Gröbner-Shirshov Basis and Reduced Words for Affine Weyl Group $\widetilde{A_n}$

Erol Yılmaz, Cenap Özel, Uğur Ustaoğlu Abant İzzet Baysal University (Turkey) yilmaz_e2@ibu.edu.tr

Abstract

Gröbner and Gröbner-Shirshov bases theories are generating increasing interest because of its usefulness in providing computational tools and in giving algebraical structures which are applicable to a wide range of problems in mathematics, science, engineering, and computer science. In particular, Gröbner and Gröbner-Shirshov bases theories are powerful tools to deal with the normal form, word problem, embedding problem, extensions of algebras, Hilbert series, etc. The true significance of Gröbner-Shirshov bases is the fact that they can be computed.

Gröbner-Shirshov basis and normal form of the elements were already found for the Coxeter groups of type A_n , B_n and D_n in [1]. They also proposed a conjecture for the general form of Gröbner-Shirshov bases for all Coxeter groups. In [2], the example was given to show that the conjecture is not true in general. The Gröbner-Shirshov bases of the other finite Coxeter groups are given in [3] and [4]. This paper is the first example of finding Gröbner-Shirshov bases for an infinite Coxeter group, defined by generators and defining relations.

The main purpose of this paper is to find a Gröbner-Shirshov basis and classify all reduced words for the affine Weyl group \widetilde{A}_n . The strategy for solving the problem is as follows.

Let R be the set of polynomials of the defining relations of A_n . Using Buchberger-Shirshov algorithm, we obtain a new set R' of polynomials including R. Then, by using the algorithm of elimination of leading words with respect to the polynomials in R', all the words in the group \tilde{A}_n are reduced to the explicit classes of words. After that, using combinatorial techniques, we compute the number of all reduced words with respect to these classes by means of a generating function. This generating function turns out to be same with the well known Poincaré polynomial of the affine Weyl group \tilde{A}_n . Therefore, by the Composition-Diamond Lemma the functions in R' form a Gröbner-Shirshov basis for the affine Weyl group \tilde{A}_n . Furthermore, one can easily see that this basis is in fact a reduced Gröbner-Shirshov basis.

Keywords

Affine Weyl Groups, Gröbner-Shirshov Basis, Composition-Diamond Lemma, q-binomials

References

- L.A. Bokut and L.S. Shiao, Gröbner-Shirshov bases for Coxeter groups, Comm. Algebra 29 (2001), 4305–4319.
- [2] Y.Chen and C. Liu, Gröbner-Shirshov bases for Coxeter groups I, arXiv:0910.0096v1.
- [3] D. Lee, Gröbner-Shirshov bases and normal forms for the coxeter groups E₆ and E₇, Advances in Algebra and Combinatorics, World Scientific, 2008, 243–255.
- [4] O. Svechkarenko, Gröbner-Shirshov bases for the Coxeter group E₈, Master Thesis, Novosibirsk State University, (2007).