
DETERMINANTS

TERRY A. LORING

1. Determinants: a Row Operation By-Product

The determinant is best understood in terms of row operations, in my opinion. Most books
start by defining the determinant via formulas that are nearly impossible to use except on
very small matrices. Since what is taught first is often the best learned, this is dangerous.

We will start with the idea that a determinant of a square matrix is a single number that
can be calculated as a side product of Gaussian elimination performed on a square matrix
A. You already know 95% of what it takes to calculate a determinant. The extra 5% is
keeping track of some “magic numbers” that you multiply at together to create another
“magic number” called the determinant of A.

(How mathematicians came to discover these magic numbers is another topic.)

Definition 1.1. We define the factor of every row operation as follows:

Type assmuption Row Operation Factor

I j 6= k Rj ↔ Rk -1

II α 6= 0 αRj → Rj 1

α

III j 6= k Rj + βRk → Rj 1

Definition 1.2. We define the determinant det(A) of a square matrix as follows:

(a) The determinant of an n by n singular matrix is 0.
(b) The determinant of the identity matrix is 1.
(c) If A is non-singular, then the determinant of A is the product of the factors of the

row operations in a sequence of row operations that reduces A to the identity.

The notation we use is det(A) or |A|. Generally, one drops the braces on a matrix if using
the |A| notation, so
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are the notations most used.
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DETERMINANTS 2

Notice this means you can calculate the determinant using any series of row operations
you like that ends in I. What we are skipping (since this is not a theoretical class) is the
reasoning that shows that the product of determinant factors comes out the same no matter
what series of row operations you use.

Example 1.3. Find
∣

∣

∣

∣

∣

∣

2 0 2
0 1 0
−1 0 1

∣

∣

∣

∣

∣

∣

.

Since




2 0 2
0 1 0
−1 0 1









y

1

2
R1 → R1 factor: 2





1 0 1
0 1 0
−1 0 1









y
R3 + R1 → R3 factor: 1





1 0 1
0 1 0
0 0 2









y

1

2
R2 → R2 factor: 2





1 0 1
0 1 0
0 0 1









y
R1 − R3 → R1 factor: 1





1 0 0
0 1 0
0 0 1



 = I

we have
∣

∣

∣

∣

∣

∣

2 0 2
0 1 0
−1 0 1

∣

∣

∣

∣

∣

∣

= 2 · 1 · 2 · 1 = 4.

Example 1.4. Find
∣

∣

∣

∣

∣

∣

2 0 2
0 1 0
−1 0 −1

∣

∣

∣

∣

∣

∣

.
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Since





2 0 2
0 1 0
−1 0 −1









y

1

2
R1 → R1 factor: 2





1 0 1
0 1 0
−1 0 −1









y
R3 + R1 → R3 factor: 1





1 0 1
0 1 0
0 0 0





we can conclude that the original matrix is not invertible, so

∣

∣

∣

∣

∣

∣

2 0 2
0 1 0
−1 0 −1

∣

∣

∣

∣

∣

∣

= 0.

Notice that we do not need to know in advance if A is invertible. To find det(A) you can
always use Gaussian elimination.

If row operations lead to less than n pivots, the determinant is 0.

and

If row operations lead to I, the determinant is the product of the row op
factors.

Example 1.5. Find

det

[

2 4
1 6

]

.
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Since

[

2 4
1 6

]





y

1

2
R1 → R1 factor: 2

[

1 2
1 6

]





y
R2 − R1 → R2 factor: 1

[

1 2
0 4

]





y

1

4
R1 → R1 factor: 4

[

1 2
0 1

]





y
R1 − 2R2 → R1 factor: 1

[

1 0
0 1

]

= I

we have

det

[

2 4
1 6

]

= 2 · 1 · 4 · 1.

2. Two-by-Two: an Easy Case

Two-by-two is the only size of matrix where there is a formula for the determinant that
is faster to use than row operation method. If you have not seen this formula, here is how
we can discover it.

Suppose we want

det

[

a b

c d

]
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and we are lucky to have a 6= 0. Then
[

a b

c d

]





y

1

a
R1 → R1 factor: a

[

1 b
a

c d

]





y
R2 − cR1 → R2 factor: 1

[

1 b
a

0 d − c b
a

]

‖
[

1 b
a

0 ad−bc
a

]





y

a
ad−bc

R1 → R1 factor: ad−bc
a

[

1 b
a

0 1

]

R1 − a
b
R2 → R2 factor: 1

[

1 0
0 1

]

= I

where we cheated a little. We need ad − bc 6= 0. If this is so, and still with a 6= 0, we have
computed

det

[

a b

c d

]

= ad − bc.

This formula always holds, but let’s skip the other cases (they are easier) and just state this
result.

Lemma 2.1. For any real numbers a, b, c, d,

det

[

a b

c d

]

= ad − bc.

There is a formula that is a bit trickier than this that works for three-by-three. Starting
with four-by-four there is no shortcut. You must either use row operations or the longer
“row expansion” methods we’ll get to shortly.

3. Elementary Matrices are Easy

Since elementary matrices are barely different from I, they are easy to deal with. As with
their inverses, I recommend that you memorize their determinants.

Lemma 3.1.

(a) An elementary matrix of type I has determinant −1.
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(b) An elementary matrix of type II that has non-unit diagonal element α has determinant

α.

(c) An elementary matrix of type III determinant 1.

Rather than prove this, I offer some examples.

Example 3.2. Find
∣

∣

∣

∣

∣

∣

1 0 2
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

.

Since




1 0 2
0 1 0
0 0 1









y
R1 − 2R3 → R1 factor: 1





1 0 0
0 1 0
0 0 1



 = I

we have
∣

∣

∣

∣

∣

∣

1 0 2
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

= 1.

Example 3.3. Find
∣

∣

∣

∣

∣

∣

0 0 1
0 1 0
1 0 0

∣

∣

∣

∣

∣

∣

.

Since




0 0 1
0 1 0
1 0 0









y
R1 ↔ R2 factor: − 1





1 0 0
0 1 0
0 0 1



 = I

we have
∣

∣

∣

∣

∣

∣

0 0 1
0 1 0
1 0 0

∣

∣

∣

∣

∣

∣

= 1.
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Example 3.4. Find

∣

∣

∣

∣

∣

∣

1 0 0
0 α 0
0 0 1

∣

∣

∣

∣

∣

∣

where α 6= 0.
Since





1 0 0
0 α 0
0 0 1









y

1

α
R2 → R2 factor: α





1 0 0
0 1 0
0 0 1



 = I

we have

∣

∣

∣

∣

∣

∣

1 0 0
0 α 0
0 0 1

∣

∣

∣

∣

∣

∣

= α.

4. Upper Triangular is Easy: a Faster Algorithm

Let’s consider a more substantial example than we’ve done so far.

Example 4.1. What is the determinant of

A =





0 −2 −4
1 4 8
1 6 15



?
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A solution is as follows:




0 −2 −4
1 4 8
1 6 15









y
R2 ↔ R1 factor: − 1





1 4 8
0 −2 −4
1 6 15









y
R3 − R1 → R3 factor: 1





1 4 8
0 −2 −4
0 2 7









y
−1

2
R2 → R2 factor: − 2





1 4 8
0 1 2
0 2 7









y
R3 − 2R2 → R3 factor: 1





1 4 8
0 1 2
0 0 3









y

1

3
R3 → R3 factor: 3





1 4 8
0 1 2
0 0 1









y
R1 + 4R2 → R1 factor: 1





1 0 0
0 1 2
0 0 1









y
R2 − 2R3 → R2 factor: 1





1 0 0
0 1 0
0 0 1





so

det(A) = (−1) · 1 · (−2) · 1 · 3 · 1 · 1

= 6.
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Notice that after the matrix was in row echelon form, the remaining steps were type III
operations that have factor 1. Thus we could have skipped these steps. In fact, it is very
easy to calculate the determinant of upper triangular matrix.

Lemma 4.2. The determinant of an upper triangular matrix is the product of its diagonal

elements.

Proof. If

A =













d1 ∗ · · · ∗ ∗
0 d2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · dn−1 ∗
0 0 · · · 0 dn













then it might be the some of the dj are zero. If this is true, then A is singular, has determinant
zero, and the product of the diagonal elements is zero as well.

Otherwise, we can reduce A to a diagoanal matrix using first a series of type III operations,
which have factor 1. The diagonal matrix will be













d1 0 · · · 0 0
0 d2 · · · 0 0
...

...
. . .

...
...

0 0 · · · dn−1 0
0 0 · · · 0 dn













and from here we can reduce to the identity matrix using the operations

1

d1

R1 → R1

1

d2

R2 → R2

...
1

dn

Rn → Rn

The product of all the determinant factors is

1 × 1 × · · · × 1 × d1 × d2 × · · · × dn = d1 × d2 × · · · × dn.

�

So

The determinant of an upper triangular matrix is the product of the diagonal.

To properly say we can “stop when we reach upper diagaonal” we shall use the follow-
ing. More generally, you can stop the row operations when you arrive at a matrix whose
determinant you already know.



DETERMINANTS 10

Lemma 4.3. If a sequence of elementary row operations reduces A to B, and if the factors

of these row operations are r1, . . . , rn, then

det(A) = r1r2 . . . rn det(B).

Proof. We know that elementary row operations turn singular matrices into singular matri-
ces. If A is singular then B is singular and

det(A) = 0 = det(B)

and the formula holds.
Suppose A (and B) are invertible, and that the operations we’ve found that take us from

A to B are

Op1, Op2, . . . , Opn.

We can find some additional elementary row operations to transform B to I. Let’s call these

Õp1, Õp2, . . . , Õpm,

and call there factors

r̃1, r̃2, . . . , r̃m.

Then the longer sequence

Op
1
, Op

2
, . . . , Opn, Õp

1
, Õp

2
, . . . , Õpm

will transform A to I. Therefore

det(B) = r̃1r̃2 · · · r̃m

and

det(A) = r1r2 · · · rnr̃1r̃2 · · · r̃m

and we have our formula. �

Example 4.4. Calculate the the determinant of

A =









2 4 0 4
0 5 1 0
2 9 0 4
1 2 0 1








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A solution is








2 4 0 4
0 5 1 0
2 9 0 4
1 2 0 1













y

1

2
R1 → R1 factor: 2









1 2 0 2
0 5 1 0
2 9 0 4
1 2 0 1

















y

R3 − 2R1 → R3

R4 − R1 → R4

factor: 1
factor: 1









1 2 0 2
0 5 1 0
0 5 0 0
0 0 0 −1













y
R3 − R2 → R3 factor: 1









1 2 0 2
0 5 1 0
0 0 −1 0
0 0 0 −1









and so the answer is

det(A) = 2 · 1 · 1 · 1 · (1 · 5 · (−1) · (−1))

= 10.

5. Products and Determinants

Theorem 5.1. If A and B are n-by-n matrices, then

det(AB) = det(A) det(B).

Proof. If either A or B is not invertible, the product will also be noninvertible, and so the
equation will be satisfied by being zero on both sides.

Suppose

Op
1
, Op

2
, . . . , Opn

is a sequences of elementary row operations that transforms A to I. If the factors associated
to these operations are r1, r2, . . . , rn then

det(A) = r1r2 · · · rn.
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We can apply these row operations to the left matrix in the product AB and transform this
to IB. By Lemma 4.3,

det(AB) = r1r2 · · · rn det(IB)

= r1r2 · · · rn det(B)

= det(A) det(B).

�

This theorem is imporant for all sorts of reasons. It can be paraphrased as

products pull apart from inside the determinant.

A nice thing this tells us that if A is invertible then

det(A) det(A−1) = det(I) = 1

and so

det(A−1) =
1

det(A)
.

Thus

The determinant of the inverse is the inverse of the determinant.

Transpose and Determinants

Example 5.2. What are det(A) and det(AT ) if

A =









1 0 π 0
0 1 0 0
0 0 1 0
0 0 0 1









?

Since

AT =









1 0 0 0
0 1 0 0
π 0 1 0
0 0 0 1









both A and AT are type III elementary, and so

det(A) = det(AT ) = 1.

Example 5.3. What are det(A) and det(AT ) if

A =









0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1









.
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In this case AT = A and A is a type II elementary matrix, so

det(A) = det(AT ) = −1.

Example 5.4. What are det(A) and det(AT ) if

A =









1 0 0 0
0 2

3
0 0

0 0 1 0
0 0 0 1









.

In this case AT = A and A is a type I elementary matrix, so

det(A) = det(AT ) =
2

3
.

I hope you see the pattern here.

Theorem 5.5. If I is a square matrix, then

det(AT ) = det(A).

Proof. If A is singular, so is AT and both matrices have determanent 0. Otherwise, we can
write A as a product of elementary matrices

A = E1E2 · · ·Ek

and so

AT = ET
k ET

k−1
· · ·ET

1
.

This means

det(A) = det(E1) det(E2) · · ·det(Ek)

and

det(AT ) = det(ET
k ) det(ET

k−1
) · · ·det(ET

1
).

Recall that while matrix multiplication is not commutative, the product here is a product
of real numbers. So using commutativity, we have

det(AT ) = det(ET
1
) det(ET

2
) · · ·det(ET

k )

and so all we need to do is verify that

det(ET ) = det(E)

for every elementary matrix. I’ll leave this to your imagination. �

In blue, we have

The transpose leave the determinant alone.

The transpose of a lower triangular matrix is upper triangular, with the same diagonal.

Lemma 5.6. If A is upper or lower triangular, the determinant of A is the product of the

diagonal elements.
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Since the transpose mixes left with right, we can sort out the effect of column operations.
They act on the determinant just like row operations.

Lemma 5.7. Suppose A is a square matrix. If we obtain A1 as the result of a column

operation, then

det(A) = r det(A1)

where

(a) r = α if the column operation was αCk → Ck with α 6= 0,
(b) r = −1 if the column operation was Cj ↔ Ck, with  6= k, and
(c) r = 1 if the column operation was Cj + βCk → Cj,with j 6= k.

So you can

use column operations when computing determinants,

but

don’t use column operations for computing inverses

and

don’t use column operations when solving linear systems.

I hesitate to mention what doesn’t work, in general, but using column operations is very
tempting to a lot of students. No, no, no. You can mix row and column operations when
computing determinants, and that’s about it.

6. Partitioned Matrices

If we have a partioned matrix

X =

[

A B

C D

]

,

can we calulate det(A) from a formula involving the smaller matrices? Yes, sometimes, but
the formula is nastier than you would think. However, there is a nice special case.

Example 6.1. Compute, where possible,the determinants of

A =

[

2 4
1 3

]

,

B =

[

8 8 4
0 1 0

]

,

D =





3 0 −3
1 1 0
1 0 1





and

X =

[

A B

0 D

]

.
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Here 0 is necessarily meaning





0 0
0 0
0 0





and so we are looking at a matrix X that looks nice if seen in terms of blocks:

X =













2 4 8 8 4
1 3 0 1 0
0 0 3 0 −3
0 0 1 1 0
0 0 1 0 1













=













2 4
1 3

∣

∣

∣

∣

8 8 4
0 1 0

0 0
0 0
0 0

∣

∣

∣

∣

∣

∣

3 0 −3
1 1 0
1 0 1













.

First of all, B does not have a determinant because it is not square.
Now consider A. We could use the two by two rule, but let’s work this out with row

operations, as this will guide us when working with the big matrix X. So, working out
det(A) :

[

2 4
1 3

]





y

1

2
R1 → R1 factor: 2

[

1 2
1 3

]





y
R2 − R1 → R2 factor: 1

[

1 2
0 1

]

which has only ones on the diagonal, so

det(A) = 2 · 1 = 2.
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Now we do the same for D :





3 0 −3
1 1 0
1 0 1









y

1

3
R1 → R1 factor: 3





1 0 −1
1 1 0
1 0 1













y

R2 − R1 → R2

R3 − R1 → R3

factor: 1
factor: 1





1 0 −1
0 1 1
0 0 2









y

1

2
R3 → R3 factor: 2





1 0 −1
0 1 1
0 0 1





which means

det(D) = 3 · 1 · 1 · 2 = 6.

Now we can take care of X. In fact, we start by using the operations we used on A. Then
we use the operations we used on D, but shifted down two rows. This will reduce X to the



DETERMINANTS 17

point of being upper triangular with ones on the diagonal.













2 4 8 8 4
1 3 0 1 0
0 0 3 0 −3
0 0 1 1 0
0 0 1 0 1

















y

1

2
R1 → R1 factor: 2













1 2 4 4 2
1 3 0 1 0
0 0 3 0 −3
0 0 1 1 0
0 0 1 0 1

















y
R2 − R1 → R2 factor: 1













1 2 4 4 2
0 1 −4 −3 −2
0 0 3 0 −3
0 0 1 1 0
0 0 1 0 1

















y

1

3
R3 → R3 factor: 3













1 2 4 4 2
0 1 −4 −3 −2
0 0 1 0 −1
0 0 1 1 0
0 0 1 0 1





















y

R4 − R3 → R4

R5 − R3 → R5

factor: 1
factor: 1













1 0 4 4 2
0 1 −4 −3 −2
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 2

















y

1

2
R3 → R3 factor: 2













1 0 4 4 2
0 1 −4 −3 −2
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 1












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and since this has all diagonal elements equal to 1, we have

det(X) = 2 · 1 · 3 · 1 · 1 · 2 = 12.

Thus we see that

det(X) = det

[

A B

0 D

]

= det(A) det(D).

This equality happened because of how the row operations transfered from A and D over to
X.

Theorem 6.2. Suppose A is an n-by-n matrix, D is an m-by-m matrix, and B is n-by-m.

The partitioned matrix

X =

[

A B

0 D

]

has determinant equal to

det(A) det(D),

I.e,

det

[

A B

0 D

]

= det(A) det(D).

With proper assumptions on the sizes of the matrices, we also have the formula

det

[

A 0
C D

]

= det(A) det(D).

Proof. Here we have a case where a formal proof clouds the mind. Here is an informal
argument.

The row operations that convert A to the smaller I work on the big matix to give
[

A B

0 D

]

→ · · · →

[

I B1

0 D

]

where we don’t really care what B1 looks like. Then you use a sequence of row operations
that convert D to the correct sized identity, but applied to the lower rows of the partitioned
matrix and you get

[

I B1

0 D

]

→ · · · →

[

I B1

0 I

]

.

This is upper triangular with all ones on the diagona. The final product of factors is just the
product of the factors you computed for A times the product of the factors you computed
for D. This gives the first result.

The second formula follows from the first using the transpose. �

7. Expanding (slowly) on Rows and Columns

In the book you will see how a determinent can be computed by “expanding along a row”
or “expanding along a column.” With that method, you compute an n-by-n determinant as
a weighted sum of n different (n − 1)-by-(n − 1) determinants. This involves ugly notation,
so I will ask that you read about this from the book.
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Example 7.1. Calculate the determinent of









2 1 0 1
1 1 1 2
2 3 1 2
1 1 2 1









using expansion along the top row at each stage.

∣

∣

∣

∣

∣

∣

∣

∣

2 1 0 1
1 1 1 2
2 3 1 2
1 1 2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

1 1 2
3 1 2
1 2 1

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

∣

1 1 2
2 1 2
1 2 1

∣

∣

∣

∣

∣

∣

+ 0

∣

∣

∣

∣

∣

∣

1 1 2
2 3 2
1 1 1

∣

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

∣

1 1 1
2 3 1
1 1 2

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

1 1 2
3 1 2
1 2 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

1 1 2
2 1 2
1 2 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

1 1 1
2 3 1
1 1 2

∣

∣

∣

∣

∣

∣

= 2

(∣

∣

∣

∣

1 2
2 1

∣

∣

∣

∣

−

∣

∣

∣

∣

3 2
1 1

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

3 1
1 2

∣

∣

∣

∣

)

−

(∣

∣

∣

∣

1 2
2 1

∣

∣

∣

∣

−

∣

∣

∣

∣

2 2
1 1

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

)

−

(∣

∣

∣

∣

3 1
1 2

∣

∣

∣

∣

−

∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

+

∣

∣

∣

∣

2 3
1 1

∣

∣

∣

∣

)

= 2 ((−3) − (1) + 2(5))

− ((−3) − (0) + 2(3))

− ((5) − (3) + (−1))

= 2(6) − (3) + (1)

= 8

You have seen that there is an alternating sign pattern used in the expansion. It may
seem that this arrises out of nowhere, but it comes down to counting type II row operations
and how many −1 factors there are.

Let’s ponder the case of four by four matrices. A very special case of block matrix com-
putations, as in the last section, tells us that

det









a11 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44









= a11 det





a22 a23 a24

a32 a33 a34

a42 a43 a44



 .
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Using type II elementary row opertations, we also find that

det









0 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44









= − det









a21 a22 a23 a24

0 a12 a13 a14

0 a32 a33 a34

0 a42 a43 a44









= −a21 det





a12 a13 a14

a32 a33 a34

a42 a43 a44





and

det









0 a12 a13 a14

0 a22 a23 a24

a31 a32 a33 a34

0 a42 a43 a44









= − det









0 a12 a13 a14

a31 a32 a33 a34

0 a22 a23 a24

0 a42 a43 a44









= det









a31 a32 a33 a34

0 a12 a13 a14

0 a22 a23 a24

0 a42 a43 a44









= a31 det





a12 a13 a14

a22 a23 a24

a42 a43 a44





and using three type II moves,

det









0 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

a41 a42 a43 a44









= −a41 det





a12 a13 a14

a22 a23 a24

a32 a33 a34



 .

This is where the alternating signs come from, at least when one is expanding along the first
column.

To explain the rest of the formula, we need to know the following:
∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

0 a12 a13 a14

a21 a22 a23 a24

0 a32 a33 a34

0 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

0 a12 a13 a14

0 a22 a23 a24

a31 a32 a33 a34

0 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

0 a12 a13 a14

0 a22 a23 a24

0 a32 a33 a34

a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

This is a special case of the following result that is very imporant to the theory of determi-
nants. Again, it is possible to explain in terms of row operations and transposes, but I will
skip that. So, without proof, here is this result about adding columns withing determinants.
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Theorem 7.2. If a1, a2, . . . , an and b1are size n column vectors, then
∣

∣ (a1 + b1) a2 · · · an

∣

∣ =
∣

∣ a1 a2 · · · an

∣

∣ +
∣

∣ a1 a2 · · · an

∣

∣ .

A similar statement is true for any other column position, and for matrices described by

rows.

For example, this theorem is telling us
∣

∣

∣

∣

∣

∣

2 2 2
2 1 −1
1 2 3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

2 1 0
2 1 −1
1 2 3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

0 1 2
2 1 −1
1 2 3

∣

∣

∣

∣

∣

∣

since
2 1 0

plus
0 1 2

is
2 2 2 .

The reason this expansion method is so bad for most calculations, is that while a 3-by-
3 matrix can be written as 3 two-by-two determinants, a 4-by-4 becomes 12 two-by-two
determinants, and so forth, until a 10-by-10 becomes

10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 = 1, 814, 400

two-by-two determinants.
E-mail address : loring@math.unm.edu
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