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Aim and cope

Algebraic differential and difference equations and systems of such equations arise
in many areas of mathematics, natural sciences and engineering. One can say that
difference equations relate to differential equations as discrete mathematics relates to
continuous mathematics. Differential / difference computer algebra studies algebraic
differential / difference equations in a constructive way that extends the methods and
algorithms of commutative algebra and algebraic geometry. The main goal of the
session is to consider the computational problems in differential/difference algebra to
explore new constructive ideas and approaches oriented toward various applications.

Expected topics of presentations include (but are not limited to):

• Differential and Difference Equations and Systems

• Differential and Difference Gröbner (Standard) and Involutive Bases

• Differential and Difference Characteristic Sets

• Triangular Decompositions of Differential and Difference Systems

• Differential and Difference Elimination

• Algorithmic Generation of Finite Difference Approximations to PDEs

• Consistency and Stability Analysis of Finite Difference Approximations

• Difference-Differential Polynomials and Systems

• Software Packages for Differential and Difference Algebra

• Applications of Differential and Difference Algebra in Mathematics and Natu-
ral Sciences
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Bounds for Proto-Galois Groups
Eli Amzallag1, Andrei Minchenko2, Gleb Pogudin3

In studying linear differential equations of the type Y ′ = AY,A ∈ Mn(C(t)),
it is often important to investigate the algebraic or differential relations among the
solutions. The benefit of obtaining such data is that it can be used to anticipate the
computational power needed to express solutions. In [4], Kolchin made this precise
by establishing a link between how solutions to Y ′ = AY might be expressed and
different properties of the corresponding differential Galois group, an object he con-
structed exactly to capture relations among the solutions. These differential Galois
groups can be realized as linear algebraic groups. In fact, many algorithms to com-
pute them have been developed since Kolchin’s foundational discussions of these
results in [4] and [5].

Kovacic [6] proposed an algorithm for second-order differential equations. Com-
point and Singer also provided an algorithm in [1] that can be applied to equations
of any order, if it is known in advance that the differential Galois group is reduc-
tive. A general algorithm for computing the differential Galois group was designed
by Hrushovski [3]. Making this algorithm practical and understanding its complex-
ity is an important challenge. Hrushovski conjectured that none of its steps would
“require more than doubly exponential time.” In [2], Feng expounded on the details
of Hrushovski’s original algorithm with differential-algebraic terminology and im-
proved the algorithm. He also formally defined an object computed in the first step
of the algorithm, a proto-Galois group. Such a group is an algebraic group, con-
tains the differential Galois group, and the computation of it allows one to reduce the
computation of the differential Galois group to the hyperexponential case, which is
addressed by the algorithm in [1]. In Hrushovski’s algorithm, a proto-Galois group is
computed by making an ansatz based on an a priori bound for the degrees of defining
polynomials of the group. Thus, such a bound is an essential part of the algorithm.
Moreover, it also needed for understanding the complexity of the algorithm.

In [2], Feng showed that there exists a proto-Galois group defined by polynomials
of degree at most sextuply exponential in n. Sun [7] utilized triangular sets in place
of the Groebner bases used by Feng. This different choice of representation for a
group leads to a bound triply exponential in n.

We adopt a different emphasis from both Feng and Sun. Instead of focusing
on equations for the group’s corresponding radical ideal, we take a more geometric
approach and focus on equations that define a proto-Galois group as an algebraic
variety in GLn(C). In conjunction with exploiting the structural theory of algebraic
groups, this approach allows us to further improve on Feng’s bound and thereby
improve the algorithm. We obtain an explicit bound of the form nO(n4).



We also assess the practicality of using Hrushovski’s algorithm for n = 2, 3, the
cases that arise most often in applications. We expect to determine tighter bounds
than our general bound suggests for these cases. In fact, we have established a tighter
bound for n = 2, for which our final bound is 6. We will discuss how we obtained this
result. We will also discuss work in progress for n = 3 and extending our methods
for n = 2 to those cases.

Keywords: Algebraic Geometry, Group Theory and Generalizations, Ordinary Dif-
ferential Equations
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The global dimension of the algebras of integro-differential
operators and their factor algebras

V. V. Bavula1

We discuss some homological properties of the algebras of integro-differential
operators and their factor algebras. In particular, their global dimension and weak
homological dimensions are found.

Keywords: the algebra of integro-differential operators, the weak homological di-
mension, the global dimension
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Effective calculation in studying the Jacobian Conjecture
Paweł Bogdan1

In 1930s Keller stated a problem which is known nowadays as the Jacobian Con-
jecture. In [1] Crespo and Hajto gave an equivalent condition to this Conjecture in a
language of Picard-Vessiot theory. They also gave an effective criterion to determine
whether a given polynomial map is an automorphism. Their result was improved in
[2].

The work on this improvement led me to propose a method to invert polynomial
maps F = (F1, ..., Fn) on a field K such that, for every i ∈ {1, ..., n} Fi = Xi+Hi,
whereHi has a vanishing order at least 2. My algorithm does not perform derivatives
neither division so it can be applied to maps over finite fields. A description of the
algorithm can be found in [3] and an estimation of its computational complexity can
be found in [4].

In my talk I will present the algorithm and the estimation of its complexity. I will
also discuss effective implementations of it on various Computer Algebra Systems.

Keywords: polynomial automorphisms, Jacobian Conjecture, algorithmics
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Formal Power Series Solutions of First Order Autonomous
Algebraic Ordinary Differential Equations∗

Sebastian Falkensteiner1, J.Rafael Sendra2

Let K be an algebraically closed field of characteristic zero. Given a first order
autonomous algebraic ordinary differential equation, i.e. an equation of the form

F (y, y′) = 0 with F ∈ K[y, y′],

we present a method to compute all formal power series solutions. Furthermore, by
choosing for instance K = C, the computed formal power series solutions are indeed
convergent in suitable neighborhoods.

We follow the algebro-geometric approach by Feng and Gao [2] and consider y
and y′ as independent variables, let us say y and z. Then F implicitly defines an
affine plane curve where local parametrizations can be computed, see e.g. [3]).

We show a sufficient and necessary condition on such a local parametrization to
obtain a formal power series solution of the original differential equation by substitu-
tion. Moreover, we present a polynomial-time algorithm for computing all the initial
tuples, i.e. the first two coefficients of a formal power series, which can be extended
to a solution. By choosing a particular initial tuple, a second algorithm determines
the coefficients of all solutions starting with this initial tuple up to an arbitrary order.

A full version [1] has been submitted to a journal and is online available.

Keywords: Algebraic autonomous differential equation, algebraic curve, local parametriza-
tion, formal power series solution
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Dimension Polynomials and the Einstein’s Strength of Some
Systems of Quasi-linear Algebraic Difference Equations

Alexander Evgrafov1, Alexander Levin2

We present a difference algebraic technique for the evaluation of the Einstein’s
strength of quasi-linear partial difference equations and some systems of such equa-
tions. Our approach is based on the properties of difference dimension polynomials
that express the Einstein’s strength and on the characteristic set method for comput-
ing such polynomials. The obtained results are applied to the comparative analysis
of difference schemes for some chemical reaction-diffusion equations.

Keywords: Difference dimension polynomial, Autoreduced set, Einstein’s strength

1 Preliminaries

LetK be an inversive difference field with a basic set of automorphisms σ = {α1, . . . , αm}
and Γ the free commutative group generated by σ. If γ = αk11 . . . αkmm ∈ Γ, then the
number ord γ =

∑m
i=1 |ki| is called the order of γ; if r ∈ N, we set Γ(r) = {γ ∈

Γ | ord γ ≤ r}. In what follows we denote the set {α1, . . . , αm, α
−1
1 , . . . , α−1m } by

σ∗ and use the prefix σ∗- instead of “inversive difference”. A reflexive difference
ideal will be refer to as a σ∗-ideal.

Let R = K{y1, . . . , yn}∗ be the ring of σ∗-polynomials in n σ∗-indeterminates
over K. (As a ring, R = K[{γyi | γ ∈ Γ, 1 ≤ i ≤ n}]) An n-tuple ξ = (ξ1, . . . , ξn)
with coordinates in some σ∗-overfield K ′ of K is said to be a solution of the set of
σ∗-polynomials F = {fj | j ∈ J} ⊆ R or a solution of the system of algebraic
difference equations

fj(y1, . . . , yn) = 0 (j ∈ J) (1)

if F is contained in the kernel of the natural difference K-homomorphism (“sub-
stitution”) R → K ′ (yi 7→ ξi). The system (1) is called prime if the σ∗-ideal P
generated by the set F in R (it is denoted by [F ]∗) is prime. In this case the quotient
field L of R/P has a natural structure of a finitely generated σ∗-field extension of
K: L = K〈η1, . . . , ηn〉∗ where ηi is the canonical image of yi in L. (As a field,
L = K({γ(ηi) | γ ∈ Γ, 1 ≤ i ≤ n}).) As it is proven in [3, Section 6.4], there exists
a polynomial φη|K(t) ∈ Q[t] such that

φη|K(r) = tr.degK K({γηj |γ ∈ Γ(r), 1 ≤ j ≤ n}) for all sufficiently large
r ∈ Z.



This polynomial is called the σ∗-dimension polynomial of the σ∗-field extension
L/K associated with the system of σ∗-generators η = {η1, . . . , ηn}. It is also said
to be the σ∗-dimension polynomial of system (1). We refer to [3, Chapter 6] and
[4, Chapters 4 and 7] for properties, invariants, and methods of computation of σ∗-
dimension polynomials.

Let us consider a system of equations in finite differences with respect to un-
known functions of m real (or complex) variables x1, . . . , xm that induces a prime
system of algebraic difference equations. (Them basic automorphisms are defined by
the shifts of the arguments: for any function g(x1, . . . , xm), αi : g(x1, . . . , xm) 7→
g(x1, . . . , xi−1, xi+hi, xi+1, . . . , xm) where h1, . . . , hm are some real (or complex)
numbers.) It is shown in [4, Section 7.7] that the σ∗-dimension polynomial of such
a system expresses its strength in the sense of A. Einstein. This important character-
istic of the system is a difference counterpart the concept of strength of a system of
PDEs introduced in [1], see [4, Section 7.7] for details.

2 Autoreduced sets of quasi-linear σ∗-polynomials.
Computation of the Einstein’s Strength

With the above notation, let ΓY = {γyi|γ ∈ Γ, 1 ≤ i ≤ n} ⊆ R; the elements of
this set are called terms. The order ordu of a term u = γyj is defined as the order of
γ.

In what follows we consider the set Zm as the union of 2m orthants Z(m)
j (1 ≤

j ≤ 2m), that is, Cartesian products of m factors each of which is either N =
{k ∈ Z, k ≥ 0} or Z̄− = {k ∈ Z, k ≤ 0}. We set Γj = {αk11 . . . αkmm ∈
Γ | (k1, . . . , km) ∈ Z(m)

j } and (ΓY )j = {γyi | γ ∈ Γj , 1 ≤ i ≤ n}, so that
ΓY =

⋃2m

j=1(ΓY )j . A term v ∈ ΓY is called a transform of a term u ∈ ΓY if u
and v belong to the same set (ΓY )j and v = γu for some γ ∈ Γj . We also fix an
orderly ranking on ΓY , that is, a well-ordering ≤ of ΓY such that
(i) If u ∈ (ΓY )j and γ ∈ Γj , then u ≤ γu; (ii) If u, v ∈ (ΓY )j , u ≤ v and γ ∈ Γj ,
then γu ≤ γv; (iii) If u, v ∈ ΓY and ordu < ord v, then u < v.

If A ∈ R, then the greatest (with respect to ≤) term in A is called the leader of
A; it is denoted by uA. If d = deguA A and A is written as a polynomial in uA, then
the coefficient of udA is called the initial of A and is denoted by IA. If d = 1 then the
σ∗-polynomial A is called quasi-linear.

Let A,B ∈ R. The σ∗-polynomial A is said to be reduced with respect to B if
A does not contain any power of a transform γuB whose exponent is greater than
or equal to deguB B. If A ⊆ R \ K, then a σ∗-polynomial A ∈ R, is said to be
reduced with respect to A if A is reduced with respect to every element of A. A set
A ⊆ R is said to be autoreduced if either A = ∅ or A

⋂
K = ∅ and the elements of

A are reduced with respect to each other. As it is shown in [3, Section 3.4], distinct
elements of an autoreduced set A have distinct leaders and every autoreduced set is



finite. Furthermore, if A ∈ R, then there exists a σ∗-polynomial B ∈ R such that
B is reduced with respect to A and IB ≡ A(mod[A]∗) where I is a product of
transforms of initials of elements of A. (We say that A reduces to B modulo A.)

Let A,B ∈ R. We say that A has higher rank than B and write rkA > rkB if
either A /∈ K, B ∈ K, or uB < uA, or uA = uB and deguA B < deguA A. If uA =
uB and deguA A = deguA B, we say that A and B have the same rank and write
rkA = rkB. Assuming that elements of an autoreduced set in R are arranged in the
order of increasing rank, we compare such sets as follows: ifA = {A1, . . . , Ap} and
B = {B1, . . . , Bq}, then A is said to have lower rank than B if either there exists
k ∈ N, 1 ≤ k ≤ min{p, q}, such that rkAi = rkBi for i < k and rkAk < rkBk,
or p > q and rkAi = rkBi for i = 1, . . . , q.

By [3, Proposition 3.4.30], every nonempty family of autoreduced sets contains
an autoreduced set of lowest rank. If P is an ideal ofR, then an autoreduced subset of
P of lowest rank is called a characteristic set of P . Basic properties of characteristic
sets are described in [4, Section 2.4]. In particular, it is shown that if P is generated
by the σ∗-polynomials in the left-hand sides of a prime system of difference equations
(1) andA is a characteristic set of P , then the σ∗-dimension polynomial of the system
is determined by the leaders of elements of A. Therefore, the strength of a prime
system of difference equations is determined by a characteristic set of the associated
σ∗-ideal in the ring of σ∗-polynomials.

An autoreduced subsetA ofR consisting of quasi-linear σ∗-polynomials is called
coherent if it satisfies the following two conditions: (i) If A ∈ A and γ ∈ Γ, then
γA reduces to zero modulo A; (ii) If A,B ∈ A and v = γ1uA = γ2uB is a com-
mon transform of uA and uB , then the σ∗-polynomial (γ2IB)(γ1A)− (γ1IA)(γ2B)
reduces to zero modulo A.

The following two statements are the main results that allow one to evaluate the
Einstein’s strength of difference equations that arise from difference schemes for
some chemical reaction-diffusion equations arising in many problems of transfusion,
see [2].

Theorem 1. If a characteristic set A of some σ∗-ideal in R consists of quasi-linear
σ∗-polynomials, thenA is a coherent autoreduced set. Conversely, ifA is a coherent
autoreduced set consisting of quasi-linear σ∗-polynomials, then it is a characteristic
set of [A]∗.

Theorem 2. Let 4 be a preorder on R such that A1 4 A2 iff uA2 is a transform
of uA1 . Let A be a quasi-linear σ∗-polynomial and ΓA = {γA | γ ∈ Γ}. Then the
σ∗-ideal [A]∗ is prime and all minimal (with respect to 4) elements of ΓA form a
characteristic set of [A]∗.

Using the last two theorems and the expression of the σ∗-dimension polynomial
given in [3, Theorem 6.4.8], we obtain σ∗-dimension polynomials that express the
Einstein’s strength of difference schemes for some quasi-linear reaction-diffusion
PDEs (e. g., the Murray’s equation and its particular cases), the system of PDEs



of chemical reaction kinetics with the diffusion phenomena and the mass balance
PDEs of chromatography. The results of the corresponding computations allow one
to do comparative analysis of alternative difference schemes from the point of view
of their strength.

This work was supported by the NSF grant CCF-1714425.
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Computation of differential Chow forms for
ordinary prime differential ideals

Wei Li1, Ying-Hong Li1

The differential Chow form is an important associated form for a prime differen-
tial ideal or an order-unmixed differential cycle [1]. For example, it can characterize
invariants of its corresponding prime differential ideal, such as the differential dimen-
sion, order, leading differential degree and differential degree. So it is desirable to
devise efficient algorithms to compute the differential Chow form. In this talk, we
propose algorithms for computing differential Chow forms for ordinary prime dif-
ferential ideals which are given by characteristic sets. The algorithms are based on
an optimal bound for the order of a prime differential ideal in terms of a character-
istic set under an arbitrary ranking, which shows the Jacobi bound conjecture holds
in this case. That is, ord(sat(A)) ≤ Jac(A). Apart from the order bound, we also
give a Bézout type degree bound for the differential Chow form. The computational
complexity of the algorithms is single exponential in terms of the Jacobi number, the
maximal degree of the differential polynomials in a characteristic set, and the number
of variables.

Keywords: Differential Chow form, Jacobi bound, Single exponential algorithm
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Group Classification of ODEs: a Challenge to Differential
Algebra?

Dmitry Lyakhov1, Vladimir Gerdt2, Dominik Michels3

One of the most prominent application of differential algebra is algebraic analy-
sis of determining system of partial differential equations for infinitesimal symmetry
generators. It provides receipts and software tools to compute the integrability con-
ditions, to simplify (e.g. to interreduce) the system, to determine a dimension of its
space, to construct the abstract Lie algebra for the symmetry generators, to apply
the Lie symmetry algebra for ordinary differential equations (ODEs) to detect their
linearizability [1] by point transformations. The problem of group classification for
differential equations was first posed by the Norwegian mathematician Sophus Lie,
the inventor of the concept and theory of continuous groups and their application to
differential equations [2]. Lie began to solve the group classification problem for the
second-order ordinary equation y′′ = f(x, y, y′) and proved that this class of equa-
tions admits no more than an eight-parameter transformation group on the plane with
the maximum size of the group is reached iff the equation is linear or equivalent to
the linear one. The Russian mathematician Lev Ovsyannikov [3] proposed the equiv-
alence transformation (ET) method for group classification and later [4] applied it to
the ODE of form y′′ = f(x, y). The ET method is based on the fact that equivalent
equations admit similar groups and ET is a similarity transformation. The problem
of group classification admits reformulation as an elimination problem in differential
algebra. However, even reproduction of the results, obtained in [4] by hand com-
putation, seems to be too hard for the modern differential elimination tools. In the
talk we discuss both the pure mathematical and computational issues of the group
classification for ODEs.

Keywords: Differential Algebra, Group Classification, Ordinary Differential Equa-
tions
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Power series solutions of systems of nonlinear PDEs

Daniel Robertz1

One of the first existence theorems for a large class of PDEs is the Cauchy-
Kovalevskaya Theorem [5]. In work of C. Méray and C. Riquier in the second half
of the 19th century a generalization of the Cauchy-Kovalevskaya Theorem was ob-
tained. Riquier’s Existence Theorem asserts the existence of analytic solutions for
the class of orthonomic and passive systems of PDEs [7, Chap. VIII]. J. M. Thomas
[9] showed that polynomially nonlinear systems of PDEs can be decomposed into
finitely many so-called simple differential systems, each of which can be solved for
the highest ranked derivatives to obtain orthonomic and passive systems. Building
also on work by M. Janet [4], the algorithmic details of the Thomas decomposition
method have been recently developed [1], [2], [6], [8].

In this talk we explain how the differential Thomas decomposition can be used to
find all power series solutions around sufficiently generic points of a system of non-
linear partial differential equations. Further applications of the Maple package for
computing Thomas decompositions [3], e.g. to differential elimination, are demon-
strated as well. The talk is based on joint work with Vladimir Gerdt and Markus
Lange-Hegermann.

Keywords: completion to involution, Thomas decomposition, differential elimina-
tion
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