STA 453/553 Class 1

- Introduce class and syllabus discussion

Web site: http://www.stat.unh.edu/~ghikerta/inference

Course html.

Begin with Chap. 5: Elements of Stat. Inference.

X a r.v. that follows some dist. F - not necessarily known
Sample: \(x_1, x_2 \), \(X \sim F \) \(\theta \) some family or
distributions.

Question about \(F \): mean, variance, prob?

For this course, \(\Theta \) is a parametric family, i.e.
\(\{ f(x|\theta) \colon \theta \in \Theta \} \) \(\Theta \) parameter, \(\Theta \) parameter
space \(\Theta \) an unknown quantity.

Question about \(F \) translates to a question on \(g(\theta) \),
a function of \(\theta \).

Ex: \(\{ f(x|\mu) = N(\mu, \sigma^2) \} \) \(\sigma^2 \) known - \(\mu \)?

Non-parametric situation: family \(\Theta \) may not be indexed
by parameter. Ex: \(\{ \) all cont. densities \(\}\),
\(\Theta \)=all symmetric dist. \(\).

A very important element of inference.

Random samples: see 5.1 & 5.2

\(x_1, x_2 \), \(X \) of r.v.s independent and identically
distributed (iid) each following a density \(f(x) \).

Key issue of random sampling:

\[f(x_1, x_2, \ldots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta) \]

\[f(x_1, x_2, \ldots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta) \]
For k,

$$ f(x_1 \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{1}{2\sigma^2} (x_i - \mu)^2 \right) $$

and x_1, x_2, \ldots, x_n are a random sample $x_i \sim N(\mu, \sigma^2)$ \Rightarrow

$$ f(x_1, x_2, \ldots, x_n \mid \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{1}{2\sigma^2} (x_i - \mu)^2 \right) = \left(\frac{1}{2\pi\sigma^2} \right)^{n/2} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right). \quad \forall$$

Obs. When the $x_i s$ are observed, $f(x_1, x_2, \ldots, x_n \mid \mu, \sigma^2)$ determines the likelihood function on (μ, σ^2) Chap. 6.

Random sampling refers to sampling from infinite populations. Another issue:

Samples of random samples are expressed by statistics. Def: A statistic is a function $T(x_1, x_2, \ldots, x_n)$ real- or vector-valued whose domain is the sample space of (x_1, x_2, \ldots, x_n).

Sample space = set of all possible values that (x_1, x_2, \ldots, x_n) may take.

Ex:

$$ T_1(x_1, x_2, \ldots, x_n) = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x} \quad ; \quad T_2(x_1, x_2, \ldots, x_n) = x_{(1)} $$

$$ T_2(x_1, x_2, \ldots, x_n) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} \quad ; \quad T_4(x_1, x_2, \ldots, x_n) = x_{(n)} $$

The only restriction on T, is that it should not depend on θ. Ex: $\frac{x - \mu}{\sigma/\sqrt{n}}$ is not a statistic.
As a function of \(X_1, X_2, \ldots, X_n \), \(T(X_1, X_2, \ldots, X_n) \) is a r.v.
the properties of \(T \) will depend on the "parental" dist \(f(x) \) (run through trace of r.v.s).

Ex. (Thm 5.2.6). If \(X_1, X_2, \ldots, X_n \) is a random sample where \(E(X) = \mu \) and \(\text{Var}(X) = \sigma^2 \) then
\[
E(X) = \mu, \quad \text{Var}(X) = \sigma^2/n, \quad E(S^2) = \sigma^2 \quad \text{where} \quad S^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2
\]
(\(\bar{X} \) and \(S^2 \) are unbiased to estimate \(\mu \) and \(\sigma^2 \) respectively)

Ex. (Thm 5.2.7) If \(X_1, X_2, \ldots, X_n \) is a random sample with mgf \(M_X(t) = E(e^{tx}) \)
\[
M_X(t) = \left[M_X(t/n) \right]^n
\]
very helpful to derive the dist. of \(\bar{X} \) easily

If \(X \sim N(\mu, \sigma^2) \) \(\Rightarrow M_X(t) = \exp(\mu t + \frac{\sigma^2 t^2}{2}) \)
\[
M_X(t) = \left[\exp(\mu t/n + \frac{\sigma^2 (t/n)^2}{2}) \right]^n
\]

\[= \exp(\mu t + \frac{\sigma^2 (t/n)^2}{2})\]
\[\Rightarrow \bar{X} \sim N(\mu/n, \sigma^2/n).
\]

If \(X \sim \text{Exp}(\lambda) = f(x; \lambda) = \frac{1}{\lambda} e^{-x/\lambda} \); \(\chi > 0 \)
\[
M_X(t) = \frac{1}{1 - \lambda t}
\]
\[\Rightarrow M_X(t) = \left(\frac{1}{1 - \lambda(t/n)} \right)^n = \text{Gamma dist. with pa.rms } \alpha = n \beta = \frac{n}{\lambda}.
\]

\(\text{(Gamma}(\alpha, \beta) = f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha) \beta^\alpha} x^{\alpha-1} e^{-x/\beta}) \)

What if the mgf does not exist?

With iid \(f_X(x) = n f_{X_1, X_2, \ldots, X_n}(x) \) (see Ex 5.5).
OLD WINE STATISTICS
Given X_1, X_2, \ldots, X_n a random sample; place values in ascending order
$X(1), X(2), \ldots, X(n)$
$X(i) = \min \{X_i\} \ ; \ X(i) = \text{second smallest } X_i \ ; \ X(n) = \max \{X_i\}$

SAME RANGE: $R = X(n) - X(1)$
SAME MEDIAN: $M(n)$
$X(n), X(n), X(3) \rightarrow M = X(2)$
$X(n), X(n), X(n), X(4) \rightarrow M = \frac{X(3) + X(4)}{2}$

In general
$$M = \begin{cases} X(n + \frac{1}{2}) & \text{if } n \text{ is odd} \\ \frac{X(n + \frac{1}{2}) + X(n + \frac{1}{2} + 1)}{2} & \text{if } n \text{ is even} \end{cases}$$

M is a measure of location, less sensitive than the mean to extreme observations.

MAIN RESULT (Theorem 5.4.1)

If X_1, X_2, \ldots, X_n denote the old wine statistic of a random sample
X_1, X_2, \ldots, X_n of continuous variables with cdf $F_X(x)$ and pdf $f_X(x)$, then, the pdf of $X(j)$ is

$$f_X(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}$$

$X(j)$ is x if at least j X_i's are less than or equal to x

Let $Y = \text{no. of } X_i$'s $\leq x$.

$$X(j) \leq x \iff \{X \leq x \} \text{ is the event} \iff Y \leq j \text{ and } Y \sim \text{Bin}(n, F_X(x))$$

$$P[X(j) \leq x] = \sum_{k=j}^{n} \binom{n}{k} [F_X(x)]^k [1 - F_X(x)]^{n-k}, \quad k = 0, 1, \ldots, n$$
\[f(x_0) = \frac{d}{dx} P[X_0 < x_0] \]

\[= \sum_{k=0}^{n} \binom{n}{k} F(X_0)^{k-1}(1-F(X_0))^{n-k} f(x_0) \]

\[= \sum_{k=j}^{n} \binom{n}{k} \int_{x_0}^{x_0} F(X_0)^{k-1}(1-F(X_0))^{n-k} f(x_0) \]

\[= \binom{n}{j} \int_{x_0}^{x_0} F(X_0)^{j-1}(1-F(X_0))^{n-j} f(x_0) + \sum_{k=j+1}^{n} \binom{n}{k} \int_{x_0}^{x_0} F(X_0)^{k-1}(1-F(X_0))^{n-k} f(x_0) \]

\[\times \binom{k}{j} \sum_{k=0}^{j} \frac{F(X_0)^{k}}{k!} \]

Note that \(\binom{n}{j} j = \frac{n!}{(n-j)! j!} j = \frac{n!}{(n-j)! (j-1)!} \)

Change of Variables \(k = j + 1 \), \(n \)

\[k' = k - 1 \quad \text{so} \quad k' = j, j + 1, \ldots, n - 1 \]

\[\Theta = \sum_{k'=j}^{n} \binom{n}{k'+1} (k'+1) \int_{x_0}^{x_0} F(X_0)^{k'}(1-F(X_0))^{n-k'-1} f(x_0) \]

Since \(k' \) is a dummy variable we may replace \(k' \) with \(k \).

Just wish to check that

\[\binom{n}{k} (n-k) = \binom{n}{k+1} (k+1) \]

\[\frac{n!}{k! (n-k)!} (n-k) = \frac{n!}{k! (n-k-1)!} \quad \text{so} \quad \Theta = 0 \]

Particular Cases

\(j = 1 \), \(j = n \)

\[f(x_0) = \frac{n!}{(n-1)!} f(x_0) [1-F(x_0)]^{n-2} = n f(x_0) [1-F(x_0)]^{n-1} \]

\[f(x_0) = \frac{n!}{(n-1)!} f(x_0) [F(x_0)]^{n-2} [1-F(x_0)]^{n-1} = n f(x_0) [F(x_0)]^{n-1} \]

\(x_1, x_2, \ldots, x_n \) are i.i.d. from \(U(0,1) \)

\[f(x) = 1 \quad 0 < x < 1 \]

\[f_{x|y} (x) = n (1-x)^{n-1} \]

\[f_X(x) = x \]

\[f_{x|y} (x) = n x^{n-1} \]
For auxiliary j

\[f_{X(n), Y(n)}(u,v) = \binom{n-1}{j-1} \frac{(n-j)!}{(n-j)!} \frac{u^{j-1}}{(1-u)^{n-j+1}} \]

\[E(\mathbf{Z}) = \frac{\alpha \beta}{(d+\beta)^2} \quad \text{Var}(\mathbf{Z}) = \frac{\alpha \beta}{(d+\beta+\alpha)^2} \]

Therefore

\[E(X(n)) = \frac{(\alpha \beta)}{(n+\alpha)} \quad \text{Var}(X(n)) = \frac{(\alpha \beta)(n-\beta+1)}{(n+\alpha)^2(n+\beta)} \]

Theorem 6.4.6

Gives an expression for

\[f_{X(n), X(j)}(u,v) \quad 1 \leq j \leq n \]

But we know $v = j$ for $j \leq n$ Eq 5.4.7 gives

\[f_{X(n), X(j)}(u,v) = \binom{n-1}{j-1} \frac{u^{j-1}}{(1-u)^{n-j+1}} \frac{v^{n-j}}{(1-v)^j} \]

\[E(X(n)) = \frac{(\alpha \beta)}{(n+\alpha)} \quad \text{Var}(X(n)) = \frac{(\alpha \beta)(n-\beta+1)}{(n+\alpha)^2(n+\beta)} \]

Theorem 6.4.6

Gives an expression for

\[f_{X(n), X(j)}(u,v) \quad 1 \leq j \leq n \]

But we know $v = j$ for $j \leq n$ Eq 5.4.7 gives

\[f_{X(n), X(j)}(u,v) = n(n-1)(\frac{1}{\alpha}) (\frac{1}{\alpha}) \left[\frac{v}{\alpha} - \frac{u}{\alpha} \right]^{n-2} \]

\[= n(n-1)(v-u)^{n-2} \quad 0 < u < v < \alpha \]

Also

\[f_{X(n)}(v) = n(\frac{1}{\alpha}) (\frac{v}{\alpha})^{n-1} = \frac{v^{n-1}}{\alpha^n} \]

Theorem 6.4.6

\[f_{X(n), X(j)}(u,v) = \frac{f_{X(n), X(j)}(u,v)}{f_{X(n)}(v)} = \frac{(n-1)(v-u)^{n-2}}{v^{n-1}} \]

Endpoints of $X(n)$ given $X(n)$

Ex 5.27.
Converging Concepts.

Why? Long-run behavior (n→∞) of sample quantities such as \(\bar{x} \) or \(s^2 \) relates to asymptotics. Permits approximations to "large" n (but fixed) situations.

3 Types of Convergence: i) Convergence in Probability ii) Almost Sure Convergence iii) Convergence in Distribution

**Def. 1: A sequence of random variables \(X_1, X_2, \ldots \) converges in probability to \(X \) if for every \(\epsilon > 0 \)

\[
\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0 \quad \text{or} \quad \lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1
\]

We denote this by \(X_n \xrightarrow{P} X \).

Ex: \(X_n \sim N(0, 1/n) \) \(\Rightarrow \) \(X_n \xrightarrow{P} 0 \)

Why?

Consider \(P(|X_n| < \epsilon) = P(-\epsilon < X_n < \epsilon) \)

\[
= P\left(-\epsilon/\sqrt{1/n} < Z < \epsilon/\sqrt{1/n}\right) \quad \text{(1) where } Z \sim N(0, 1)
\]

As \(n \to \infty \)

(1) = \(P(-\infty < Z < \infty) = 1 \)

Ex. 2 (Weak Law of Large Numbers). Let \(X_1, X_2, \ldots, X_n \) iid random variables with \(E(X_i) = \mu \) and \(\text{Var}(X_i) = \sigma^2 \), if \(\bar{X}_n = \frac{1}{n} \sum X_i \) then, for every \(\epsilon > 0 \)

\[
\lim_{n \to \infty} P(|\bar{X}_n - \mu| < \epsilon) = 1
\]

Proof (via Chebyshev's Ineq) For every \(\epsilon > 0 \)
\[P(1X_n - \mu < \varepsilon) \rightarrow P((\bar{X}_n - \mu)^2 > \varepsilon^2) \leq \frac{\text{Var}(\bar{X}_n - \mu)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \]

\[\Rightarrow P(1X_n - \mu < \varepsilon) \rightarrow 1 - \frac{\sigma^2}{n\varepsilon^2} \quad \text{as} \quad n \rightarrow \infty \quad \text{Proof} \rightarrow \text{1} \]

For \(s^2 \):
\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \quad \text{Can we prove a WN?} \]

\[P(1Sn^2 - s^2 < \varepsilon) \leq \frac{\text{Var}(Sn^2)}{\varepsilon^2} = \frac{\text{Var}(s^2)}{\varepsilon^2} \quad \text{as long as Var}(s^2) \rightarrow 0 \]

Almost sure convergence:

Def 2: A sequence of random variables \(X_1, X_2, \ldots \)

\(\text{Converges} \quad \text{as} \quad \text{almost surely} \quad \text{to} \quad X, \quad \text{if every} \quad \varepsilon > 0 \)

\[P(\lim_{n \rightarrow \infty} |X_n - X| < \varepsilon) = 1 \]

We denote this by \(X_n \rightarrow^a X \)

Result: Almost sure convergence implies convergence in probability, but not the opposite.

Ex: 5.5.8

Consider a sample space \(S = [0, 1] \) with a \(U(0,1) \) distribution.
For any point \(s \in S \), we define
\[
X_1(s) = s + 1_{[0,1]}(s); \quad X_2(s) = s + 1_{[0,1/2]},
\]
\[
X_3(s) = s + 1_{[1/2,1]}(s); \quad X_4(s) = s + 1_{[0,1/3]},
\]
\[
X_5(s) = s + 1_{[1/3,2/3]}(s); \quad X_6(s) = s + 1_{[2/3,1]},
\]
\[
X_7(s) = s + 1_{[0,1/4]}(s); \quad X_8(s) = s + 1_{[1/4,1/2]}.
\]

Let's make \(X(s) = s \) (identity function).
\[
P\left(\left|X_n(s) - X(s)\right| > \varepsilon\right) = P\left(|1_n| = \text{length}(I_n)\right)
\]

But as \(n \to \infty \), \(\text{length}(I_n) \to 0 \) since \(X_n \to X \).
For a.s., we need \(X_n(s) \to s \) except on a set with measure zero.
Notice that for any \(s \), \(X_n(s) \to s + 1, \) or \(s \).
Take \(s = 1/2 \): \(X_1(1/2) = 3/2 \), \(X_2(1/2) = 3/2 \), \(X_3(1/2) = 3/2 \).
\(X_4(s) = 1/2 \), \(X_5(s) = 3/2 \).

Notice that the subsequence \(X_{n_k}(s) = s + 1_{[1/2,1]}(s) \) converges both in prob. and a.s.

For large enough \(n \), \(X_n(s) = s \).

Strong Law of Large Numbers. Let \(X_1, X_2, \ldots \) be i.i.d. RVs with mean \(\mu \) and variance \(\sigma^2 \). Then, for every \(\varepsilon > 0 \),
\[
P\left(\lim_{n \to \infty} \left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| < \varepsilon\right) = 1 \quad (X_n \xrightarrow{a.s.} \mu)
\]
LAST FORM OF CONVERGENCE.

CONVERGENCE IN DISTRIBUTION.

Def 3. A sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if
\[\lim_{n \to \infty} F_{X_n}(x) = F_X(x) \]
ono
Denoted by $X_n \xrightarrow{D} X$.

Example: $Z \sim N(0, 1)$, $X_1 = 2, X_2 = -2, X_3 = 2$.

Notice that $-Z \sim N(0, 1)$ and then $X_n \xrightarrow{D} Z$.

Can this sequence converge in probability to Z?

Notice that:
\[P(\lvert X_n - Z \rvert \leq \varepsilon) = \begin{cases} 1 & \text{if } X_n = Z \quad (n \text{ odd}) \\ \frac{1}{2} \left(1 \pm \frac{1}{2} \varepsilon\right) & \text{if } X_n = -Z \quad (n \text{ even}). \end{cases} \]

\[\Rightarrow X_n \text{ does not converge in probability.} \]

Theo. If X_1, X_2, \ldots X_n converges in prob. to X, the sequence also converges in dist. to X.

Proof. (Ex. 5.40) Cont. Case. We can show that
\[P(X \leq t - \varepsilon) \leq P(X_n \leq t) + P(\lvert X_n - X \rvert \geq \varepsilon) \quad (1) \]

since $X_n \leq t \iff \lvert X_n - X \rvert \geq \varepsilon$ implies $X - X_n \leq -\varepsilon + \varepsilon \leq t - \varepsilon$.

In the same manner:
\[P(X_n \leq t) \leq P(X \leq t + \varepsilon) + P(\lvert X_n - X \rvert \geq \varepsilon) \quad (2) \]

Combining (1) and (2), we have
\[P(X \leq t - \varepsilon) - P(\lvert X_n - X \rvert \geq \varepsilon) \leq P(X \leq t) \leq P(X \leq t + \varepsilon) + P(\lvert X_n - X \rvert \geq \varepsilon). \]

As $n \to \infty$, $P(X \leq t - \varepsilon) \leq P(X \leq t) \leq P(X \leq t + \varepsilon)$
\[F_X(t - \varepsilon) \leq F_{X_n}(t) \leq F_X(t + \varepsilon), \]

\[\Rightarrow \lim_{n \to \infty} F_{X_n}(x) = F_X(x). \]
Famous example of convergence in dist.

Central Limit Theorem: \(X_1, X_2, \ldots \) are iid Rvs.
with \(E(X_i) = \mu \) and \(Var(X_i) = \sigma^2 \).
If \(Z_n = \frac{X_n - \mu}{\sigma} \) and
\(F_{Z_n}(z) \) is the dist. function of \(Z_n \) then
\[
\lim_{n \to \infty} F_{Z_n}(z) = \Phi(z)
\]
with
\[
\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx
\]

Book offers proof when \(\mu_X(t) \) in a neighborhood of 0.
But the result is more general.

Ex. (typical of 345)

Suppose \(X_1, X_2, \ldots, X_{10} \) are iid \(X_i \sim Poisson(\lambda) \).
\(f(x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}; \lambda = 1, 2, \ldots \).
Suppose \(\lambda = 10 \).

\[
\sum_{i=1}^{10} X_i \sim Poisson(100)
\]

\(P(\sum_{i=1}^{10} X_i < 325) \)

By mgf \(M_{\sum X_i(t)} = E(e^{t \sum X_i}) = [M_{X_i(t)}]^n \)
\(= e^{t \lambda} \sim Poisson(\lambda) \)

\(M_{X_i(t)} = e^{t(e^{\lambda} - 1)} \Rightarrow [M_{X_i(t)}]^n = e^{n \lambda(e^{t} - 1)} \)

\(\sum_{i=1}^{10} X_i \sim Poisson(100) \) \(\lambda = 100 \)

Exact Calculation \(P(\sum_{i=1}^{10} X_i < 325) = 0.928 \pm 0.27 \)

\(P(\sum_{i=1}^{10} X_i < 325) = P(\bar{X} < 10.8333) \approx P(z < \frac{8.3333}{10.8333}) = 0.9255419 \)

One problem with CLT is that we really don't know
how large \(n \) to use for the approx. to work.

(Exponential of \(f(x) \)).
Suppose now that we care about $g(X)$, some function of X. Do we have some sort of CLT for $g(X)$?

In the Poisson example, it seems natural to estimate λ (mean) with \bar{X}. But now if we want to estimate $e^{-\lambda} = P(X=0)$, an estimator would be $e^{-\bar{X}} = g(X)$.

Limit dist. for $e^{-\bar{X}}$?

The Delta Method:

Suppose we have a r.v. (statistic) T such that $E(T) = \theta$ and $g'(\theta)$ exists and is different from zero at an observed value of T.

Let's take the Taylor series expansion of g around θ.

$g(t) = g(\theta) + g'(\theta) (t-\theta) + \text{Remainder}$

$\Rightarrow g(t) \approx g(\theta) + g'(\theta) (t-\theta)$

If we take expectations,

$E(g(T)) \approx g(\theta) + g'(\theta) E(T - \theta) = g(\theta)$

Similarly,

$E(g(T) - g(\theta))^2 \approx (g'(\theta))^2 E(T - \theta)^2$

$= \text{Var}(g(T)) \approx g'(\theta)^2 \text{Var}(T)$

We obtain approx. expressions for $E(g(T))$ and $\text{Var}(g(T))$.

In the ex., $\theta = \lambda$

$E(e^{-\bar{X}}) \approx e^{-\lambda}$ and $\text{Var}(e^{-\bar{X}}) \approx e^{-2\lambda} \left(\frac{\lambda}{n} \right)$

$g(T)$ is "approx. unbiased."

In fact, if $T \tilde{\rightarrow} T_n$ is a sequence of R.V. where

$\sqrt{n}(T_n - \theta) \tilde{\rightarrow} N(0, \sigma^2)$. If g is a function whose g' exists and is not 0 then:

$E(g(T)) \approx g(\theta)$ and $\text{Var}(g(T)) \approx g'(\theta)^2 \text{Var}(T)$.
\[
\sqrt{n} \left(g(\bar{X}) - g(\theta) \right) \xrightarrow{d} N(0, \sigma^2 g'(\theta)^2)
\]

In terms of the example:
\[
\sqrt{n} \left(e^{-\bar{X}} - e^{-\theta} \right) \xrightarrow{d} N(0, e^{-2\theta} \frac{\theta}{n})
\]

Usually \(\sigma^2\) and \(\theta\) are unknown, hence \(\sigma^2 g'(\theta)^2\) is unknown. If we can find \(V_n\) such that \(V_n \xrightarrow{d} \sigma^2 g'(\theta)^2\)

Then Slutsky's theorem (PAG. 240) guarantees that:
\[
\sqrt{n} \frac{g(\bar{X}) - g(\theta)}{\sqrt{\sigma^2 g'(\theta)^2}} \xrightarrow{d} N(0, 1)
\]

Does not involve \(\theta\) in the theorem.

In the example Poisson, by the WLLN \(\bar{X} \xrightarrow{P} \lambda\)

By M.W. ex. prob. \(\bar{X} = e^{-2\theta} \left(\frac{\bar{X}}{\theta} \right)^{\theta} \xrightarrow{P} e^{-2\theta} \left(\frac{\lambda}{\theta} \right)^{\theta}\)

Then
\[
\sqrt{n} \left(e^{-\bar{X}} - e^{-\theta} \right) / \sqrt{\sigma^2 g'(\theta)^2} \xrightarrow{d} N(0, 1)
\]

Justifies the use of \(\bar{X}\) plug in as estimator for \(\lambda\).

Finally, what if \(g'(\theta) = 0\)

second order exp. on \(g\)
\[
g(\bar{X}) = g(\theta) + g'(\theta) (\bar{X} - \theta) + \frac{1}{2} g''(\theta) (\bar{X} - \theta)^2 + R
\]

\(\Rightarrow g(\bar{X}) \approx \frac{1}{2} g''(\theta) (\bar{X} - \theta)^2 + g(\theta)
\]

\[n(g(\bar{X}) - g(\theta)) \times \frac{\bar{X} - \theta}{\sqrt{\sigma^2 g'(\theta)^2}} \xrightarrow{d} N(0, 0.2)
\]

\[n(g(\bar{X}) - g(\theta)) \rightarrow \sigma^2 g''(\theta) \times 2
\]

\[n(g(\bar{X}) - g(\theta)) \rightarrow \sigma^2 g''(\theta) \times 2
\]
Generating Random Samples.

In inferring, we are interested in the distribution of \(T(x_1, x_2, \ldots, x_n) \) a "statistic".

Suppose it is very hard to deal with the dist of \(T \) with pdf or conjugate concepts. (For ex. an order statistic).

Idea:
Since \(x_1, x_2, \ldots, x_n \) are iid where \(x_i \sim f(x_i) \)
we can "generate" with the help of the computer values for \(x_1, x_2, \ldots, x_n \). To obtain values for \(T(x_1, x_2, \ldots, x_n) \).

Ex:

Let \(x_1, x_2, \ldots, x_{20} \) be iid \(N(0, 1) \) RVs.

And \(T = \max \{x_1, x_{20}\} \)

Hard to deal with the dist of \(T \) because \(F_T(t) = P(X_{20} \leq t) = \prod_{i=1}^{20} P(x_i \leq t) = [\Phi(t)]^{20} \).

And \(\Phi(t) \) does not have a closed form expression.

Generate values.

1. \(- \quad x_1^{(1)}, x_2^{(1)}, x_{20}^{(1)} \quad \rightarrow \quad x_{(20)}^{(1)} \quad \text{and repeat and on.} \)

2. \(- \quad x_1^{(2)}, x_2^{(2)}, x_{20}^{(2)} \quad \rightarrow \quad x_{(20)}^{(2)} \)

\(\vdots \)

(1000), (1000), (1000), (1000)

1000, x_1, x_2, x_{20} \quad \rightarrow \quad x_{(20)}^{(1000)}

SUMMARIZE: \(x_{(20)}, x_{(20)}, \ldots, x_{(20)} \).

Look at handout. Fig (a)
In fact, if we want to approximate \(E(X(20)) \) and \(E(X^2(20)) \):

\[
E(X(20)) \approx \frac{1}{1000} \sum_{i=1}^{1000} X(i) = 1.867 \quad (\text{with my simulation})
\]

\[
E(X^2(20)) \approx \frac{1}{1000} \sum_{i=1}^{1000} (X(i))^2 = 3.786
\]

Issue: How do we generate \(X \) with a pdf \(f(x|10) \)?

Start with an algorithm that generates \(U \); \(U \) follows a \(U(0,1) \) distribution.

For \(X \) continuous, we generate \(X \) by

\[
X = F^{-1}(U)
\]

where \(F^{-1} \) is the inverse CDF of \(F \).

Example: If \(X \) is \(\text{Exp}(\lambda) \) then \(f(x|\lambda) = \frac{1}{\lambda} e^{-x/\lambda}, \ x > 0 \)

so

\[
F(x|\lambda) = 1 - e^{-x/\lambda}; \quad \text{if we take}
\]

\[
U = 1 - e^{-X/\lambda} \implies e^{-X/\lambda} = 1 - U
\]

\[
\Rightarrow \quad -\frac{X}{\lambda} = \log(1-U) \implies X = -\lambda \log(1-U)
\]

Example: \(F^{-1} \) may not have a closed form (box-muller).

For \(X \) discrete:

Suppose \(X \) takes 3 values: \(x_1 \) with prob. \(p_1 \), \(x_2 \) with prob. \(p_2 \) and \(x_3 \) with prob. \(p_3 \).

To generate a value of \(X \):

(i) Generate \(U \) from \(U(0,1) \)

(ii) If \(U \leq p_1 \) \(\implies X = x_1 \)

\[
\begin{align*}
\text{If } & \quad p_1 < U \leq p_1 + p_2 \quad \implies X = x_2, \\
& \quad \frac{F(x_1)}{F(x_2)}
\end{align*}
\]
Most statistical packages have a simulator for well-established \(f(x|\theta) \). (See Figs. (a)-(d)).

Still, if \(f(x|\theta) \) is not available, we may use indirect methods.

\(X \sim \text{DEXP}(\lambda = 0) \). So \(f(x|\mu) = \frac{1}{2} e^{-\frac{1}{2} (x-\mu)^2} \) \(-\infty < x < \infty \) \((\mu = 1) \). Suppose we want to generate values of \(X \).

Proposed auxiliary density. (Candidate)
\(f(y|\mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} (y-\mu)^2\right) \) \(-\infty < y < \infty \)

Generate \(Y \sim \text{N}(0,1) \), set \(X_0 = Y \)

For \(i = 1, 2, \ldots \)

1. Generate \(U_i \sim \text{U}(0,1) \); \(Y_i \sim \text{N}(0,1) \).

\[P_i = \min\{1, \frac{\exp\left(-\frac{1}{2} (y_i)\right) \exp\left(-\frac{1}{2} (x_0)^2\right)}{\exp\left(-\frac{1}{2} y_i^2\right) \exp\left(-\frac{1}{2} (x_0)^2\right)}\} \]

2. Set
\[X_i = \begin{cases} Y_i & \text{if } U_i \leq P_i \\ X_{i-1} & \text{if } U_i > P_i \end{cases} \]

The key thing is that as \(i \to \infty \) \(X_i \to X \)

This leads to the Metropolis-Hastings algorithm.