[c,d,1,d2-c,c2-d,cd-1,c4d+cd4-2 c2d2-c3-d3+2 cd,c3+d3-3 cd+1,d2,cd-1,c2-d, cd-1,1,4 cd-d3-1+c4d+cd4-3 c2d2-c3,4cd-d3-1+c4d+cd4-3 c2d2-c3, c3-2 cd+1,d3-2 cd+1,1,4 cd-d3-1+c4d+cd4-3 c2d2-c3,cd3-c2d-d2+c, c2d2-2cd+1,c3d-c2-cd2+d,1 ]
[x2z,x2y,x3,zy3,xy2z,xy3, y2z3,xyz3,x2z3,y4z,y4z,
y5,x2y3,yz5,xz5,y3z3, xy2z3 ,x2yz3,z7,y2z5, y2z5,y2z5,
x2z5]
For the first case, we have computed a Grobner Basis that specializes
correctly
for any value of the parameters verifying [c=0,d=1]. This allows to get information about the solution set of the considered system by performing, for example, parametric computations into the quotient ring
(no need of taking care about the values of a and b).