Regularizations of Singular Integral Operators
(joint work with C. Liaw)

Sergei Treil

Department of Mathematics
Brown University

April 4, 2014
1 Singular integral operators
 - Examples of Calderón–Zygmund operators (CZO)
 - Definition of CZO
 - Regularization methods of CZO

2 Main result
 - Setup
 - Regularizations
 - Two weight Muckenhoupt condition

3 Ideas of the proofs
 - Schur multipliers
 - Splitting the supports
 - Final remarks
Hilbert and Cauchy Transforms:

- **Hilbert transform:**
 \[
 Tf(x) = (\pi)^{-1} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy
 \]
 (integral is defined as principal value)
Hilbert and Cauchy Transforms:

- Hilbert transform:
 \[
 Tf(x) = (\pi)^{-1} \int \frac{f(y)}{x-y} d\mu(y)
 \]
 (integral is defined as principal value)

- Sometimes the integration is with respect to an arbitrary measure \(\mu \) on \(\mathbb{R} \) or on \(\mathbb{C} \).
Hilbert and Cauchy Transforms:

- Hilbert transform:
 \[T f(x) = (\pi)^{-1} \int \frac{f(y)}{x - y} d\mu(y) \]
 (integral is defined as principal value)
- Sometimes the integration is with respect to an arbitrary measure \(\mu \) on \(\mathbb{R} \) or on \(\mathbb{C} \).
- The case with \(\mu \) on \(\mathbb{C} \) (Cauchy Transform) appears in problems related to analytic capacity. The measure \(\mu \) is “one-dimensional”
 \[\mu(D_{x,r}) \leq Cr \]
 and one is interested in boundedness of such operators in \(L^2(\mu) \).
Hilbert and Cauchy Transforms:

- **Hilbert transform:**
 \[
 Tf(x) = (\pi)^{-1} \int \frac{f(y)}{x - y} d\mu(y)
 \]
 (integral is defined as principal value)

- Sometimes the integration is with respect to an arbitrary measure \(\mu \) on \(\mathbb{R} \) or on \(\mathbb{C} \).

- The case with \(\mu \) on \(\mathbb{C} \) (Cauchy Transform) appears in problems related to analytic capacity. The measure \(\mu \) is “one-dimensional”
 \[
 \mu(D_{x,r}) \leq Cr
 \]
 and one is interested in boundedness of such operators in \(L^2(\mu) \).

- But sometimes we are interested in boundedness \(L^2(\mu) \rightarrow L^2(\nu) \), and there is no apriori restrictions on \(\mu \) and \(\nu \).
An example:

- Let $A := M_t$ in $L^2(\mu)$, and let $A_\alpha = A + \alpha(\cdot, b)b$, where b is cyclic for A.
 WLOG can assume that $b \equiv 1$.
- By the spectral theorem A_α unitarily equivalent to M_s in $L^2(\mu_\alpha)$.

$$M_s U_\alpha = U_\alpha A_\alpha, \quad U_\alpha : L^2(\mu) \rightarrow L^2(\mu_\alpha) \text{ unitary.}$$

$U_\alpha b$ is cyclic, so WLOG can assume $U_\alpha b = U_\alpha 1 = 1$.

Informal reasoning gives us:

if U is an integral operator with Kernel $K(s, t)$, then $K(s, t) = \alpha/(s - t)$.
An example:

- Let $A := M_t$ in $L^2(\mu)$, and let $A_\alpha = A + \alpha(\cdot, b)b$, where b is cyclic for A. WLOG can assume that $b \equiv 1$.
- By the spectral theorem A_α unitarily equivalent to M_s in $L^2(\mu_\alpha)$.

$$M_s U_\alpha = U_\alpha A_\alpha, \quad U_\alpha : L^2(\mu) \to L^2(\mu_\alpha) \text{ unitary.}$$

$U_\alpha b$ is cyclic, so WLOG can assume $U_\alpha b = U_\alpha 1 = 1$.

Informal reasoning gives us:

if U is an integral operator with Kernel $K(s, t)$, then $K(s, t) = \alpha/(s - t)$.

Indeed,

$$sK(s, t) = U_\alpha M_t + \alpha(\cdot, b)U_\alpha b$$

$$= K(s, t)t + \alpha 1$$

so $K(s, t) = \alpha/(s - t)$.
An example:

- Let $A := M_t$ in $L^2(\mu)$, and let $A_\alpha = A + \alpha(\cdot, b)b$, where b is cyclic for A.
 WLOG can assume that $b \equiv 1$.
- By the spectral theorem A_α unitarily equivalent to M_s in $L^2(\mu_\alpha)$.

$$M_s U_\alpha = U_\alpha A_\alpha, \quad U_\alpha : L^2(\mu) \to L^2(\mu_\alpha) \text{ unitary.}$$

$U_\alpha b$ is cyclic, so WLOG can assume $U_\alpha b = U_\alpha 1 = 1$.

Informal reasoning gives us:

If U is an integral operator with Kernel $K(s, t)$, then $K(s, t) = \alpha/(s - t)$.

Theorem (C. Liaw, S.Treil, 2009)

$$U_\alpha f(s) = f(s) - \alpha \int_{\mathbb{R}} \frac{f(t) - f(s)}{t - s} d\mu(t), \quad \forall f \in C^1_c.$$
Rigidity theorem

Theorem (C. Liaw–S. Treil, 2009)

Let an operator V defined on C^1_c by

$$Vf(s) = f(s) - \alpha \int_{\mathbb{R}} \frac{f(t) - f(s)}{t - s} d\mu(s)$$

extends to a bounded operator $L^2(\mu) \to L^2(\nu)$, and let $\ker V = \{0\}$. Then there exists $h \geq 0$ such that $1/h \in L^\infty(\nu)$, and $M_h V$ is a unitary operator from $L^2(\mu) \to L^2(\nu)$.

Moreover, the unitary operator $U := M_h V$ gives the spectral representation of the operator $A_\alpha := M_t + \alpha(\cdot, b)b$, $b \equiv 1$, in $L^2(\mu)$, namely $UA_\alpha = M_s U$, where M_s is the multiplication by the independent variable s in $L^2(\nu)$.

In other words, all operators of such type appear from rank one perturbations.
Calderón–Zygmund operators

A Calderón–Zygmund operator of dimension d in \mathbb{R}^N, $d \leq N$, is an integral operator, bounded in L^2 and with kernel K satisfying the following growth and smoothness conditions

1. $|K(x, y)| \leq \frac{C_{cz}}{|x - y|^d}$ for all $x, y \in \mathbb{R}^N, x \neq y$.

2. There exists $\alpha > 0$ such that

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq C_{cz} \frac{|x - x'|^\alpha}{|x - y|^{d+\alpha}}$$

for all $x, x', y \in \mathbb{R}^N$ such that $|x - x'| < |x - y|/2$.

Has singularity at the diagonal $x = y$. The measure is at best d-dimensional, $\mu(B_{x, r}) \leq Cr^d$, so integral is not well defined.

How to interpret?
Let m be a function in \mathbb{R}^N, $m \equiv 0$ in a neighborhood of 0, and $m(x) \equiv 1$ in a neighborhood of ∞.

Kernels $K_\varepsilon(x, y) = K(x - y)m((x - y)/\varepsilon)$ do not have singularity near the diagonal $x = y$, so the integral

$$T_\varepsilon f(x) = \int K_\varepsilon(x, y)f(y)d\mu(y)$$

is well defined for $f \in L^\infty_c$.

We say that T is bounded if T_ε are uniformly (in ε bounded).

If $m(x) = 1_{[1, \infty)}(|x|)$ we get the classical truncation. Smooth truncations are also used (and are more natural from my point of view).

Does boundedness depend on regularization?
Interpreting CZO: axiomatic approach

- We assume that bilinear form $\langle Tf, g \rangle$ is defined on a dense set; in classical situations when one works with Lebesgue measure in \mathbb{R}^N or on a smooth manifold it is often $C^\infty_c \times C^\infty_c$.

- The fact that T is an integral operators means simply that

$$\langle Tf, g \rangle = \int \int K(x, y)f(y)g(x)d\mu(y)d\nu(x)$$

for compactly supported f and g with separated supports.

- A multiplication operator M_φ, $M_\varphi f = \varphi f$ is an operator with kernel $K(x, y) \equiv 0$.

- If $\mu = \nu$, $\mu(B_{x,r}) \leq Cr^d$, the generalization of Cotlar inequality implies that the truncations T_ε are uniformly bounded for all reasonable truncating functions m.

Nothing was known in the two-weight case!
Radon measures μ and ν in \mathbb{R}^n are fixed.

μ and ν do not have common atoms; no other restriction is assumed.

A singular kernel $K(x, y)$ is a function in $L^2_{\text{loc}}(\mu \times \nu)$ off the diagonal $x = y$ (can blow-up at the diagonal).

Definition (Restricted boundedness)

A kernel K is called L^p restrictedly bounded if

$$|\langle Tf, g \rangle| = \left| \int \int K(x, y)f(y)g(x) d\mu(y) d\nu(x) \right| \leq C \|f\|_{L^p(\mu)} \|g\|_{L^{p'}(\nu)}$$

for all $f, g \in L^\infty_c$, supp $f \cap$ supp $g = \emptyset$.

Here $1/p + 1/p' = 1$.

The best constant C is called the restricted norm.
Main result

Recall:

- m is a cut-off function, $m \equiv 0$ in a neighborhood of 0 and $m \equiv 1$ in a neighborhood of ∞.
- T_ε are “truncated operators” with kernels K_ε,
 \[K_\varepsilon(x, y) = K(x, y)m\left(\frac{x - y}{\varepsilon}\right); \]
- Measures μ and ν do not have common atoms.
Main result

Recall:

- m is a cut-off function, $m \equiv 0$ in a neighborhood of 0 and $m \equiv 1$ in a neighborhood of ∞.
- T_{ε} are “truncated operators” with kernels K_{ε}, $K_{\varepsilon}(x, y) = K(x, y)m((x - y)/\varepsilon)$;
- Measures μ and ν do not have common atoms.

Life is not as simple as it seems.
Main result

Recall:

- m is a cut-off function, $m \equiv 0$ in a neighborhood of 0 and $m \equiv 1$ in a neighborhood of ∞.
- T_ε are “truncated operators” with kernels K_ε,
 \[K_\varepsilon(x, y) = K(x, y)m((x - y)/\varepsilon); \]
- Measures μ and ν do not have common atoms.

Life is not as simple as it seems. It is much simpler.
Main result

Recall:

- \(m \) is a cut-off function, \(m \equiv 0 \) in a neighborhood of 0 and \(m \equiv 1 \) in a neighborhood of \(\infty \).
- \(T_\varepsilon \) are “truncated operators” with kernels \(K_\varepsilon \),
 \[K_\varepsilon(x, y) = K(x, y)m((x - y)/\varepsilon); \]
- Measures \(\mu \) and \(\nu \) do not have common atoms.

Life is not as simple as it seems. It is much simpler.

Theorem (C. Liaw, S. Treil)

Let \(K \) be an \(L^p \) restrictedly bounded singular kernel, and let \(m \in C^\infty \). Then the regularized operators \(T_\varepsilon \) are uniformly (in \(\varepsilon \)) bounded.
Main result

Recall:

- \(m \) is a cut-off function, \(m \equiv 0 \) in a neighborhood of 0 and \(m \equiv 1 \) in a neighborhood of \(\infty \).
- \(T_\varepsilon \) are “truncated operators” with kernels \(K_\varepsilon \),
 \[K_\varepsilon(x, y) = K(x, y)m((x - y)/\varepsilon); \]
- Measures \(\mu \) and \(\nu \) do not have common atoms.

Life is not as simple as it seems. It is much simpler.

Theorem (C. Liaw, S. Treil)

Let \(K \) be an \(L^p \) restrictedly bounded singular kernel, and let \(m \in C^\infty \). Then the regularized operators \(T_\varepsilon \) are uniformly (in \(\varepsilon \)) bounded.

In fact it is sufficient to assume that \(1 - m \) is in the Sobolev space \(H^s \), \(s > N/2 \).

Recall: \(f \in H^s \iff \int_{\mathbb{R}^N} (1 + |x|)^{2s} |\hat{f}(x)|^2 dx < \infty. \)
Classical truncations

For interesting operators the result holds with classical truncations
\(m(x) = 1_{[1,\infty)}(|x|) \) as well!

Interesting operator: convolution kernel, \(K(x, y) = \tilde{K}(y - x) \),

\[
\tilde{K}(x) = A(|x|)B(x/|x|),
\]

where \(A(r) \geq 0 \) for all \(r > 0 \) and \(B \) is a function (with values in some \(\mathbb{R}^m \)) in the Sobolev space \(H^k \), \(k > N/2 \) on the unit sphere \(S_{N-1} \) in \(\mathbb{R}^N \).

Examples

- \(\tilde{K}(z) = 1/z \), \(z \in \mathbb{C} \) — Cauchy Transform.
- \(\tilde{K}(z) = 1/z^2 \), \(z \in \mathbb{C} \) — Beurling–Ahlfors Transform;
- \(\tilde{K}(x) = x/|x|^{d+1}, x \in \mathbb{R}^N \) — Riesz Transform of order \(d \) in \(\mathbb{R}^N \).
Recall: Riesz Transform of order d is convolution integral operator with kernel $K(x, y) = (x - y)/|x - y|^{d+1}$.

Theorem (C. Liaw, S. Treil)

For Riesz Transform of order d the restricted L^p boundedness, $1 < p < \infty$, implies the following generalized two-weight Muckenhoupt A^d_p condition of order d;

$$\sup_B (\text{diam } B)^{-d} \mu(B)^{1/p'} \nu(B)^{1/p} < \infty;$$

here the supremum is taken over all balls in \mathbb{R}^N.

In particular, if $\mu = \nu$ then μ is d-dimensional, $\mu(B_{x,r}) \leq Cr^d$. It was known before, but the proofs were ugly.

If $d = N$ then $\mu_s \perp \nu_s$.
A simple idea: Schur multipliers

- Replacing $K(x, y)$ by $K(x, y)e^{-iax}e^{iay}$, $a \in \mathbb{R}$ does not change its restricted norm.
- So if $\rho \in L^1(\mathbb{R}^N)$, then for the kernel

$$\int_{\mathbb{R}} K(x, y)e^{-iax}e^{iay} \rho(a)da = K(x, y)\hat{\rho}(x - y)$$

its restricted norm increases at most $\|\rho\|_1$ times.
- Functions m in the Wiener Algebra $W = \mathcal{F}(L^1) + c$ are Schur multipliers (multipliers with respect to restricted norm).
- If $m = \hat{\rho}$, $\rho \in L^1$, then $m(s/\varepsilon) = \mathcal{F}\{x \mapsto \varepsilon^N \rho(\varepsilon x)\}(s)$, and

$$\int_{\mathbb{R}^N} |\varepsilon^N \rho(\varepsilon x)|dx = \int_{\mathbb{R}^N} |\rho(x)|dx = \|\rho\|_1.$$

so the Schur multipliers $m((x - y)/\varepsilon)$ are uniformly (in ε) bounded.
If \(\varphi \in H^k, \ k > N/2 \), then \(\varphi \in \mathcal{F}(L^1) \) (easy exercise in Cauchy–Schwartz).

Note that the rescaling \(\varphi \mapsto \varphi_\varepsilon, \ m_\varepsilon(x) = m(x/\varepsilon) \) does change Sobolev norm, but the norm in the Wiener Algebra \(W \) is preserved.

So, if \(1 - m \in C_C^\infty \subset W^k, \ k > N/2 \), then the kernels \(K_\varepsilon \),

\[
K_\varepsilon(x, y) m((x - y)/\varepsilon)
\]

are uniformly (in \(\varepsilon \)) restrictedly bounded.
Schur multipliers: an example

Let \(\rho(x) = e^{-x}1_{[0,\infty)} \), and let

\[
m(s) := 1 - \hat{\rho}(s) = \frac{s}{s - i}.
\]
Schur multipliers: an example

Let $\rho(x) = e^{-x}1_{[0,\infty)}$, and let

$$m(s) := 1 - \hat{\rho}(s) = \frac{s}{s - i}.$$

Then $m(s/\varepsilon) = \frac{s}{s - i\varepsilon}$.

We used Schur multipliers before in complex analysis, probably without noticing it!
Let $\rho(x) = e^{-x}1_{[0,\infty)}$, and let

$$m(s) := 1 - \hat{\rho}(s) = \frac{s}{s - i}.$$

Then $m(s/\varepsilon) = \frac{s}{s - i\varepsilon}$.

Then for $K(x, y) = 1/(x - y)$ we have

$$K_\varepsilon(x, y) = \frac{1}{x - y} \times \frac{x - y}{x - y - i\varepsilon} = \frac{1}{x + i\varepsilon - y}$$

We used Schur multipliers before in complex analysis, probably without noticing it!
Let $\rho(x) = e^{-x}1_{[0,\infty)}$, and let

$$m(s) := 1 - \hat{\rho}(s) = \frac{s}{s - i}.$$

Then $m(s/\varepsilon) = \frac{s}{s - i\varepsilon}$.

Then for $K(x, y) = 1/(x - y)$ we have

$$K_\varepsilon(x, y) = \frac{1}{x - y} \frac{x - y}{x - y - i\varepsilon} = \frac{1}{x + i\varepsilon - y}.$$

We used Schur multipliers before in complex analysis, probably without noticing it!
Proposition

Let $K \in L^2_{\text{loc}}(\mu \times \nu)$ (everywhere, not just off the diagonal $x = y$), and let K be restrictedly bounded with restricted norm C. Then the integral operator T with kernel K is bounded, $\|T\| \leq 2C$.

Note that T is well defined on $f \in L^\infty_c$.

Idea of the proof:

- Restricting everything to a compact set assume WLOG that T is compact $L^2(\mu) \to L^2(\nu)$. Take f and g.
- Considering f only on “almost half” of the support and g on “almost the other half”, we get the sequences f_n, g_n with separated supports such that $f_n \to \frac{1}{2} f, g_n \to \frac{1}{2} g$ weakly.
- $\langle Tf_n, g_n \rangle$ can be estimated because of restricted boundedness, and $\langle Tf_n, g_n \rangle \to \frac{1}{4} \langle Tf, g \rangle$.
Lemma (One weight version)

Let σ be a Radon measure without atoms in \mathbb{R}^N. There exist Borel sets $E_n^1, E_n^2, n \in \mathbb{N}$ such that $\text{dist}(E_n^1, E_n^2) > 0 \ \forall n$.

1. The operators $P_n^k, P_n^k f := 1_{E_n^k} f, k = 1, 2$ converge to $\frac{1}{2} I$ in weak operator topology in $L^2(\sigma)$.

2. For any $p \in [1, \infty)$ and for $k = 1, 2$

$$\lim_{n \to \infty} \| 1_{E_n^k} f \|_{L^p(\sigma)} = 2^{-1/p} \| f \|_{L^p(\sigma)}, \quad \forall f \in L^p(\sigma).$$

- Trivially to do for Lebesgue measure
- More work needed for general case.

One can get a two weight version from this Lemma.
Lemma (Two weight version)

Let μ and ν be Radon measures in \mathbb{R}^N without common atoms. Here exist Borel sets $E^1_n, E^2_n, n \in \mathbb{N}$ such that $\text{dist}(E^1_n, E^2_n) > 0 \ \forall n$.

1. The operators P^1_n and P^2_n, given by

 \[P^1_n f := 1_{E^1_n} (f_{\mu c} + \frac{1}{2} f_{\mu a}) \]
 \[P^2_n g := 1_{E^2_n} (g_{\nu c} + \frac{1}{2} g_{\nu a}) \]
 converge to $\frac{1}{2} I$ in weak operator topology of $L^2(\mu)$ and $L^2(\nu)$ respectively.

2. For any $p \in [1, \infty)$ and for any $f \in L^p(\mu)$, $g \in L^p(\nu)$

 \[\lim_{n \to \infty} \| 1_{E^1_n} f \|_{L^p(\mu)} \leq 2^{-1/p} \| f \|_{L^p(\mu)}, \]
 \[\lim_{n \to \infty} \| 1_{E^2_n} g \|_{L^p(\nu)} \leq 2^{-1/p} \| g \|_{L^p(\nu)}. \]

- If μ and ν do not have atoms, apply one weight lemma to $\sigma = \mu + \nu$: the sets E^1_n, E^2_n from this lemma would do a trick.
- Atoms: add one atom to each set at each step, and remove small neighborhoods of added atoms from the other set.
Proof of the one-weight lemma

Lemma (One weight version)

Let σ be a Radon measure without atoms in \mathbb{R}^N. There exist Borel sets $E_{n}^1, E_{n}^2, n \in \mathbb{N}$ such that $\text{dist}(E_{n}^1, E_{n}^2) > 0 \ \forall n$.

1. The operators $P_{n}^k, P_{n}^kJ := 1_{E_{n}^k}J$, $k = 1, 2$ converge to $\frac{1}{2}I$ in weak operator topology in $L^2(\sigma)$.

2. For any $p \in [1, \infty)$ and for $k = 1, 2$

 $$\lim_{n \to \infty} \|1_{E_{n}^k}J\|_{L^p(\sigma)} = 2^{-1/p}\|J\|_{L^p(\sigma)}, \quad \forall J \in L^p(\sigma).$$
Proof of the one-weight lemma

- Since P_n are always contractions, sufficiently to check everything on dense sets.
- Sufficient to check everything only on 1_Q for standard dyadic cubes in \mathbb{R}^N, i.e. on cubes of form $Q = 2^k([0, 1)^N + j)$, $k \in \mathbb{Z}$, $j \in \mathbb{Z}^N$.
- Sufficient to show that given $\varepsilon > 0$ and the size 2^k we can split all the cubes of this size almost in half with relative error ε:

$$\left| \sigma(Q \cap E^{1,2}) - \frac{1}{2} \sigma(Q) \right| \leq \varepsilon \sigma(Q).$$

Note that the estimate for size 2^k implies the same estimate for bigger dyadic cubes.
Proof of the one-weight lemma: splitting a cube

Want to split cubes with relative error ε,

$$\left| \sigma(Q \cap E^{1,2}) - \frac{1}{2} \sigma(Q) \right| \leq \varepsilon \sigma(Q).$$

Let us construct the disjoint sets $E^{1,2}$, we then shrink them to make separated.

- Pick a size $\delta = 2^{-m}$ such that $\sigma(R) \leq \frac{1}{2} \varepsilon \sigma(Q)$ for every dyadic cube $R \subset Q$ of this size. Follows from continuity of the measure.
- Split cubes Q into dyadic cubes R of this size, and order these cubes.
Proof of the one-weight lemma: splitting a cube

Want to split cubes with relative error ε,

$$\left| \sigma(Q \cap E^{1,2}) - \frac{1}{2} \sigma(Q) \right| \leq \varepsilon \sigma(Q).$$

Let us construct the disjoint sets $E^{1,2}$, we then shrink them to make separated.

- Pick a size $\delta = 2^{-m}$ such that $\sigma(R) \leq \frac{1}{2} \varepsilon \sigma(Q)$ for every dyadic cube $R \subset Q$ of this size. Follows from continuity of the measure.
- Split cubes Q into dyadic cubes R of this size, and order these cubes.
- Put R_1 to E^1 and R_2 to E^2.
Proof of the one-weight lemma: splitting a cube

Want to split cubes with relative error ε,

$$\left| \sigma(Q \cap E^{1,2}) - \frac{1}{2} \sigma(Q) \right| \leq \varepsilon \sigma(Q).$$

Let us construct the disjoint sets $E^{1,2}$, we then shrink them to make separated.

- Pick a size $\delta = 2^{-m}$ such that $\sigma(R) \leq \frac{1}{2} \varepsilon \sigma(Q)$ for every dyadic cube $R \subset Q$ of this size. Follows from continuity of the measure.
- Split cubes Q into dyadic cubes R of this size, and order these cubes.
- Put R_1 to E^1 and R_2 to E^2.
- Then always put the next cube to the set of smaller measure σ.
Proof of the one-weight lemma: splitting a cube

Want to split cubes with relative error ε,

$$\left| \sigma(Q \cap E^{1,2}) - \frac{1}{2} \sigma(Q) \right| \leq \varepsilon \sigma(Q).$$

Let us construct the disjoint sets $E^{1,2}$, we then shrink them to make them separated.

- Pick a size $\delta = 2^{-m}$ such that $\sigma(R) \leq \frac{1}{2} \varepsilon \sigma(Q)$ for every dyadic cube $R \subset Q$ of this size. Follows from continuity of the measure.
- Split cubes Q into dyadic cubes R of this size, and order these cubes.
- Put R_1 to E^1 and R_2 to E^2.
- Then always put the next cube to the set of smaller measure σ.
- We end up with error $\leq \frac{1}{2} \varepsilon \sigma(Q)$.

Proof of the one-weight lemma: shrinking the cubes

We constructed disjoint sets $E^{1,2}$, now we want to make them separated.

- Replace each small cube R by rR where $r < 1$ and close to 1;
- rR means dilation with respect to the corner, not the center: $r[0, 1)^N = [0, r)^N$, i.e. we dilate this cube with respect to the origin.
- With such dilation, $R = \bigcup_{r \in (0,1)} rR$, and thus it follows from countable additivity that
 \[
 \sigma(R) = \lim_{r \to 1^-} \sigma(rR).
 \]
Assumption about no common atoms is not really restriction: Interaction between μ_c and ν and the interaction between μ and ν_c is given by the main result. Interaction between μ_a and ν_a is described by a matrix.

The result about two weight Muckenhoupt condition is obtained by multiplying K by an appropriate Schur multiplier to get the kernel satisfying

$$K(x, y) \geq r^{-d} \quad \text{for } |x - y| \leq r.$$

The modified kernel is positive in some direction.

The result about classical truncations is obtained similarly: we use an appropriate Schur multiplier to get the positive kernel dominating the difference between the classical and smooth truncation.