Math 1220 Unit P: *Prerequisite Algebra and Equations Review* Sections 1.2, 1.4-1.6, 1.7, 2.1-2.5, 3.4-3.6, 4.1-4.3, 4.5- 4.6

Note: Not all material is covered in these LNs. You must also look at the *Prerequisite Tutorials* and the **ALEKS** Prerequisite Reviews.

Exponents & Radicals

1. Simplify (a)
$$x^2 x^3 =$$
 (b) $(x^2)^3 =$ (c) $\left(\frac{2}{3}\right)^3 =$ (d) $\left(\frac{2}{3}\right)^{-3} =$ (e) $-27^{\frac{2}{3}} =$

2. T or F? If false, replace the right-hand side of the expression with the correct answer.

(a)
$$3x^{-1} = \frac{1}{3x}$$
 (b) $\frac{3x^{-1}}{x^2} = \frac{3}{x^3}$ (c) $\frac{x^{-1}+5}{x} = \frac{5}{x^2}$

3. *T or F*? If false, replace the right-hand side of the expression with the correct answer.

(a) $(x + y)^2 = x^2 + y^2$ (b) For $x, y > 0, \sqrt{x^2 + y^2} = x + y$ (c) For $x, y > 0, \sqrt{x^2 y^2} = xy$

Practice: Prerequisite Tutorial 1 (PT1), ALEKS Prereq Review 1 (ALEKS PR1)

1.6-1.7: Linear Equations & Inequalities

4. T or F? If false, give the correct answer.

(a) _____ If $-\frac{1}{6}x > 5$, then x > -30 (b) _____ $5 \ge x > -1$ can be written (c) _____ using interval notation as [5, -1) solution x

(c) _____ Using set notation, the solution x = 5 is written as $x = \{5\}$

5. To solve $\frac{1}{6}x - 3 < \frac{5}{4}x$, what is the best 1st move? (a) M! both sides by 6 (b) M! both sides by 12

(c) M! both sides by 24

(d) Divide both sides by x

1.6-1.7: Absolute Value Equations and Inequalities

|x| means "distance that x lies from zero" on the real number line

6. Translate each mathematical statement into a "meaningful" English statement. Draw a picture, then solve for *x*. (a) |x| = 2 (b) |x| < 3 (c) |x| > 4

7. Consider y < -3 or y > 3. Draw a graph that represents this statement, then write it as an absolute value statement.

8. To solve 2|x - 4| + 1 = 7, what are the steps?

Step 1:

Step 2:

9. To solve each inequality, what are the steps	? Write solutions using interval notation.
(a) $2 x-4 + 1 < 7$	(b) $2 x - 4 + 1 > 7$

Step 1:

Step 2:

Step 2:

Step 1:

Step 3:

Step 3:

10. What's the solution? There is NO need to do calculations – just *THINK ABOUT IT!* (a) |x + 2| = -3 (b) $|x + 2| \ge 0$ (c) |x + 2| < -4 11. Factor (a) $2x^2 + 5x - 12$

(d) $12x^2 - 6x^3$

(e) $12x^2(x+2)^2 - 4x^3(x+2)$

(f) $12x^{-2} - 6x^{-3}$

(g) $12x^2(x+2)^{3/2} - 4x^3(x+2)^{1/2}$

Practice: PT2, ALEKS PR4

More practice – Text Exercises: 2.3 #11, 15, 23, 27, 71, 75; 2.4 #13, 17, 23, 35, 41; 2.5 #13, 19, 21

1.2, 3.4-3.6: Solving Equations

12. To solve $(x - 3)(2x - 1) = 18$	13. To solve $8x^2 = 3x$	
 (a) set each factor equal to 18 (b) set each factor equal to 0 (c) FOIL out the left side (d) none of the above 	(a) divid (b) divid (c) squa (d) non	de both sides by 8 de both sides by <i>x</i> are root both sides e of the above
12. $(x-3)(2x-1) = 18$	13. 8x ²	= 3x
Can we? Should we? YES or NO?	Solve (b) $2(x+7)^2 = 16$	(c) $2v^2 + 34 = 0$
14. (a) To solve $(x + 7)^2 = 8$:		

(1) can we FOIL out the left side?

(2) should we FOIL out the left side? _____

 Can we? Should we?
 YES or NO?

 15. To solve $p^2 + (p+2)^2 = 100$,
 (1) can we square root each term?

(2) should we square root both sides? _____

Solve $p^2 + (p+2)^2 = 100$

4

Quadratic Formula

If $ax^2 + bx + c = 0$, then x =

16. Solve $3x^2 - 2x - 7 = 0$

17. Solve (a) $2w^3 - 8w^2 - 24w = 0$

(b) $2x^3 = 32x$

(c) $64x^2 - 4x^4 = 0$

(d) $x^{\frac{2}{3}} = 64$

Practice: PT4, ALEKS PR5

More Practice – Text Exercises: 1.2 #23, 41, 47, 49; 3.4 #13, 19, 25, 31, 41, 45, 51, 53; 3.5 #19; 3.6 #11, 13

4.1-4.2: Rational Expressions

18. Simplify (a)
$$\frac{3(x-1)^2 + x(x-1)}{x^2 - 1}$$
 (b) $\frac{x-1}{x^2 + x - 12} \cdot \frac{x+4}{x^2 - x}$

(d)
$$\frac{\frac{2}{x+1}-2}{x}$$

19. Combine and simplify: $\frac{x-1}{x^2-x-2} + \frac{4}{x^2+x}$

Practice: PT3, ALEKS PR6

More practice – Text Exercises: 4.1 #39, 41, 49, 53, 71, 81, 91, 117; 4.2 #17, 27, 35, 37, 39, 51, 55, 63, 67, 71

4.3: Rational Equations

What restrictions are on the variable?

20. Solve (a)
$$\frac{2}{3x} + \frac{1}{4} = \frac{11}{6x} - \frac{1}{3}$$
 restrictions:

Step 1: M! both sides by LCD = _____

$$\frac{2}{3x} + \frac{1}{4} = \frac{11}{6x} - \frac{1}{3}$$

(b)
$$\frac{36}{p^2 - 9} = \frac{2p}{p+3} - 1$$
 restrictions:

Step 1: FACTOR denominators and find LCD.

$$\frac{36}{(p-3)(p+3)} = \frac{2p}{p+3} - 1$$

Step 2: M! both sides by LCD = _____

$$\frac{36}{(p-3)(p+3)} = \frac{2p}{p+3} - 1$$

(c)
$$\frac{-8}{t^2 - 6t} + \frac{t}{t - 6} = \frac{1}{t}$$

Step 1: Factor all denominators Step 2: Multiply both sides by LCD

Practice: PT4, ALEKS PR7

More practice – Text Exercises: 4.3 #13, 15, 19, 23, 27, 29, 35, 39

1.2: Solving for a Variable

21. Solve for *m*: $\frac{3}{k} + \frac{1}{m} = x$

Step 1: Multiply by LCD: $\frac{3}{k} + \frac{1}{m} = x$

Step 2: Isolate *m* terms

Step 3: Factor out *m* and finish

4.6: Radical Equations

22. *T* **or F?** To solve $\sqrt{x-1} - \sqrt{3x+1} = -2$, we can square each term to get (x-1) - (3x-1) = 4

Solve $\sqrt{x-1} - \sqrt{3x+1} = -2$

Practice: PT4, ALEKS PR8

More practice – Text Exercises: 1.2 #77, 79; 4.6 #19, 23, 49