Complex Analysis Qualifying Exam January 2006

Directions: Do all of the following problems. Show all of your work, and justify all of your calculations.

1. Let

$$f(z) := \frac{e^z}{(z-1)^4}.$$

- (a) Classify all of the singularities and find the associated residues.
- (b) Determine the Laurent expansion of f centered at z = 1.
- (c) If \mathcal{C} denotes the positively oriented circle of radius 2 centered at z=0, evaluate

$$\oint_{\mathcal{C}} f(z) \, \mathrm{d}z.$$

2. Let

$$\Pi_{\mathbf{u}} := \{ z \in \mathbb{C} \, : \, \operatorname{Im} z > 0 \}.$$

Find a conformal mapping $f: \Pi_u \mapsto D(0,3)$ such that f(3+2i) = 0.

3. Let

$$f(z) := \frac{1}{(z-1)(z-2)}.$$

Write f(z) as a Laurent series centered at z=0 which converges on the annulus 1<|z|<2.

- **4.** Let $f: D(0,1) \mapsto D(0,1)$ be holomorphic and satisfy f(0) = 0. What does Schwarz' lemma say about f? Prove it.
- **5.** For each $n \in \mathbb{N}$ set

$$p_n(z) := \sum_{j=0}^n (-1)^j \frac{z^{-2j}}{j!}.$$

- (a) For each fixed $n \in \mathbb{N}$, show that $p_n(z) = 0$ has precisely 2n solutions.
- (b) For a given $\rho > 0$, show that there is an $N(\rho)$ such that if $n > N(\rho)$, then all of the zeros of $p_n(z)$ lie within $D(0, \rho)$.
- **6.** Show that

$$\int_{-\infty}^{+\infty} \operatorname{sech}^{2}(x) \cos(2x) dx = \frac{2\pi}{\sinh(\pi)}.$$

7. Let

$$f(z) := \frac{\sin(z^{1/2})}{z^{1/2}}.$$

- (a) Show that f(z) is entire.
- (b) Let $p_n(z)$ be a polynomial of order $n \geq 1$. For each $A \in \mathbb{C}$ show that there exist an infinite number of distinct solutions to

$$p_n(z)f(z) = A.$$

8. Consider

$$f(z) := \prod_{j=1}^{\infty} \left(1 - \frac{z}{j^3} \right).$$

- (a) Show that f(z) is entire.
- (b) What is the order of f(z)?