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We solve systems of multivariate polynomial equations in order to under-

stand flexibility of three dimensional objects, including molecules.

Protein flexibility is a major research topic in computational chemistry.

A polypeptide backbone can be modeled as a polygonal line whose edges

and angles are fixed while dihedral angles can vary. Resultant methods have

been applied successfuly to this problem to determine flexibility [3], [4].

In this work we focus on non-generically flexible structures (like a geodesic

dome) that are usually rigid but can become flexible (continuously movable)

under certain relations. We compute the resultant of a polynomial system,

then analyze it to determine the conditions for flexibility.

0.1 Background

The subject has a long history: Cauchy (1812), Bricard (1896), Connelly

(1978) [2], [1].

In our previous work [5], [9], [10], we began a new approach to understand-

ing flexibility, using not numeric but symbolic computation. We describe

the geometry of the object with a set of multivariate polynomial equations,

which we solve with resultants. Given the resultant, we described [5] an al-

gorithm Solve that examines it and determines relations for the structure

to be flexible. We discovered in this way the conditions of flexibility for an



arrangement of quadrilaterals in Bricard [1], which models molecules. Here

we significantly extend the algorithm and the molecular structures.

0.2 Previous Result

We analyzed Bricard’s original formulation of the quadrilaterals problem [1]

in terms of three quadratic equations, with fifteen parameters and three vari-

ables. The resultant of this system has 5685 terms. The flexibility searching

algorithm Solve was successful in 2008 [9], [10]. We discovered an apparently

new flexible arrangement, which can be viewed at [6]. This was the first fully

algebraic approach, and applies as well for deriving Bricard’s flexible octa-

hedra. Moreover, the identical set of equations arises in other contexts, and

a variant gives the conformational equations of a protein or nucleic acid

backbone [3] [4].

0.3 New Result One

Next we considered the cylo-octane molecule, pictured in figure 1.

Chemically relevant solutions fix the (bond) angles between the paler

lines, introducing four constraint equations in the variables ⌧i. To save space,

we show one equation here; the other three are similar.
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Here ⌧i = tan(zi/2), t� = tan(�/2), and t↵i = tan(↵i/2).

We used the Dixon resultant to eliminate ⌧2, ⌧3, and ⌧4. An important

special case is when the basic quadrilateral (heavy black lines) is planar.

The equations then simplify quite a bit, and we can described all the solu-

tions of this case.

In the general case (three dimensional space) we have also made signif-

icant progress. Our Dixon-EDF techniques [7] discover hundreds of factors
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Fig. 1. Geometry of Octane Molecule.

of the resultant in about 30 hours of CPU time. The largest has 4872161

terms. Using some of these factors, we have verified some known chemical

arrangements. We seem to have found new interesting flexible cases. Work

is ongoing.

0.4 New Result Two

We have returned to the Bricard quadrilaterals. As mentioned above, they

are equivalent to Bricard’s flexbible octahedra [1]. In that paper he described

three essentially di↵erent ways the octahedra can be flexible.

Our previous work found many relations among the sides yielding flex-

ibility. However, apparently all of them were examples of two of Bricard’s

three cases. We have now modified the Solve algorithm to find examples

of the third case. This is a significant modification, as Solve can now work

hierarchically. In other words, the set of equations can be broken down into

stages, as in function composition. This is very promising for analyzing more

complex structures.
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