Rubrics For Math 321

1 Relevant Student Learning Outcomes (SLOs)

In discussion with the faculty, the undergraduate committee created the student learning outcomes for the pure and applied math majors. The following SLOs are pertinent to the course content in Math 321.

1. Perform essential computations in linear algebra, including solving linear systems, computing the eigenvalues of a matrix, and determining linear independence.
2. Students will be able to write rigorous and well written proofs which show comprehension of formal mathematical definitions, recognize hypotheses, and form logical conclusions.
3. Students will be able to work with the fundamentals of logic, including mathematical statements and their converses and contrapositives.
4. Students will be able to construct counterexamples to mathematical statements and understand the importance of hypotheses.

Math 321 offers several opportunities for creating exam questions which assess student performance in these areas. Outcome $\# 1$ will most likely be assessed in a number of exams questions. Outcome $\# 2$ will also be naturally assessed in questions that ask students to prove mathematical statements. Outcome $\# 3$ can be assessed by questions which involve an "if and only if" statement or by questions which naturally involve a proof by contrapositive or proof by contradiction. Outcome \#4 can be assessed by questions which ask students to disprove a mathematical statement, perhaps after a certain hypothesis is relaxed.

Every instructor for Math 321 is asked to complete a "Semester Report", which provides data on the performance of these students in achieving these outcomes. Instructors will be asked to separate the results from different concentrations and majors. To that end, students should be asked to self-identify which major or concentration they have declared, perhaps with a question on the first exam or on a survey administered to the class.

Finally, instructors should ask students to self-assess their performance on these SLOs through questions on an electronically administered survey.

2 Rubrics

The purpose of the rubrics is to ensure that assessment occurs independently from the instructor's chosen grading scale. For example, some instructors may view that a student who gets $80-90 \%$ of the points to have given a "very good" solution while others may expect 100% credit to be rated at this level, using the "excellent" rating to distinguish exceptional solutions.

2.1 Rubric for SLO \#1:

Perform essential computations in linear algebra, including solving linear systems, computing the eigenvalues of a matrix, and determining linear independence.

Excellent	Work shown is exemplary and the student's thought process is lu- cid. Student demonstrates a clear understanding of the pertinent definitions. Mathematical and English language is highly articulate.
Very Good	Work shown is cogent and the student's thought process is apparent. Student demonstrates an understanding of the pertinent definitions. Mathematical and English language is easily understandable.
Satisfactory	Work shown is comprehensible and the student's thought process is discernable. Student understands the essence of the pertinent defi- nitions. Mathematical and English language is decipherable.
Questionable	Partial progress on the problem is demonstrated. Student's thought process is difficult to follow. It is uncertain if the student has an understanding of the pertinent definitions. Errors are significant. Mathematical and English language is incomplete.
Unacceptable	Incomplete solution, with insufficient progress on the problem shown. Student's thought process is mostly undiscernable. Student does not seem to understand the pertinent definitions. Errors are striking. Mathematical and English language is unclear.

2.2 Rubric for $\mathrm{SLO} \# 2$:

Students will be able to write rigorous and well written proofs which show comprehension of formal mathematical definitions, recognize hypotheses, and form logical conclusions.

Excellent	Exemplary proof, with full justification for each step and the logic of argument flows naturally. The chosen strategy for the proof is natu- ral, well motivated, and effective. Proof shows full comprehension of the pertinent mathematical definitions. Mathematical and English language is highly articulate.
Very Good	Cogent proof, with most key steps clearly justified. The chosen strat- egy for the proof is apparent and effective. Proof shows good com- prehension of the pertinent mathematical definitions. Mathematical and English language is easily understandable.
Satisfactory	Comprehensible proof, with justification for the essential steps. The chosen strategy for the proof is recognizable and mostly effective. Proof shows reasonable comprehension of the pertinent mathematical definitions. Errors are relatively minor. Mathematical and English language is decipherable.
Questionable	Partial progress on the proof, only some essential steps are justi- fied. The chosen strategy for the proof has potential. Proof shows an indication of some comprehension of the pertinent mathematical definitions. Errors are significant. Mathematical and English lan- guage is incomplete.
Unacceptable	Poorly written proof, essential steps lack justification. The chosen strategy for the proof is unclear and/or ineffective. Comprehension of the pertinent mathematical definitions is uncertain. Errors are striking. Mathematical and English language is unclear.

2.3 Rubric for $\mathrm{SLO} \# 3$:

Students will be able to work with the fundamentals of logic, including mathematical statements and their converses and contrapositives.

Excellent	Exemplary proof which demonstrates full comprehension of the fun- damentals of logic. The chosen strategy for the proof is natural, well motivated, and effective. Student has a clear understanding of what constitutes the converse or contrapositive statement. Mathematical and English language is highly articulate.
Very Good	Cogent proof which demonstrates good comprehension of the fun- damentals of logic. The chosen strategy for the proof is apparent and effective. Student has a good understanding of what constitutes the converse or contrapositive statement. Mathematical and English language is easily understandable.
Satisfactory	Understandable proof which demonstrates reasonable comprehension of the fundamentals of logic. The chosen strategy for the proof is recognizable and mostly effective. Student has an understanding of what constitutes the converse or contrapositive statement. Errors are relatively minor. Mathematical and English language is deci- pherable.
Questionable	Incomplete proof which demonstrates a partial comprehension of the fundamentals of logic. The chosen strategy for the proof has po- tential. Proof shows an indication of some comprehension of the pertinent mathematical definitions. Student indicates a partial un- derstanding of what constitutes the converse or contrapositive state- ment. Errors are significant. Mathematical and English language is incomplete.
Unacceptable	Poorly written proof which demonstrates little or no comprehension of the fundamentals of logic. The chosen strategy for the proof is unclear and/or ineffective. Student does not demonstrate an under- standing of what constitutes the converse or contrapositive state- ment. Errors are striking. Mathematical and English language is unclear.

2.4 Rubric for $\mathrm{SLO} \# 4$:

Students will be able to construct counterexamples to mathematical statements and understand the importance of hypotheses.

Excellent	Exemplary proof which disproves a mathematical statement by con- structing a natural counterexample. Proof includes full justification for why the example satisfies the hypothesis but not the conclusion. Student has a complete understanding that the mathematical state- ment is false. Mathematical and English language is highly articu- late.
Very Good	Cogent proof which disproves a mathematical statement by con- structing an effective counterexample. Proof includes justification for why the example satisfies the hypothesis but not the conclusion. Student has a good understanding that the mathematical statement is false. Mathematical and English language is easily understandable.
Satisfactory	Comprehensible proof which disproves a mathematical statement by constructing an effective counterexample. Student gives at least some indication why the example satisfies the hypothesis but not the conclusion. Student has some understanding that the mathe- matical statement is false. Mathematical and English language is decipherable.
Questionable	Incomplete proof with only partial progress towards a counterexam- ple. Student may show some comprehension of the relevant concepts, but not necessarily that the statement is false. Student understands that the statement is false, but does not justify why the hypotheses are satisfied but not the conclusion. Errors are significant. Mathe- matical and English language is incomplete.
Unacceptable	Poorly written proof which casts some doubt as to whether or not the student understands the falsity of the statement. Errors are striking. Mathematical and English language is unclear.

