Laplace Transform Instructions

Shift Formulas
- \(\mathcal{L}[e^{at}f(t)] = F(s-a) \). To take the Laplace transform of \(e^{at}f(t) \):
 1. Find \(\mathcal{L}[f(t)] = F(s) \).
 2. Replace \(s \) with \(s-a \) in \(F(s) \).

- \(\mathcal{L}^{-1}[F(s)] = e^{at}\mathcal{L}^{-1}[F(s+a)] \). To take the inverse Laplace transform of \(F(s) \):
 1. Replace \(s \) with \(s+a \) in \(F(s) \).
 2. Take the inverse Laplace transform of \(F(s+a) \)
 3. Multiply by \(e^{at} \).

- \(\mathcal{L}[u_c(t)f(t)] = e^{-cs}\mathcal{L}[f(t+c)] \). To take the Laplace transform of \(u_c(t)f(t) \):
 1. Replace \(t \) with \(t+c \) in \(f(t) \).
 2. Take the Laplace transform of \(f(t+c) \).
 3. Multiply by \(e^{-cs} \).

- \(\mathcal{L}^{-1}[e^{-cs}F(s)] = u_c(t)f(t-c) \). To take the inverse Laplace transform of \(e^{-cs}F(s) \):
 1. Find \(\mathcal{L}^{-1}[F(s)] = f(t) \)
 2. Replace \(t \) with \(t-c \) in \(f(t) \).
 3. Multiply by \(u_c(t) \).

Differentiation/Integration Formulas
- \(\mathcal{L}\left[t^n f(t)\right] = (-1)^n \frac{d^n}{ds^n} F(s) \). To take the Laplace transform of \(t^n f(t) \):
 1. Find \(\mathcal{L}\left[f(t)\right] = F(s) \).
 2. Take \(n \) derivatives of \(F(s) \) with respect to \(s \).
 3. Multiply by \((-1)^n \).

- \(\mathcal{L}^{-1}\left[\frac{1}{s} F(s)\right] = \int_0^t f(u)du \). To take the inverse Laplace transform of \(\frac{1}{s} F(s) \):
 1. Find \(\mathcal{L}^{-1}[F(s)] = f(t) \).
 2. Integrate \(f(t) \) from 0 to \(t \).

Convolution Formula
- \(\mathcal{L}^{-1}\left[F(s)G(s)\right] = f(t) \ast g(t) \). To take the inverse Laplace transform of \(F(s)G(s) \):
 1. Find \(\mathcal{L}^{-1}[F(s)] = f(t) \) and \(\mathcal{L}^{-1}[G(s)] = g(t) \).
 2. Convolute \(f(t) \) and \(g(t) \).