next up previous
Next: About this document ... Up: Solving LMI and BMI Previous: Conclusion

Bibliography

1
Abdallah, C., Dorato, P., Yang, W., Liska, R., Steinberg, S. (1996). Application of Quantifier Elimination Theory to Control System Design. Proceedings 4th IEEE Mediteranean Symposium on Control and Automation. pp340-345.

2
H. Anai :
On solving semidefinite programming by quantifier elimination.
In Proc. of American Control Conference, Philadelphia, 2814/2818 (1998)

3
Anderson, B., Bose, N., Jury, E. (1975). Output feedback stabilization and related Problems -- solution via decision methods. IEEE Trans. Auto. Control, pp 53-65.

4
Boyd, S., Ghaoui, L,E., Feron, E,. Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, vol 15.

5
Collins, G,E. (1975). Quantifier Elimination in the elementary theory of real closed fields by cylindrical algebraic decomposition for quantifier elimination. LNCS 33, 134-183, Springer-Verlag, Berlin.

6
Collins, G,E., Hong, H. (1991). Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comp. 12, No.3, pp299-328.

7
Dorato, P., Yang, W., Abdallah, C. (1995). Application of Quantifier Elimination Theory to Robust Multi-object Feedback Design. J. Symb. Comp. 11 pp1-6.

8
Gahinet, P., Nemirovski, A., Laub, A.J., Chilai, M. (1995). LMI Control Toolbox User's Guide, For Use with MATLAB. The MATH WORKS INC.

9
K.G.Goh, M.G.Safonov, and G.P.Papavassilopoulos.
A Global Optimization Approach for the BMI Problem.
In Proceedings of the 33rd Conference on Decision and Control, pp. 2009-2014, 1994.

10
Hong, H. (1992). Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. ISSAC'92, International Symposium on Symbolic and Algebraic Computation. ACM Press, pp177-188.

11
Jirstrand, M. (1996). Algebraic Methods for Modeling and Design in Control. Linköping Studied in Science and Technology, Thesis No. 540.

12
A. Neubacher :
Parametric Robust Stability by Quantifier Elimination.
PhD thesis, RISC, Johannes Kepler University (1997)

13
Noro, M., Takeshima, T. (1992). Risa/Asir - a computer algebra system, in ``Proc. ISSAC `92,'' ACM Press, pp. 387-396.

14
Seidenberg, A. (1954). A new decision method for elementary algebra. Annals of Math., vol. 60, pp. 365-374.

15
Sturm, T. (1994). REDLOG, reduce library of algorithm,s for manipulation of first-order formulas. Univ. of Passau, Technical Report.

16
Sturm, T. (1996). Real Quadratic Quantifier Elimination in Risa/Asir. Fujitsu Labs Research Report ISIS-RR-96-13E.

17
Tarski, A. (1951). Decision Methods for Elementary Algebra and Geometry. Berkeley: Univ. of California Press.

18
Weispfenning, V. (1988). The complexity of linear problems in fields. J. Symb. Comp. 5,(1), 3-27.

19
Loos, R., Weispfenning, V. (1996). Applying linear quantifier elimination. The Computer Journal,Vol.36,No.5.pp450-462.

20
Vandenberghe, L., Boyd, S. (1996). Semidefinite Programming. SIAM Review, March, Vol.38, No.1, pp 49-95

21
Weispfenning, V. (1996). Simulation and Optimization by Quantifier Elimination. J. Symb. Comp. to appear.



IMACS ACA'98 Electronic Proceedings