Two weight estimates, Clark measures and rank one perturbations of unitary operators

Sergei Treil¹ (joint work with C. Liaw²)

 1 Department of Mathematics Brown University 2 Department of Mathematics Baylor University

April 3, 2014

• For a unitary $U=U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed).

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed). Indeed $U+K=(I+KU^*)U$, and it is easy to describe all unitary perturbations of I:

$$KU^* = (\gamma - 1)bb^*, \qquad ||b|| = 1, \ |\gamma| = 1.$$

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed). Indeed $U+K=(I+KU^*)U$, and it is easy to describe all unitary perturbations of I:

$$KU^* = (\gamma - 1)bb^*, ||b|| = 1, |\gamma| = 1.$$

• WLOG: b is cyclic, so $U=M_{\xi}$ in $L^2(\mu)$, $\mu(\mathbb{T})=1$; $b\equiv \mathbf{1}$, therefore $b_1(\xi)=\overline{\xi}$.

Spectral theorem

- If U is cyclic, i.e. if for some $b \in \mathcal{H}$ we have $\operatorname{span}\{U^nb:n\in\mathbb{Z}\}=\mathcal{H}$, then $U=M_\xi$ in $L^2(\mu)$. Vector b is called *cyclic* vector for U.
- Measure μ is not unique, but we can pick a measure $\mu=\mu_b$ associated to b,

$$(U^n b, b) = \int_{\mathbb{T}} \xi^n d\mu_b(\xi) \qquad \forall n \in \mathbb{Z},$$

the measure μ_b is uniquely defined.

• If $\Phi:\mathcal{H}\to L^2(\mu)$, $\mu=\mu_b$ is the unitary operator such that $U=\Phi^{-1}M_\xi\Phi$, then $\Phi b=\mathbf{1}$.

Back to rank 1 perturbations

- $U_{\gamma} = U + (\gamma 1)bb_1^*$, $\gamma \in \mathbb{T}$, b cyclic, $b_1 = U^*b$.
- Let b is a cyclic vector for U. It is not hard to show that then b is cyclic for all U_{γ} .
- We consider spectral measures $\mu_{\gamma}=\mu_{\gamma,b}$ for operators U_{γ} , In this case $\Phi_{\gamma}b\equiv \mathbf{1}$ for all $\gamma\in\mathbb{T}$. Since $\|b\|=1$ all measures μ_{γ} are probability measures.
- \bullet The measures μ_{γ} are called Clark measures.
- So let $U=U_1$ be M_ξ in $L^2(\mu)$, $\mu=\mu_1$. Then

$$b \equiv 1, \qquad b_1 = U^*b \equiv \overline{\xi}.$$

Goal: Want to describe unitary operators intertwining U_γ and its model: unitary $\Phi_\gamma:L^2(\mu)\to L^2(\mu_\gamma)$,

$$U_{\gamma}\Phi_{\gamma}=M_z\Phi, \qquad U_{\gamma}b\equiv \mathbf{1}.$$

Relations for Clark measures

• The measure μ_{γ} is defined

$$((U_{\gamma} - zI)^{-1}b, b) = \int_{\mathbb{T}} \frac{d\mu_{\gamma}(\xi)}{z - \xi} \qquad \forall z \notin \mathbb{T}.$$

ullet U_{γ} is a rank 1 perturbation of $U_1=M_{\xi}$ in $L^2(\mu).$ Using the formula

$$(I - ac^*)^{-1} = I + \frac{1}{d}ac^*, \qquad d = 1 - (c, a),$$

one can compute the resolvent and find relations between μ_{γ} .

Relations for Clark measures

Namely, let

$$T\mu(z) = \int_{\mathbb{T}} \frac{d\mu(\xi)}{1 - \overline{\xi}z}.$$

• Define $\theta(z)$ by

$$1 - \theta(z) = \frac{1}{T\mu(z)}$$

Then

$$1 - \overline{\gamma}\theta(z) = \frac{1}{T\mu_{\gamma}(z)}$$

Can rewrite

$$T\mu_{\gamma}(z) = \frac{T\mu(z)}{1 - (1 - \gamma)T\mu(z)}.$$

Relations for Clark measures

Function θ was introduced for a reason.

- One can show that $\theta \in H^{\infty}$, $\|\theta\|_{\infty} \leq 1$.
- Therefore the function $F_{\gamma}=rac{1+\overline{\gamma}\theta}{1-\overline{\gamma}\theta}$ has positive real part.
- The measures μ_{γ} are the measures whose Poisson extension give $\operatorname{Re} F_{\gamma}.$

Pretend to be physicists

Let Φ be an integral operator with kernel $K(z,\xi)$

$$\Phi f(z) = \int_{\mathbb{T}} K(z, \xi) f(\xi) d\mu(\xi).$$

Want:

$$\Phi_{\gamma}(M_{\xi} + (\gamma - 1)bb_1^*) = M_z \Phi_{\gamma}.$$

Recall that $b \equiv \mathbf{1}$, $\Phi_{\gamma} b \equiv \mathbf{1}$ (in $L^2(\mu_{\gamma})$), $b_1 = U^* b \equiv \overline{\xi}$ (in $L^2(\mu)$), so $\Phi_{\gamma} b b_1^*$ is an integral operator with kernel $1 \cdot \xi$.

$$K(z,\xi)\xi + (\gamma - 1)\xi = zK(z,\xi).$$

Solving for K we get

$$K(z,\xi) = (1 - \gamma)\frac{\xi}{\xi - z} = (1 - \gamma)\frac{1}{1 - \overline{\xi}z}$$

Acting as boring mathematicians

Theorem (C. Liaw, S. Treil)

Under the above assumptions

$$\Phi_{\gamma} f(z) = f(z) + (1 - \gamma) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi).$$

for all $f \in C^1(\mathbb{T})$.

Is it a SIO with kernel $1/(1-\overline{\xi}z)$?

- Will show next lecture that the operators T_r with kernels $1/(1-r\overline{\xi}z)$, $\xi,z\in\mathbb{T}$ are uniformly (in $r\neq 1$) bounded (it also follows from results of V. Kapustin).
- ullet Follows from results of A. Poltoratskii that the boundary values $T_\pm f$ (from inside and outside) of the Cauchy integral

$$Tf(z) = \int_{\mathbb{T}} \frac{f(\xi)}{1 - \overline{\xi}z} d\mu(\xi)$$

exist μ_{γ} -a.e.

$$\Phi_{\gamma} f(z) = f(z) + (1 - \gamma) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi).$$

- Will show next lecture that the operators T_r with kernels $1/(1-r\overline{\xi}z)$, $\xi,z\in\mathbb{T}$ are uniformly (in $r\neq 1$) bounded (it also follows from results of V. Kapustin).
- ullet Follows from results of A. Poltoratskii that the boundary values $T_\pm f$ (from inside and outside) of the Cauchy integral

$$Tf(z) = \int_{\mathbb{T}} \frac{f(\xi)}{1 - \overline{\xi}z} d\mu(\xi)$$

exist μ_{γ} -a.e.

ullet That implies the operators $T_+:L^2(\mu) o L^2(\mu_\gamma)$ are bounded and

$$\Phi_{\gamma} f = (\mathbf{1} - (1 - \gamma)T_{\pm}\mathbf{1})f + (1 - \gamma)T_{\pm}f$$

Alternative representation

From the previous slide:

$$\Phi_{\gamma} f = (\mathbf{1} - (1 - \gamma)T_{\pm}\mathbf{1})f + (1 - \gamma)T_{\pm}f$$

It is known (Aronszajn–Donoghue) that $\mu_{\rm s} \perp (\mu_{\gamma})_{\rm s}$, so

$$T_{\pm} {f 1} = rac{1}{1-\gamma} \qquad (\mu_{\gamma})_{
m s}$$
-a.e.,

which agrees with known results.

Proof of the representation formula

$$\Phi_{\gamma} f(z) = f(z) + (1 - \gamma) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi).$$

Idea of the proof:

$$U_{\gamma} = M_{\xi} + (\gamma - 1)bb_1^*, \qquad b = \mathbf{1}, \ b_1 \equiv \xi.$$

and

$$\Phi_{\gamma}(M_{\xi} + (\gamma - 1)bb_1^*) = M_z \Phi_{\gamma}.$$

can be rewritten as

$$\Phi_{\gamma} M_{\xi} = M_z \Phi_{\gamma} + (1 - \gamma)(\Phi_{\gamma} b) b_1^*.$$

$$\Phi_{\gamma} M_{\xi} = M_z \Phi_{\gamma} + (1 - \gamma)(\Phi_{\gamma} b) b_1^*. \tag{*}$$

Right multiplying (*) by M_{ξ} and using (*) we get

$$\begin{split} \Phi_{\gamma} M_{\xi}^2 &= M_z \Phi_{\gamma} M_{\xi} + (1 - \gamma) (\Phi_{\gamma} b) b_1^* M_{\xi} \\ &= M_z^2 \Phi_{\gamma} + (1 - \gamma) \left(M_z (\Phi_{\gamma} b) b_1^* + (\Phi_{\gamma} b) b_1^* M_{\xi} \right). \end{split}$$

Iterating and using $\Phi_{\gamma}b=\mathbf{1}$ we get

$$\Phi_{\gamma} M_{\xi}^{n} = M_{z}^{n} \Phi_{\gamma} + (1 - \gamma) \sum_{k=0}^{n-1} (M_{z}^{k} \mathbf{1}) b_{1}^{*} M_{\xi}^{n-k-1}.$$

Applying this identity to $b=\mathbf{1}$ we get for $f(\xi)\equiv \xi^n$, $n\geq 0$

$$\begin{split} \Phi_{\gamma}f(z) &= z^n + (1-\gamma)\sum_{k=0}^{n-1}z^k\int_{\mathbb{T}}\xi^{n-k}d\mu(\xi) \\ &= z^n + (1-\gamma)\int_{\mathbb{T}}\frac{\xi^n - z^n}{1 - \overline{\xi}z}d\mu(\xi). \end{split}$$

Action of Φ_{γ} on $\overline{\xi}^n$

Applying the identity

$$\Phi_{\gamma} M_{\xi}^{n} = M_{z}^{n} \Phi_{\gamma} + (1 - \gamma) \sum_{k=0}^{n-1} (M_{z}^{k} \mathbf{1}) b_{1}^{*} M_{\xi}^{n-k-1}.$$

to $f(\xi) \equiv \overline{\xi}^n$ and multiplying the result by \overline{z}^n we get

$$\overline{z}^n = (\Phi_{\gamma} f)(z) + (1 - \gamma) \overline{z}^n \sum_{k=0}^{n-1} z^k \int_{\mathbb{T}} \xi^{n-k} \overline{\xi}^n d\mu(\xi)$$
$$= (\Phi_{\gamma} f)(z) + \int_{\mathbb{T}} \overline{z}^n \overline{\xi}^n \frac{\xi^n - z^n}{1 - \overline{\xi}z} d\mu(\xi)$$

Rigidity theorem

Theorem (Rigidity Theorem)

Let a probability measure μ on \mathbb{T} be supported on at least two distinct points. Let $\gamma \in \mathbb{T} \setminus \{1\}$, and let $\mathcal{V}f$ be defined for C^1 functions f

$$\mathcal{V}f(z) = f(z) + (1 - \gamma) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi)$$

Assume V extends to a bounded operator from $L^2(\mu)$ to $L^2(\nu)$ and assume $\ker V = \{0\}$.

Then $\exists h>0$ such that $1/h\in L^\infty(\nu)$, and $M_h\mathcal{V}$ is a unitary operator from $L^2(\mu)\to L^2(\nu)$ (equivalently, that $\mathcal{V}:L^2(d\mu)\to L^2(|h|^2\,d\nu)$ is unitary).

Moreover, the measure $|h|^2\nu$ is exactly the Clark measure μ_{γ} , and $\mathcal V$ treated as the operator $L^2(\mu)\to L^2(\mu_{\gamma})$ is exactly the operator Φ_{γ} .

The main idea of the proof: similar unitary operators are unitarily equivalent