Department of Mathematics and Statistics University of New Mexico

Real Analysis Qualifying Exam August 2024

Instructions: Please hand in all of the 7 following problems (4 in the front page and 3 in the back page). All problems have equal value. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. Clear and concise answers with good justification will improve your score.

- 1. Let (X, d) be a metric space. Two sequences $\{x_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$ in X are said to be equivalent if and only if for all $\epsilon > 0$ there is a natural number $N \geq 1$ such that $d(x_n, y_n) \leq \epsilon$ for all $n \geq N$. In that case we denote $\{x_n\} \sim \{y_n\}.$
	- (a) Show that equivalence of sequences in a metric space is an equivalence relation.
	- (b) Given $f: X \to \mathbb{R}$, show that f is uniformly continuous function on X if an only if equivalent sequences on X are mapped into equivalent sequences on \mathbb{R} . (Here we are viewing $\mathbb R$ as a metric space with the Euclidean metric.)
- 2. Show that if $\{a_k\}_{k=1}^{\infty}$ is a decreasing sequence of real numbers and $\sum_{k=1}^{\infty} a_k$ is convergent, then $\lim_{k\to\infty} ka_k = 0$.
- 3. Let f be a continuous function on [0, 1] such that $f(x) > 0$ for all $x \in [0,1]$.
	- (a) Show that for every $\epsilon > 0$ there is a polynomial p such that $0 \leq p(x) \leq f(x)$ and $|p(x) - f(x)| \leq \epsilon$ for all $x \in [0, 1]$.
	- (b) Show that there is a monotone increasing sequence of polynomials $\{p_n\}_{n=1}^{\infty}$ such that $0 \leq p_n(x) \leq p_{n+1}(x)$ for all $n \geq 1$ and $p_n \to f$ uniformly on [0, 1].
- 4. Show the following limit is zero. Justify each step of your solution.

$$
\lim_{n \to \infty} \int_0^1 \frac{n \cos(x)}{1 + n^4 x^3} \, dx = 0.
$$

5. Let U and V be open sets in \mathbb{R}^n and let f be a one-to-one mapping from U onto V (so that there is an inverse mapping $f^{-1}: V \to U$). Suppose that f and f^{-1} are both continuous. Show that for any set S such that $\overline{S} \subset U$ and $\overline{f(S)} \subset V$ we have $f(\partial S) = \partial(f(S)).$

(Here we are viewing \mathbb{R}^n as a metric space with the Euclidean metric, and \overline{S} and ∂S denote the closure and the boundary of the set S respectively.)

6. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called (positively) homogeneous of degree $s \in \mathbb{R}$ if $f(t\mathbf{x}) = t^s f(\mathbf{x})$ for all $t > 0$ and all non-zero $\mathbf{x} \in \mathbb{R}^n$. Here $\mathbf{x} = (x_1, x_2, \dots, x_n)$ where $x_i \in \mathbb{R}$ for all $i = 1, 2, ..., n$. Show that if f is homogeneous of degree s, then at any point $\mathbf{x} \in \mathbb{R}^n$ where f is differentiable we have

$$
x_1\frac{\partial f}{\partial x_1}(\mathbf{x}) + x_2\frac{\partial f}{\partial x_2}(\mathbf{x}) + \cdots + x_n\frac{\partial f}{\partial x_n}(\mathbf{x}) = s f(\mathbf{x}).
$$

7. Let $B = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| \leq 1 \}$ (the closed unit ball in \mathbb{R}^n). Let f and g be real-valued continuous functions on B with $g \geq 0$. Then there is a point $\mathbf{a} \in B$ such that

$$
\int_B f(\mathbf{x}) g(\mathbf{x}) d^n \mathbf{x} = f(\mathbf{a}) \int_B g(\mathbf{x}) d^n \mathbf{x}.
$$

Here $d^n\mathbf{x} = dx_1 \dots dx_n$, and the integral is a Riemann integral.