coefficients ag, @ and f are determined via the volume integral.
The nature of the bifurcation has been reduced to the study of an ODE. Here is the

Hopf bifurcation theorem as stated in Glendinning Glendinning(1994):

Theorem C.1(Hopf Bifurcation Theorem, Subcritical Case)

Suppose that & = f(z,y,n), ¥ = g(z,y, ) with £(0,0,u) = g(0,0,u) =0 and that the
Jacobian matriz evaluated at the origin when pu =0 is

L)

for some w # 0. If fuz + guy # 0 and c # 0 then a curve of periodic solutions bifurcates
from the origin into p < 0 if ¢(fmuz + Guy) > 0. If fuz + 9uy > 0, then the origin is
stable for p < 0 and unstable for p > 0. If the origin is stable on the side of u = 0 for
which the periodic solutions exist, the periodic solutions are unstable and the bifurcation
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is subcritical. The constant ¢ is given by

1
c= E(f:c:cz + 9zzy + fwyy + gyyy)+

1
m(fzy(fzz + fyy) = 92y(9aa + Gyy) — frz9wa + fyy9uy)
evaluated at (x,y) = (0,0).

This theorem can be applied as follows. Rescale the equation C1 to get

da _ jaa + Blal*a
dr

Then breaking the system into its real and imaginary parts, the system is in the form in
the theorem as stated above. The requirements for a subcritical bifurcation are met when
j=-1and a, <0,8, > 0. The computation of these coeflicients is straightforward and
is being undertaken at this time. At the end of this chapter we will explain a method of
approximating these coefficients as an alternative to computing them directly. Now we
turn to an examination of the Hopf bifurcation in the Lorenz equations.

Appendix D. Chebyshev Polynomials
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