Lagrange's Theorem of 1767(1769) for Computing Bounds on the Values of the Positive Roots of Polynomials

Alkiviadis G. Akritas* Adam W. Strzeboński ${ }^{\dagger}$ Panagiotis S. Vigklas ${ }^{\ddagger}$

January 20, 2016

Abstract

In our previous attempt to develop the best bound on the values of the positives roots of polynomials we totally missed - for reasons explained in the talk - Lagrange's ${ }^{1}$ theorem of 1767(1769).

In this paper we present this almost forgotten theorem by Lagrange, along with its interesting history and a short proof of it dating back to 1842 . Since the bound obtained by Lagrange's theorem is of linear complexity, in the sequel it is called "Lagrange Linear", or LL for short.

Despite its average good performance, LL is endowed with the weaknesses inherent in all bounds with linear complexity and, therefore, the values obtained by it can be much bigger than those obtained by our own bound "Local Max Quadratic", or LMQ for short.

To level the playing field, we incorporate Lagrange's theorem into our LMQ and we present the new bound "Lagrange Quadratic", or LQ for short, the quadratic complexity version of LL. It turns out that LQ is one of the most efficient bounds available since, at best, the values obtained by it are half of those obtained by LMQ.

Empirical results indicate that when LQ replaces LMQ in the Vincent-Akritas-Strzeboński Continued Fractions (VAS-CF) real root isolation method, the latter becomes measurably slower for some classes of polynomials.

[^0]
[^0]: *Department of Electrical and Computer Engineering, University of Thessaly, GR-38221, Volos, Greece, Tel.: +30 24211074886 , Fax: + 30 2421074997 , akritas@uth.gr
 \dagger Wolfram Research, 100 Trade Center Drive, Champaign, IL 61820, USA, adams@wolfram.com
 \ddagger Department of Electrical and Computer Engineering, University of Thessaly, GR-38221, Volos, Greece, pviglas@uth.gr
 ${ }^{1}$ Italian mathematician Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia, (25 January 1736-10 April 1813).

