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Aim and cope

Algebraic Topology was in its origin an area of pure mathematics with deep alge-
braic and geometrical roots, which has had an intense development in the last 120
years. However, in this period this discipline has become the core of several areas
of application-oriented research using algebraic topology methods in biology, statis-
tics, engineering, computer science. . . The growing number of these interactions has
given rise to the field of applied and computational algebraic topology.

This session is therefore mainly devoted to the computational aspects of this
emerging field in all possible directions which include, but are not restricted to:

• Computational algebraic topology

• Computational homological algebra

• Computational topological dynamics

• Coding theory and cohomology of groups

• Topological analysis and processing of digital images

• Topological analysis of data

• Stochastic algebraic topology
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• Topological pattern recognition

• Topological robotics

• Topology, computer science and parallelism
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New algorithms for computing homology of finite
topological spaces

Julián Cuevas-Rozo1, Laureano Lambán2, Ana Romero2, Humberto Sarria
Zapata1

We present some algorithms to compute the homology of finite topological spaces,
which have been implemented in the Kenzo system by combining techniques of point
reduction of finite topologies and discrete vector fields.

Keywords: Finite topological space, simplicial complex, discrete vector field, ho-
mology.

1 Introduction

A useful correspondence between finite topological spaces and finite simplicial com-
plexes is due to McCord [6], who assigns to each finite T0 space X a simplicial
complex K(X), called the order complex of X , in such a way that X and K(X) are
weak homotopy equivalent. In addition, McCord proves that weak homotopy types of
compact polyhedra are in one-to-one correspondence with those of finite topological
spaces.

In the last years the theory of finite topological spaces has experimented a new
impulse from works by Barmak and Minian [2] about the study of homotopy and
weak homotopy types, among many other results; for example, they show that el-
ementary collapses of compact polyhedra correspond to elimination of weak points
of finite T0-spaces. On the other hand, Minian [7] introduced a version of discrete
Morse theory for posets that satisfy the h-regularity property; the incidence graphs of
simplicial complexes are h-regular so that Minian’s results apply to any finite topo-
logical space coming from the simplicial context.

More recently, Cianci and Ottina [3] have generalized Minian’s results by defin-
ing an appropriate spectral sequence that converges to the homology of a finite T0-
space and showing that, in the particular case of quasicellular posets, the computation
is more tractable. In this work we present the implementation of some algorithms in
the Kenzo system [5] to compute topologial invariants of finite spaces. The Kenzo
system was developed by Francis Sergeraert and some coworkers and it allows the
user to compute homotopy and homology invariants of spaces by using their simpli-
cial versions. Our algorithms combine theoretical results by Barmak and Minian and
some previous ideas implemented in Kenzo, as the technique of discrete vector fields.



2 Computation of homology in finite spaces

Given a finite T0-space (X, T ) where X = {x1, . . . , xn}, the topogenous matrix
associated to X is the n-square matrix TX = [tij ] defined by

tij =

{
1 , xi ∈ Uj

0 , xi /∈ Uj

where Uj is the minimal open set that contains xj . There exists a well-known result
due to Alexandroff [1] providing a one-to-one correspondence between finite topo-
logical spaces and posets (the order relation is given by: xi 6 xj ←→ xi ∈ Uj).
In this way, the topogenous matrix can be regarded as the incidence matrix corre-
sponding to the order relation and Ux is the set of elements that are less than or equal
to x. Moreover, in the previous work [4] it is shown how to modify TX in order to
obtain an upper triangular permutation-similar matrix, such that it is associated to a
T0-space which is homotopically equivalent to X . For this reason, we assume that a
finite T0-space X has an enumeration of its elements in such a way that its topoge-
nous matrix is upper triangular. Usually a poset is represented by its Hasse diagram
H(X), given by edges (x, y) such that x < y and there does not exist z such that
x < z < y.

If X is a finite T0-space, the order complex K(X) associated to X is the simpli-
cial complex whose simplices are the nonempty chains of X . The simplicial com-
plex K(X) can be used to compute the topological invariants of X; the problem is
the size of K(X), which limits the possible computations on it. In fact, the McCord
morphism [6] provides a weak homotopy equivalence between X and K(X). Never-
theless, there exist methods that can be directly apply to finite spaces. For instance,
Stong [9] proved that by sequencially removing some particular points in a finite T0-
spaceX , a minimal space, which is homotopy equivalent toX , is obtained; this space
is called a core ofX . Moreover, to decide if two spaces have the same homotopy type
is equivalent to verify that their cores are homeomorphic.

With regard to homology, some results given in [2], [7] can help us to develop
algorithms for computing homology groups of some particular classes of finite topo-
logical spaces. A space X is called h-regular if for every x ∈ X , the order complex
K(Ûx) is homotopy equivalent to the sphere Sn−1, where n is the degree of x, that
is, the maximum of the cardinality of the chains of Ûx (Ûx denotes the subspace
Ux − {x} in the poset associated to X). In the same way, a cellular poset X is a
graded poset such that for every x ∈ X , Ûx has the homology of Sn−1, where n is
the degree of x.

We say that an edge (x, y) in the Hasse diagram H(X) is admissible if the sub-
poset Ûy − {x} is homotopically trivial. A poset is admissible if all its edges are
admissible. It can be proved that any admissible poset is h-regular and the face poset
X (K) (the poset given by the simplices ofK ordered by subset inclusion) of any reg-
ular CW-complex K (in particular, of any finite simplicial complex) is admissible.



Given a cellular poset X , its cellular chain complex (C∗, d) is defined in [7] by

Cp(X) =
⊕

deg(x)=p

Hp−1(Ûx) (1)

where Hk(Y ) denotes the k-homology group of Y .
Then, the following result [7, Theorem 3.7] provides a framework to compute

homology.
Theorem 1. Let X be a cellular poset and let (C∗, d) be its cellular chain com-

plex. Then H∗(C∗) = H∗(X).
In order to improve the efficiency, one can consider discrete vector fields, a basic

tool in homology computations. Let X be an h-regular poset and let H(X) be its
Hasse diagram. A matching M is a Morse matching provided that the directed graph
H(X) is acyclic and M is called admissible if all its edges are admissible. Corollary
3.15 in [7] asserts that the homology of a cellular poset X coincides with the ho-
mology of a complex (C̄∗, d̄), obtained by restricting only to those direct summands
of (1) corresponding to the set CM of critical points of M (those points that are not
incident to any edge in M ).

Theorem 2. Let X be a cellular poset with an admissible Morse matching M
defined on it. Then H∗(C̄∗) = H∗(X), where (C̄∗, d̄) is defined by

C̄p(X) =
⊕

deg(x)=p
x∈CM

Hp−1(Ûx). (2)

3 New algorithms and its implementation

In this section we are going to present some algorithms developed in Kenzo allow-
ing the user to make topological computations over finite spaces. In particular, we
provide algorithms to determine the core and the order complex of a space X . More-
over, we present an ongoing work for the computation of homology groups by using
discrete vector fields.

An element x is a beat point of the space X if either Ûx has a maximum or the
set {y ∈ X : x < y} has a minimum. A core of a finite T0-space X is a strong
deformation retract of X which has no beat points; in [9] it is proved that the core
can be obtained by removing one by one all the beat points of X .

Given an element xk ∈ X , we have implemented an algorithm to decide if xk
is a beat point by using the topogenous matrix TX = [tij ] as follows: consider the
sets Ik = {i : tik = 1, i 6= k} and Jk = {j : tkj = 1, j 6= k} and the numbers
Mk = max Ik, mk = min Jk; if either Ik = {i : ti,Mk

= 1} or Jk = {i : tmk,j = 1}
then xk is a beat point. Once we know that xk is a beat point, we can delete the k-th
row and column in order to obtain a smaller topogenous matrix that represents the
space X − {xk}; continuing this process, after a finite number of steps, we will have
the topogenous matrix of a core of X .



In [2] another kind of points that preserves the weak homotopy type is defined;
these points are called weak points and satisfy the following property: x is a weak
point if the link of x (the subspace consisting of all the elements comparable with
x, different to x) is contractible. Since the algorithm to find the core of a space is
already implemented, we have a procedure to decide if xk is a weak point: consider
the set Lk = {l 6= k : tlk = 1 or tkl = 1} and delete the r-th row and column from
TX for all r /∈ Lk in order to obtain the topogenous matrix TĈxk

of the link; then, the
matrix of the core of this link has size 1 if and only if xk is a weak point.

We can also compute the order complex of any finite topology making use of
its topogenous matrix. More exactly, if we consider the matrix NT obtained from
TX by substracting the identity matrix i.e. NT = TX − In, we have the following
proposition.

Proposition. [4] For each 0 6 k 6 n−1, the entry [Nk
T ]ij represents the number

of chains of k + 1 elements with xi as minimum and xj as maximum.
The above result allows us to find all the chains of elements in X from the suc-

cessive powers of NT , and therefore Kenzo is able to compute the order complex of
a finite space.

With regard to homology, in order to define an admissible Morse matching on
H(X), we have modified the algorithm proposed in [8, Section 5.2] (for comput-
ing admissible discrete vector fields for digital images), with the purpose it can be
applied to any cellular space. In addition, the involved calculations to verify the cel-
lularity condition improve the efficiency by means of the sequential construction of
the discrete vector field. At first instance, we consider those edges (x, y) where the
core of Ûx − {y} is a single point (in this case, Ûx − {y} is contractible), which is a
stronger condition than being homotopically trivial, and combine this with the modi-
fied algorithm in [8] in order to obtain admissible vectors up to degree p − 1. Then,
we can compute all the homology groups Hp−1(Ûx) appearing in (2) by applying
Theorem 2 to X := Ûx together with those vectors contained in it. In this manner,
the Kenzo system uses in a recursive way Theorem 2 and the modified algorithm in
[8] to construct an admissible discrete vector field and also to check the cellularity
condition in each step.

It should be mentioned that the class of finite topological spaces to which these
results can be applied has been extended in [3] to quasicellular spaces. The idea is to
replace the degree function by the definition of a morphism ρ : X −→ N0 satisfying
some particular conditions, in such a way that Theorems 1 and 2 are still valid and
our algorithms can also be applied.
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Maximal Stable Homological Regions and AT-models∗

H. Molina-Abril1, P. Real1, F. Díaz-del-Río1

Keywords: Maximal Stable Homological Regions, Homological Segmentation, AT-
model

Let X be a finite cell complex. Working with Z/2Z as the ground ring, we con-
struct from an AT-model [1] a partition of X as a set of cells, called a homological
segmentation of X . Its regions are strongly related to the specification of the homo-
logical holes of X as set of cells in which paths cutting or delineating them live. This
method can be curiously seen as a purely homological version of the computer vision
procedure named maximally stable extremal regions (MSER) proposed by Matas et al
[2], which is used as a method of blob detection in digital images. In this sense, we
show some experiments with three-dimensional digital objects in order to analyze the
mathematical notion of homological segmentation within the context of topological
object recognition.
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Computing Homotopy Information of 4D Digital Objects in
Parallel∗

P. Real1, F. Díaz-del-Río1, H. Molina-Abril1, D. Onchis-Moaca2, S.
Blanco-Trejo1

Keywords: four-dimensional digital object, primal-dual abstract cell complex, ho-
mology, homotopy,

Let X ⊂ I be a digital object embedded in a 4-dimensional digital image I .
Working with a primal-dual abstract cell complex (pACC, for short) version pACC(X)
of X , we design an algorithm in which elementary homotopy operations can be ex-
haustively applied to pACC(X) in order to obtain a smaller pACC (in terms of cells
and connexions between them) whose cells are strongly related to the integer alge-
braic homological generators of pACC(X). An ambiance-based parallel version of
this previous algorithm can be designed from which homology and homotopy Infor-
mation of X can be derived in a straightforward manner.
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Reductions of monomial resolutions for the computation of
high dimensional simplicial homology

E. Sáenz-de-Cabezón1

Abstract

In this paper we propose an algorithm for the computation of monomial
resolutions that can be useful for obtaining the reduced homology of simplicial
complexes. The algorithm is based on the reduction of known resolutions us-
ing the support of smaller ones. We start with a combinatorial resolution that
is highly non minimal but easy to obtain, such as Taylor resolution. On the
other hand, we compute in a combinatorial way the support of a smaller reso-
lution (without computing the differentials in this resolution). In this step we
use Mayer-Vietoris tree algorithm to obtain the support of a mapping cone res-
olution. Finally the last step consists on reducing the differential of the Taylor
resolution using the information in the support of the mapping cone resolution
to have smaller matrices, from which we compute the homology of the given
simplicial complex.

Usually, a simplicial complex is given by a list of its facets. It is impor-
tant to note that we use the ideal generated by the complements of the facets
of the simplicial complex, which is equivalent to use the ideal generated by
the minimal nonfaces, however, passing from one representation to the other
is computationally demanding. Due to the size of the matrices involved in this
process, our algorithm is particularly useful for simplicial complexes of high di-
mensions, since the matrices in the usual algorithm grow exponentially in terms
of dimension of the complex, and those in our approach grow exponentially in
terms of the number of facets of the complex.
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