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Abstract

Let A be an m X n matrix with m > n. Then one form of the singular-value
decomposition of A is
A=UTxv,

where U and V are orthogonal and ¥ is square diagonal. That is, UU! =
Liankay VVT = Lankay, U is rank(A) x m, V is rank(A) x n and
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is a rank(A) X rank(A) diagonal matrix. In addition o1 > 02 > -+ > Gpanr(a) >
0. The o;’s are called the singular values of A and their number is equal to the rank

of A. The ratio 0‘77}@ can be regarded as a condition number of the matrix A.

It is easily verified that the singular-value decomposition can be also written as

rank(A)
A=UTxv = Z aiuiTvi.
i=1

The matrix u! v; is the outer product of the i-th row of U with the corresponding
row of V. Note that each of these matrices can be stored using only m +n locations
rather than mn locations.

The singular value decomposition is over a hundred years old. For the case of
square matrices, it was discovered independently by Beltrami in 1873 and Jordan
in 1874. The technique was extended to rectangular matrices by Eckart and Young
in the 1930’s and its use as a computational tool dates back to the 1960’s. Gene
Golub and van Loan demonstrated its usefulness and feasibility in a wide variety of
applications.

Using both forms presented above—and following Jerry Uhl’s beautiful approach—
we show how SVD can be used as a tool for teaching Linear Algebra geometrically,
and then apply it in solving least-squares problems and in data compression.
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