A New Criterion for the Existence of Real Zeros of Polynomial Systems

Jin-San Cheng
KLMM, Institute of Systems Science, AMSS, CAS (China)
jcheng@amss.ac.cn

Abstract

In both theory and practice, dealing with multiple zeros and clusters of zeroes or components with positive dimension of multivariate polynomial system is a challenging problem. We give a theoretical result to the problem.

Denote $\Sigma=\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right], f=\sum_{i=1}^{m} f_{i}^{2}, \mathfrak{S}_{f}=\{c \in \mathbb{C}: f-c$ is singular $\}$, $\Sigma_{r}=\left\{\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}, f-r\right\}$, where \mathbb{R}, \mathbb{C} are fields of real and complex numbers respectively.

Definition 1 We say a point P is attracted to a component Q of $V_{\mathbb{R}}\left(\Sigma_{\bar{r}}\right)\left(\bar{r} \in \mathfrak{S}_{f}\right)$ when $r \rightarrow \bar{r}$ (simply for P is attracted to a component Q without misunderstanding) if there exists a path C from P to a point $P^{\prime} \in Q$ such that the value of $r=f$ at point $R \in C$ decreases to \bar{r} when R moves from P to P^{\prime}.

We give a new criterion for numerically deciding whether a real point $P \in \mathbb{R}^{n}$ is attracted to a real zero (regular, multiple or a point on a component with positive dimension) of a polynomial system.

Theorem 1 Let $\Sigma=\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a real number $r_{0}>0$ such that for any $P \in \mathbb{R}^{n}$, if

$$
f(P)=\sum_{i=1}^{m} f_{i}^{2}(P)<r_{0}
$$

then P is attracted to a component of $V_{\mathbb{R}}(\Sigma) \neq \emptyset$.
Given two points $P, Q \in \mathbb{R}^{n}$ that are attracted to some real zeros of Σ, we give a criterion to judge whether both P, Q are attracted to the same real connected component of Σ.
Theorem 2 Let $\Sigma=\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Let $P_{1}, P_{2} \in \mathbb{R}^{n}$ be two points and $f\left(P_{i}\right)<r_{0}(i=1,2)$, where $f=\sum_{i=1}^{m} f_{i}^{2}$. They are both attracted to the same component of $V_{\mathbb{R}}(\Sigma)$ if and only if there exists a path $C\left(P_{1} P_{2}\right)$ such that for any point P on $C\left(P_{1} P_{2}\right)$,

$$
f(P) \leq \max \left\{f\left(P_{1}\right), f\left(P_{2}\right)\right\} .
$$

Keywords

polynomial system, real zeros, certified numerical solving

