Complex Analysis Qualifying Exam August 9, 2024

Instructions: Hand in all of the following 8 problems. Start each problem on a new page, number the pages, and put only your code word (not your banner ID number) on each page. **Submit your solutions arranged in numerical order**. Clear and concise answers with good justification will improve your score.

- 1. Let Ω be open and connected in \mathbb{C} and let f, f_1, f_2, \ldots, f_n be holomorphic in Ω .
 - (a) Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)|f(z)|^2 = 4|f'(z)|^2$
 - (b) Show that

$$|f_1(z)|^2 + |f_2(z)|^2 + \dots + |f_n(z)|^2$$

is harmonic in Ω if and only if each f_k is constant.

2. Consider the function

$$F(z) = \oint_{|\zeta|=2} \frac{d\zeta}{\zeta(\zeta-z)(\zeta-z+1)}.$$

Determine the limit of F(z) as $z \to 2$ from inside the circle $|\zeta| = 2$ and also from outside the circle $|\zeta| = 2$. Is F(z) continuous at z = 2?

3. Let a be a nonzero real number. Evaluate

$$\int_0^\infty \frac{\cos(ax)}{1+x^2} \, dx.$$

Explain all steps carefully (show contours, etc.).

- 4. Let k be a positive integer. Characterize all the holomorphic functions on $\mathbb{C} \setminus \{0\}$ satisfying $|f(z)| \leq |z|^{-k}$ for all $z \neq 0$. Prove your answer.
- 5. Suppose f is holomorphic and bounded on $\{z : |z| > R\}$ for some R > 0. Prove that the Laurent series of f centered at 0 has the form

$$f(z) = \sum_{n=-\infty}^{0} a_n z^n,$$

that is, all the coefficients of z^n in the Laurent series with n > 0 vanish.

6. Let f be holomorphic and bounded in the disc D(0, R) for some R > 0 so that $M = \sup_{|z| < R} |f(z)|$ is finite. Suppose that for some positive integer k

$$f(0) = f'(0) = \dots = f^{(k)}(0) = 0.$$

Prove that

$$|f(z)| \le \frac{M}{R^{k+1}}|z|^{k+1}$$

- 7. Find the number of solutions to $2z^5 + 8z 1 = 0$ lying in the annulus $\{z : 1 < |z| < 2\}$. Justify your answer.
- 8. Let $U = \{z \in \mathbb{C} : |z| < 2, |z 1| > 1\}$ and $V = \{z \in \mathbb{C} : 0 < \operatorname{Re} z < 1\}.$
 - (a) Find a conformal map from U to V.
 - (b) Find a solution u(x, y) to the Laplace equation $\Delta u = 0$ on U with u = 3 on the inner circle |z 1| = 1 and u = 1 on the outer circle |z| = 2.