Statistics comprehensive exam. January 2024

Instructions: The exam has 6 problems often with multiple parts. Write your code words on each of your answer sheets. Do not put your name or UNM ID on any of the sheets. Be clear, concise, and complete. All solutions should be rigorously explained.

Problem 1. Consider testing the null hypothesis $Y \sim \operatorname{Bin}(5,0.2)$ versus the alternative $Y \sim \operatorname{Bin}(5,0.4)$. Use the Neyman-Pearson Lemma to find the most powerful size 0.05 test. Here is some R output that you might find useful.

```
> t
[1] 0 1 2 3 4 5
> dbinom(t,5,0.2)
[1] 0.32768 0.40960 0.20480 0.05120 0.00640 0.00032
> dbinom(t,5,0.4)
[1] 0.07776 0.25920 0.34560 0.23040 0.07680 0.01024
```

Why is this also the UMP test for $H_{0}: p \leq 0.2$ versus $H_{1}: p>0.2$, when $Y \sim \operatorname{Bin}(5, p)$?

Problem 2. Consider a linear model

$$
Y=X \beta+e, \quad \mathrm{E}[e]=0, \quad \operatorname{Cov}[e]=\sigma^{2} I .
$$

Let M be the perpendicular projection operator onto $C(X)$. Consider the parameter $\lambda^{\prime} \beta$ where λ is known. For known vectors a and ρ, suppose $a^{\prime} Y$ and $\rho^{\prime} Y$ are both unbiased estimates of $\lambda^{\prime} \beta$.
(a) Show that $\lambda^{\prime} \beta$ is estimable.
(b) Show that $a^{\prime} X=\rho^{\prime} X$.
(c) Show that $\operatorname{Var}\left[a^{\prime} Y\right]=\operatorname{Var}\left[a^{\prime} Y-\rho^{\prime} M Y\right]+\operatorname{Var}\left[\rho^{\prime} M Y\right]$.
(d) State and prove the Gauss-Markov Theorem.

Problem 3. Let $W_{1}, \ldots, W_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(p)$, and let $\hat{p}_{n}=\frac{1}{n} \sum_{i=1}^{n} W_{i}$.
(a) Use the Central Limit Theorem to find the limiting distribution for $\sqrt{n}\left(\hat{p}_{n}-p\right)$.
(b) Use the Delta Method to find the limiting distribution for $\sqrt{n}\left[g\left(\hat{p}_{n}\right)-g(p)\right]$, where $g(u)=\ln \left(\frac{u}{1-u}\right)$, the log-odds function.

Problem 4. Let y_{1}, \ldots, y_{n} be a random sample modeled by a $\operatorname{Pois}(\lambda)$ distribution.
(a) Consider the case where λ is unknown. Find the score function for λ.
(b) Find the Fisher information for λ.
(c) Find the Jeffreys prior for λ.
(d) The Jeffreys prior is always a flat prior on some parameterization of the model it comes from. In the case where λ is unknown, find the parameterization for the model that gives rise to a flat Jeffreys prior over \mathbb{R}.

Problem 5. Consider a linear model

$$
Y=X \beta+e, \quad \mathrm{E}[e]=0
$$

with the (not necessarily estimable) linear constraint $\Lambda^{\prime} \beta=d$.
(a) Characterize the reduced model associated with this constraint (the hypothesis).
(b) Consider two solutions to the constraint, b_{1} and b_{2}, so that $\Lambda^{\prime} b_{k}=d, k=1,2$. Give appropriate least squares fitted values \hat{Y}_{k} from the models $Y=X_{0} \gamma+X b_{k}+e$ where $X_{0}=X U$ with $C(U)=C(\Lambda)^{\perp}$.
(c) Show that $\hat{Y}_{1}=\hat{Y}_{2}$. Hint: After finding \hat{Y}_{k}, show that $\left(I-M_{0}\right) X\left(b_{1}-b_{2}\right)=0$ where M_{0} is the perpendicular projection operator onto $C\left(X_{0}\right)$.

Problem 6. Let X_{1}, X_{2}, \ldots be independent with X_{n} taking the values $\pm \sqrt{n}$ each with probability $1 / 2$. Show that \bar{X}_{n} converges in distribution to a $N(0,1 / 2)$.

