next up previous
Next: About this document ... Up: No Title Previous: Conclusions

Bibliography

1
L. Kocbach and R. Liska. Generation and verfication of Algorithms for symbolic-numeric processing. J. Symbolic Computation, 11, 1-16, 1996.

2
S. Steinberg and P. J. Roache. Symbolic manipulation and computational fluid dynamics. J. Comp. Phys., 57, 251-284, 1985.

3
J. Argyris and L. Tenek. Steady-state nonlinear heat transfer in stiffened composite plates and shells by an exactly integrated facet triangular element. Comput. Methods Appl. Mech. Engrg., 129, 53-79, 1996.

4
J. Nagabhushanam, C. J. Srinivas and G. H. Gaonkar. Symbolic generation of elemental matrices for finite element analysis. Computers and Structures, 42, 375-380, 1992.

5
P. A. Pinheiro, F. J. Dickin and A. E. James. An analytical stiffness matrix for first- and second-order upright triangular prismatic finite elements. Communicat. Numer. Meth. Engng., 13, 467-473, 1997.

6
H. T. Rathod. Explicit stiffness matrices for axisymmetric triangular elements. Computers and Structures, 30, 1091-1100, 1988.

7
T. Y. Chang, H. Q. Tang, D. Zheng and M. W. Yuan. Application of symbolic method to hybrid/mixed finite elements and computer implementation. Computers and Structures,35, 293-299, 1990.

8
H. T. Rathod. Some analytical integration formulae for a four node isoparametric element. Computers and Structures, 30, 1101-1109, 1988.

9
A. Eriksson. A note on the development of efficient simple finite elements. Technical Report, Dept. Struct. Engng., Royal Institute of Technology, Stockholm, 1996.

10
C. Pacoste and A. Eriksson. Symbolic derivation of accurate and efficient finite elements. Technical Report, Dept. Struct. Engng., Royal Institute of Technology, Stockholm, 1998.

11
W. Hammel. Development of FEM stiffness matrix using Mathematica as a computational tool. Master Thesis, Royal Institute of Technology, Stockholm, 1998.

12
Y. H. Luo. Extension of field consistence approach into developing plane stress elements. Comput. Methods Appl. Mech. Engrg.. In press.

13
Y. H. Luo. An alternative assumed strain method, Comput. Methods Appl. Mech. Engrg.. In press.

14
Y. H. Luo. On Some Finite Element Formulations in Structural Mechanics, Ph.D. Thesis, Royal Institute of Technology, Stickholm, 1998.

1
Y. H. Luo, A. Eriksson and C. Pacoste. On relations between incompatible model, selective reduced integration and (hybrid) mixed formulations. manuscript submitted to Computers and Structures, 1998.

16
Y. H. Luo. Field consistence approach with application to the development of finite element. Presented in The 10-th Nordic Seminar on Computational Mechanics, Tallinn. Oct. 1997.

17
Y. H. Luo. On Shear Locking in Finite Elements, Licentiate Thesis, Royal Institute of Technology, Stockholm, 1997.

18
Y. H. Luo. Explanation and elimination of shear locking and membrane locking with field consistence approach, Comput. Methods Appl. Mech. Engrg., 162, 249-269, 1998.

19
A. Eriksson, Y. H. Luo and C. Pacoste. Computer algebra investigation of equivalence in 4-node plane stress/strain finite elements. Accepted by CASC'99, München, 1999.

20
H.-S. Oh and R. C. Batra. Locations of optimal stress points in higher-order elements. Communicat. Numer. Meth. Engng., 15, 127-136, 1999.

21
J. Korelc. Automatic generation of finite-element code by simutaneous optimization of expressions. Theoretical Computer Science, 187, 231-248, 1997.


IMACS ACA'99 Symbolic-Numeric Interface session