Fall 2021 Numerical Analysis MS/PhD Qualifying Examination

Please write your code number (not your name) on each work sheet. Please provide concise answers with justification. Each problem needs to start on a new sheet of paper.

- 1. (20pt) Consider the matrix $A \in \mathbb{R}^{m,n}$ with $m \geq n$ and the columns full rank.
 - (a) Show that the solution component x from

$$M \begin{bmatrix} -r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}, \quad M = \begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \in \mathbb{R}^{m+n, m+n}$$

also minimizes the 2-norm $||b - Ax||_2$.

- (b) State the singular value decomposition (SVD) of A, making sure to list all known properties of the component matrices (commonly referred to as U, Σ , and V).
- (c) Use the singular vectors (commonly called u_i) to find the multiplicity of the eigenvalue 1 for M.

2. (20pt)

- (a) State the definition of a normal matrix.
- (b) Let $A \in \mathbb{R}^{n,n}$. Show that if A is a normal matrix, then A is unitarily diagonalizable.
- (c) Let $A \in \mathbb{R}^{n,n}$. Prove that if A is normal, then $R(A) \perp N(A)$, where R(A) is the range of A and N(A) is its nullspace.
- 3. (20pt) Consider the linear system

$$\begin{bmatrix} 10^{-20} & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

- (a) Find the exact solution.
- (b) Find the solution using Gauss Elimination without pivoting using floating point arithmetic and the machine precision for IEEE double precision.
- (c) Find the solution using Gauss Elimination with pivoting using floating point arithmetic and the machine precision for IEEE double precision. You may consider partial pivoting or scaled partial pivoting here.
- (d) What criterion is used to implement GE with pivoting in practice? You may consider partial pivoting or scaled partial pivoting here.

- 4. (20pt) Let $A \in \mathbb{R}^{n,n}$.
 - (a) Show that if A is symmetric, then its eigenvalues are real, and it has a full set of orthogonal eigenvectors.
 - (b) Show that if A is skew-symmetric, then its eigenvalues are purely imaginary, and it has a full set of orthogonal eigenvectors.
 - (c) Show that any $n \times n$ matrix A can be decomposed as A = D + S, where D is symmetric and S is skew-symmetric.
 - (d) Let A be a real 2×2 matrix, i.e., $A \in \mathbb{R}^{2,2}$. Suppose tr(A) = 0. Sketch the vector field F(x) = Dx, for the symmetric D defined in part (c).
- 5. (20pt) For nonsingular $A \in \mathbb{C}^{n,n}$ and $b \in \mathbb{C}^n$, consider solving the system Ax = b with GMRES. GMRES normalizes b so that $q_1 = \mu^{-1}b$ has unit 2-norm, i.e., $||q_1||_2 = 1$. GMRES then constructs an orthonormal basis $\{q_i\}$ for the Krylov space \mathcal{K}_k , which is spanned by the canonical basis

$$\mathcal{K}_k = \operatorname{span}(b, Ab, A^2b, \dots, A^{k-1}b).$$

This orthonormal basis can be conveniently represented by the matrix

$$Q_k = [q_1, q_2, q_3, \dots, q_n],$$

where span $(Q_k) = \mathcal{K}_k$.

The matrices Q_k and Q_{k+1} satisfy

$$AQ_k = Q_{k+1}\tilde{H}_k,$$

where \tilde{H}_k is a $(k+1) \times k$ upper Hessenberg matrix. The solution x is then approximated by GMRES as

$$x_k = Q_k c_k$$

where c_k is chosen so that $||b - Ax_k||_2 = ||b - AQ_kc_k||_2$ is minimized.

- (a) Show that c_k minimizes $\|\mu e_1 \hat{H}_k c_k\|_2$.
- (b) Under what (if any) circumstances can the 2-norm of the residual at iteration k + 1 be larger than at iteration k? Explain your answer.
- (c) Let the final iteration of GMRES (k = n) be completed. What is the residual in exact arithmetic? Explain.

When k = n, how do the eigenvalues of H_k relate to the eigenvalues of A? Explain.