Math 1220 Unit P: *Prerequisite Algebra and Equations Review* Sections 1.2, 1.4-1.6, 1.7, 2.1-2.5, 3.4-3.6, 4.1-4.3, 4.5- 4.6

Exponents & Radicals

1. Simplify (a) $x^{2}x^{3} = \frac{\sqrt{5}}{2}$ (b) $(x^{2})^{3} = \frac{\sqrt{6}}{2}$ (c) $\left(\frac{2}{3}\right)^{3} = \frac{\sqrt{7}}{2}$ (d) $\left(\frac{2}{3}\right)^{-3} = \frac{\sqrt{7}}{2}$ (e) $-27^{\frac{2}{3}} = \frac{-9}{2}$ $= \left(\frac{2}{3}\right)^{3} - \left(\frac{27^{2}}{9}\right)^{2} = -9$ $= \left(\frac{2}{3}\right)^{3} - \left(\frac{27^{2}}{9}\right)^{2} = -9$ $= \left(\frac{2}{3}\right)^{3} - \left(\frac{27^{2}}{9}\right)^{2} = -9$ $= -\left(\frac{27^{2}}{9}\right)^{2}$ 2. *T or F?* If false, replace the right-hand side of the expression with the correct answer. (a) $\int 3x^{-1} = \frac{3}{x^{2}}$ (b) $\int \frac{3x^{-1}}{x^{2}} = \frac{3}{x^{3}}$ (c) $\int \frac{x^{-1} + x^{2}}{x} = \frac{5}{x^{2}}$ = -9 $3 \times -1 = \frac{3}{x}$ $\sqrt{\frac{x^{-1} + x^{2}}{x^{2}}} = \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} = \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} = \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} = \frac{1}{x^{2}} + \frac$

Multiply

Practice: Prerequisite Tutorial 1 (PT1), ALEKS Prereq Review 1 (ALEKS PR1)

1.6-1.7: Linear Equations & Inequalities

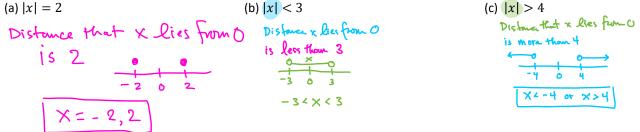
4. To solve
$$\frac{1}{6}x - 3 < \frac{5}{4}x$$
, what is the best 1st move? (a) M! both sides by 6
(b) M! both sides by 12
(c) M! both sides by 24
(d) Divide both sides by x
 $2x - 36 < 15x$
 $-13x < 36$
 $x - -36$
 $x - 36$
 $x -$

5. T or F? If false, give the correct answer.

(a)
$$\underline{F}$$
 If $-\frac{1}{6}x > 5$, then $x > -30$ (b) \underline{F} $5 \ge x > -1$ can be written (c) Using set
 $\times < -30$ using interval notation as $[5, -1)$ $x = 5$ is wri
 $(-1, 5]$

inequality symbol.

(c) Using set notation, the solution x = 5 is written as $x = \{5\}$


Practice: ALEKS PR2

Note: Not all material is covered in these LNs. You must also look at the *Prerequisite Tutorials* and the **ALEKS** Prerequisite Reviews.

1.6-1.7: Absolute Value Equations and Inequalities

|x| means "distance that x lies from zero" on the real number line

6. Translate each mathematical statement into a "meaningful" English statement. Draw a picture, then solve for x.

7. Consider y < -3 or y > 3. Draw a graph that represents this statement, then write it as an absolute value statement.

0		14/>3
-3	0 3	

8. To solve 2|x - 4| + 1 = 7, what are the steps?

Step 1: SOLATE abs. val.

2|x-4| = 6 |x-4| = 3Step 2: LOSE abs val appropriately x-4 = -3 or x-4 = 3 $x = 1 \qquad x = 7$ The quantity inside the absolute value lies 3 units from 0, so equals 3 or -3.

9. To solve each inequality, what are the steps? Write solutions using interval notation.

(a) 2|x - 4| + 1 < 7Step 1: |SOLATE abs. vaQ 2|x - 4| + 1 > 7Step 1: |SOLATE abs. vaQ 2|x - 4| - 4| + 1 > 7Step 1: |SOLATE |x - 4| - 3Step 2: Quantity inside absolute value lies less than Step 2: Quantity inside the absolute value is more than 3

3 units from zero, so between -3 and 3.
$$3 \text{ units from 0, so to the left of -3 and to the right of +3}$$
 $3 \text{ units from 2ero, so between -3 and 3. $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0, so to the left of -3 and to the right of +3}$ $3 \text{ units from 0,$$

10. What's the solution? There is NO need to do calculations – just *THINK ABOUT IT!* (a) |x + 2| = -3 (b) $|x + 2| \ge 0$ (c) |x + 2| < -4

a) $ x + 2 = -3$	(b) $ x+2 \ge 0$
Ø	all×
b/c abs vol \neq neg.	b/c also value is
	ALWAYS = 0
Practice: PT4, ALEKS PR3	Ũ

2.3-2.5: Factoring 11. Factor (a) $2x^{2} + 5x - 12$ (b) $12x^{2} - 5x - 2$ (2x - 4) (x - 3) FOIL (4x + 1) (3x - 2) $12x^{2}$ (4x + 1) (3x - 2) (4x + 1) (3x - 2)

$$(d) 12x^2 - 6x^3 \qquad \text{GCE: } 6x^2$$

$$= 6x^2(x-x)$$

(e)
$$12x^{2}(x+2)^{2} - 4x^{3}(x+2)$$

= $4x^{2}(x+2)\left[3(x+2) - x\right]$
= $4x^{2}(x+2)(3x+6-x)$
= $4x^{2}(x+2)(2x+6)$
= $4x^{2}(x+2)\cdot 2(x+3)$
(g) $12x^{2}(x+2)\cdot 2(x+3)$
(g) $12x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
(g) $12x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
(g) $12x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
(g) $12x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
(g) $12x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
(g) $12x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
(g) $12x^{2}(x+2)^{\frac{3}{2}} - 4x^{3}(x+2)^{\frac{1}{2}}$
= $4x^{2}(x+2)^{\frac{1}{2}} \left[3(x+2) - x\right]$
= $4x^{2}(x+2)^{\frac{1}{2}} \left[3(x+6) - x\right]$
= $4x^{2}(x+2)^{\frac{1}{2}} \cdot 2(x+3)$

 $8 x^{2} (x+2)^{1/2} (x+3)$

Always factor out the quantity with the smallest exponent.

(f)
$$12x^{-2} - 6x^{-3}$$

$$= 6 \times \frac{-3}{2} \left(\frac{3}{2} \times \frac{-1}{2} \right)$$

$$= \frac{1}{2} \times \frac{1}{2} \times$$

Practice: PT2, ALEKS PR4

More practice – Text Exercises: 2.3 #11, 15, 23, 27, 71, 75; 2.4 #13, 17, 23, 35, 41; 2.5 #13, 19, 21