Next: About this document ...
Up: Computing Threshold Conditions for
Previous: Computing Threshold Conditions for
-
- 1
-
CHAR, B. W., GEDDES, K. O., GONNET, G. H., BENTON, L. L., MONAGAN, M. B.,
AND WATT, S. M.
Maple V Language Reference Manual.
Springer-Verlag, New York, 1991.
- 2
-
CHAR, B. W., GEDDES, K. O., GONNET, G. H., BENTON, L. L., MONAGAN, M. B.,
AND WATT, S. M.
Maple V Library Reference Manual.
Springer-Verlag, New York, 1991.
- 3
-
DOLZMANN, A., AND STURM, T.
Redlog user manual.
FMI, Universität Passau, 94030 Passau, Germany, 1997.
http://www.fmi.uni-passau.de/~redlog/.
- 4
-
DOLZMANN, A., AND STURM, T.
Simplification of quantifier-free formulae over ordered fields.
Journal of Symbolic Computation 24, 2 (Aug. 1997), 209-231.
- 5
-
TARSKI, A.
A Decision Method for Elementary Algebra and Geometry,
second ed.
University of California Press, Berkeley, 1951.
- 6
-
WEISPFENNING, V.
The complexity of linear problems in fields.
Journal of Symbolic Computation 5 (1988), 3-27.
- 7
-
WEISPFENNING, V.
Quantifier elimination for real algebra--the cubic case.
In Proc. Intl. Symposium on Symbolic and Algebraic Computation
(ISSAC '94) (Oxford, July 1994), Association for Computing Machinery,
pp. 258-263.
- 8
-
WEISPFENNING, V.
Quantifier elimination for real algebra--the quadratic case and
beyond.
Applicable Algebra in Engineering Communication and Computing
8, 2 (Feb. 1997), 85-101.
IMACS ACA'98 Electronic Proceedings