Next: About this document ...
Up: Solving LMI and BMI
Previous: Conclusion
-
- 1
-
Abdallah, C., Dorato, P., Yang, W., Liska, R., Steinberg, S. (1996).
Application of Quantifier Elimination Theory to Control System Design.
Proceedings 4th IEEE Mediteranean Symposium on Control and Automation.
pp340-345.
- 2
-
H. Anai :
On solving semidefinite programming by quantifier elimination.
In Proc. of American Control Conference, Philadelphia,
2814/2818 (1998)
- 3
-
Anderson, B., Bose, N., Jury, E. (1975).
Output feedback stabilization and related Problems
-- solution via decision methods.
IEEE Trans. Auto. Control, pp 53-65.
- 4
-
Boyd, S., Ghaoui, L,E., Feron, E,. Balakrishnan, V. (1994).
Linear Matrix Inequalities in System and Control Theory.
SIAM Studies in Applied Mathematics, vol 15.
- 5
-
Collins, G,E. (1975).
Quantifier Elimination in the elementary theory of real closed
fields by cylindrical algebraic decomposition for
quantifier elimination.
LNCS 33, 134-183, Springer-Verlag, Berlin.
- 6
-
Collins, G,E., Hong, H. (1991).
Partial cylindrical algebraic decomposition for quantifier elimination.
J. Symb. Comp. 12, No.3, pp299-328.
- 7
-
Dorato, P., Yang, W., Abdallah, C. (1995).
Application of Quantifier Elimination Theory to Robust Multi-object
Feedback Design.
J. Symb. Comp. 11 pp1-6.
- 8
-
Gahinet, P., Nemirovski, A., Laub, A.J., Chilai, M. (1995).
LMI Control Toolbox User's Guide, For Use with MATLAB.
The MATH WORKS INC.
- 9
-
K.G.Goh, M.G.Safonov, and G.P.Papavassilopoulos.
A Global Optimization Approach for the BMI Problem.
In Proceedings of the 33rd Conference on Decision and Control,
pp. 2009-2014, 1994.
- 10
-
Hong, H. (1992).
Simple solution formula construction in
cylindrical algebraic decomposition based quantifier elimination.
ISSAC'92, International Symposium on Symbolic and Algebraic Computation.
ACM Press, pp177-188.
- 11
-
Jirstrand, M. (1996).
Algebraic Methods for Modeling and Design in Control.
Linköping Studied in Science and Technology, Thesis No. 540.
- 12
-
A. Neubacher :
Parametric Robust Stability by Quantifier Elimination.
PhD thesis, RISC, Johannes Kepler University (1997)
- 13
-
Noro, M., Takeshima, T. (1992).
Risa/Asir - a computer algebra system,
in ``Proc. ISSAC `92,''
ACM Press, pp. 387-396.
- 14
-
Seidenberg, A. (1954).
A new decision method for elementary algebra.
Annals of Math., vol. 60, pp. 365-374.
- 15
-
Sturm, T. (1994).
REDLOG, reduce library of algorithm,s for manipulation
of first-order formulas.
Univ. of Passau, Technical Report.
- 16
-
Sturm, T. (1996).
Real Quadratic Quantifier Elimination in Risa/Asir.
Fujitsu Labs Research Report ISIS-RR-96-13E.
- 17
-
Tarski, A. (1951).
Decision Methods for Elementary Algebra and Geometry.
Berkeley: Univ. of California Press.
- 18
-
Weispfenning, V. (1988).
The complexity of linear problems in fields.
J. Symb. Comp. 5,(1), 3-27.
- 19
-
Loos, R., Weispfenning, V. (1996).
Applying linear quantifier elimination.
The Computer Journal,Vol.36,No.5.pp450-462.
- 20
-
Vandenberghe, L., Boyd, S. (1996).
Semidefinite Programming.
SIAM Review, March, Vol.38, No.1, pp 49-95
- 21
-
Weispfenning, V. (1996).
Simulation and Optimization by Quantifier Elimination.
J. Symb. Comp. to appear.
IMACS ACA'98 Electronic Proceedings