Composition of Paraproducts

UNM - Analysis Seminar

Ana Čolović

Abstract. In 2013, Pott, Reguera, Sawyer and Wick studied bounds for compositions of dyadic Haar paraproduct operators. Operators of this type are defined as

$$P_b^{(\alpha,\beta)}f := \sum_{I \in \mathcal{D}} b_I \langle f, h_I^\beta \rangle h_I^\alpha,$$

where $\alpha, \beta \in \{0, 1\}$ and h_I^0 , and h_I^1 are the dyadic Haar function associated to the dyadic interval $I \in \mathcal{D}$, and the dyadic averaging function $\frac{1}{|I|}$, respectively.

The authors developed methods to study several combinations of paraproduct type operators, $P_b^{(\alpha,\beta)}$ and $P_d^{(\gamma,\delta)}$ giving a joint condition for their boundedness in terms of the symbols *b* and *d*. One of the cases of the compositions remained unclassified. It remained unknown what the bound of $\Pi_b \Pi_d$, where Π_b , and Π_d are the usual dyadic paraproduct operator. We give a bound for this operator. For the operator $\Pi_b^* \Pi_d$, we extend the work of Pott, Reguera, Sawyer and Wick to a weighted setting.

Ana Čolović