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Aim and cope

The algebraic/symbolic treatment of differential equations is a flourishing field, branch-
ing out in a variety of subfields committed to different approaches. In this session,
we want to give special emphasis to the operator perspective of both the underly-
ing differential operators and various associated integral operators (e.g. as Green’s
operators for initial/boundary value problems).

In particular, we invite contributions in line with the following topics:

• Symbolic Computation for Operator Algebras

• Factorization of Differential/Integral Operators

• Linear Boundary Problems and Green’s Operators

• Initial Value Problems for Differential Equations

• Symbolic Integration and Differential Galois Theory

• Symbolic Operator Calculi

• Algorithmic D-Module Theory

• Rota-Baxter Algebra

• Differential Algebra

• Discrete Analogs of the above
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• Software Aspects of the above
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The Jacobian algebras, their ideals and automorphisms

V. V. Bavula1

The talk is about general properties of the Jacobian algebras (in arbitrary many
variables), classifications of their ideals, an explicit description of their groups of
automorphisms. Explicit values of their global and weak dimensions are found.

Keywords: Jacobian algebra, group of authomorphisms, global and weak dimen-
sion

1School of Mathematics and Statistics,
University of Sheffield, UK
v.bavula@sheffield.ac.uk
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On the Parameter Estimation Problem for
Integro-Differential Models∗

François Boulier1

This talk summarizes a joint work with modelers and biologists [2]. It deals
with the parameter estimation problem for dynamical systems presented by explicit
systems of polynomial integro-differential equations (IDE).

Models formulated by means of IDE are very interesting because they are much
more expressive than their ODE counterparts: they naturally permit to express de-
lays (IDE are viewed as continuous delay differential equations in [9]), to take into
account the age of populations (typical motivation for integral equations in popula-
tion dynamics), to incorporate curves obtained by interpolating experimental data as
integral kernels (an important feature for modeling processes interacting with com-
plicated environment) and to handle non smooth (e.g. piecewise defined) inputs. See
[6] and references therein.

The rest of this abstract is essentially borrowed from the introduction of [2].
IDE modeling raises, in turn, the problem of estimating parameters from experi-

mental data. This talk focuses on a particular method, called the “input-output (IO)
ideal” method, which is available in the nonlinear ODE case. Its principle consists
in computing an equation (called the “IO equation”) which is a consequence of the
model equations and only depends on the model inputs, outputs and parameters. In
the nonlinear ODE case, it is known since [8] that it can serve to decide the identifia-
bility property of the model. It is known since [7] that it can also be used to determine
a first guess of the parameters from experimental data. This first guess may then be re-
fined by means of a nonlinear fitting algorithm (of type Levenberg-Marquardt) which
requires many different numerical integrations of the model.

Designing analogue theories and algorithms in the IDE case is almost a com-
pletely open problem. The talk presents two contributions:

1. a symbolic method for computing an IO equation from a given nonlinear IDE
model. This method is incomplete but it is likely to apply over an important
class of models that are interesting for modelers. It relies on the elimination
theory for differential algebra [4, 5] and on an algorithm for integrating differ-
ential fractions [3];

∗This work has been supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026
SYMBIONT



2. an algorithm for the numerical integration of IDE systems, implemented within
a new open source C library [1]. The library does not seem to have any avail-
able equivalent. Our algorithm is an explicit Runge-Kutta method which is
restricted to Butcher tableaux specifically designed in order to avoid solving
integral equations at each step.

Keywords: nonlinear integro-differential, input-output equation, parameter esti-
mation, numerical integration
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Parametric b-functions for some hypergeometric ideals∗

Francisco-Jesús Castro-Jiménez1, Helena Cobo Pablos1

We denote by D := C[x1, . . . , xn, ∂1, . . . , ∂n] the Weyl algebra over the field C.
The aim of this note is to study the b–function associated with a class of hyperge-

ometric ideals HA(β) ⊆ D following [9, Section 5.1]. Let us recall the definition of
HA(β). Given A = (aij) a d× n matrix of rank d with integer coefficients, we first
consider the associated toric ideal IA ⊂ C[∂] := C[∂1, . . . , ∂n]

IA := C[∂]{∂u − ∂v | u, v ∈ Nn, Au = Av}.

Moreover we consider the Euler operators, for 1 ≤ i ≤ d

Ei = ai1x1∂1 + · · ·+ ainxn∂n.

Then for any parameter vector β ∈ Cd the hypergeometric ideal is defined as

HA(β) = D · IA +
∑

1≤i≤d
D(Ei − βi).

Given a holonomic left ideal I in D and a nonzero weight vector ω ∈ Rn, we
denote in(−ω,ω)(I) ⊂ D the initial ideal of I with respect to the filtration (Fp)p∈R
induced on D by the vector (−ω, ω) ∈ R2n. The C–vector space Fp is defined as
follows:

Fp := C{xα∂β | − ωα+ ωβ ≤ p} for p ∈ R.

Kashiwara has introduced in (On the Holonomic Systems of Linear Differential
Equations, II. Inventiones Math. 49, 121–135, 1978) the b–function bI,ω(s) associ-
ated with the pair (I, ω), as the monic generator of the ideal

in(−ω,ω)(I) ∩ C[s] (1)

where s :=
∑n

i=1 ωixi∂i. It is proven in loc. cit. Theorem 2.7 that the ideal in (1)
is nonzero. In this note we follow the presentation and notations of [9, §5] on this
subject.

The polynomial bI,ω(s) is called the b–function of the holonomic ideal I ⊂ D
with respect to the weight vector ω.

Previous b-functions are closely related to the classical notion of Bernstein poly-
nomial (also called Bernstein-Sato polynomial) bf (s) associated with a given nonzero

∗Partially supported by MTM2013-40455-P, MTM2016-75024-P and Feder



polynomial f ∈ C[x] (see e.g. [9, Lemma 5.3.11]). Bernstein polynomials have been
introduced in [2] and [8] and represent fundamental invariants in singularity theory.
There are several algorithms for computing Bernstein polynomials. Some of them are
described in [5], [6], [4], and [1]. These and other algorithms have been implemented
in the computer algebra systems Asir, Macaulay2 and Singular among others.
Nevertheless, in practice bf (s) is hard to compute even in the case of a polynomial
f in two variables. In [3] the authors propose the algorithm checkRoot which,
given a rational number α checks if it is a root of the Bernstein polynomial bf (s),
and computes its multiplicity.

We simply denote bω,β(s) := bHA(β),ω(s). We refer to [9] for the main results on
hypergeometric ideals and the corresponding b–functions bω,β(s) for generic param-
eters w and β (see below for details). In [7] the authors describe bounds for the roots
of bω,β(s).

In this paper we restrict ourselves to matrices of the form A = (1, p, q) with
integers 1 < p < q and p and q coprime. The first step is to describe the Gröbner
fan of the toric ideal IA, as defined in (T. Mora; L. Robbiano, The Gröbner fan of an
ideal. J. Symbolic Comput. 6(2-3) 183–208 (1988)) and in (B. Sturmfels, Gröbner
bases and convex polytopes. University Lecture Series, 8. Providence RI, 1995.) We
define a finite family of disjoint regions R(k)

i ⊂ R3 which are the intersection of two
half-spaces with the line (1, p, q)R in common (see Example ). The possible integers
k and i depend on the extended Euclidean division of q over p. We prove an equality

R3 =
⋃
i,k R

(k)
i such that for each ω ∈ R(k)

i , the initial ideal inω(IA) is a monomial
ideal and it is independent of ω.

In [9, Proposition 5.1.9.] there is a description of bω,β(s) for Zariski generic β
and generic ω In (M.C. Fernández-Fernández, Soluciones Gevrey de sistemas hiper-
geométricos asociados a una curva monomial lisa. DEA, U. Sevilla, 2008.), the
polynomial bω,β(s) is described for ω = (1, 0, 0) and β generic. Our main result is:

Theorem 0.1. Given R(k)
i , a facet of the Gröbner fan of IA, there is a proper Zariski

closed set C(k)
i ⊂ R

(k)
i such that if ω ∈ R(k)

i \ C
(k)
i and β is generic the b–function

is
bω,β(s) =

∏
α∈F (k)

i

(s− α)

for certain finite set F (k)
i ⊆ C. Moreover, if ω ∈ C(k)

i or β is non-generic, the right
hand side of previous equality gives a multiple of the b–function.

The setF (k)
i is explicitly described in terms of standard monomials of in(−ω,ω)(HA(β)).

In the following example we sum up our results. Consider the matrix A = (1, 3, 5).
The Gröbner fan of IA ⊂ C[∂x, ∂y, ∂z] consists of seven facets. Let us focus in one
of them, namely R(2)

1 = {ω ∈ R3 | 2ω1 + ω2 > ω3, ω1 + 3ω2 < 2ω3}. For any
ω ∈ R(2)

1

inω(IA) = D
(
∂3
x, ∂

2
x∂y, ∂x∂z, ∂

2
z

)
.



Any complex number β 6= 2 is generic, and we have that

in(−ω,ω)(HA(β)) = D
(
∂2
x, ∂x∂z, ∂

2
z , E − β

)
.

We have C(2)
1 = R

(2)
1 ∩ {3ω1 + 4ω2 = 3ω3}. The b–function for ω ∈ R(2)

1 \ C
(2)
1

and β 6= 2 is

bω,β(s) = (s− β

3
ω2)(s− ω1 −

β − 1

3
ω2)(s− β − 5

3
ω2 − ω3).

If ω ∈ C(2)
1 and β 6= 2, the polynomial

(s− β

3
ω2)(s− ω1 −

β − 1

3
ω2)

is a multiple of the b–function. With Singular we check that in this case we obtain
the true b–function and not just a multiple. If ω ∈ R

(2)
1 but β = 2 we have the

following multiple of the b–function: (s− 2
3ω2)(s− ω1 − 1

3ω2)(s− 2ω1)(s+ ω2 − ω3) if ω 6∈ C(2)
1

(s− 2
3ω2)(s− ω1 − 1

3ω2)(s− 2ω1) otherwise.

Again, with Singularwe check that this is indeed bω,2(s). However, if we consider
the region R(2)

2 = {ω ∈ R3 | ω1 + 3ω2 > 2ω3, 3ω3 > 5ω2}, we have β = 1, 2, 4, 7

as non-generic values, and for ω ∈ R(2)
2 and β = 2 we give a polynomial with five

roots, and only four of them are the roots of bω,2(s). If ω ∈ R3 \
⋃
i,k R

(k)
i the study

of bω,β(s) is a work in progress.

Keywords: b–function, hypergeometric ideal.
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Reduction operators and completion of linear rewriting
systems

Cyrille Chenavier1

In rewriting theory, the confluence property guarantees the coherence of calculi.
In this talk, we study the confluence property for linear rewriting systems defined by
reduction operators. We use this approach to provide a lattice description of obstruc-
tions to confluence. We deduce lattice formulations of the completion procedure as
well as a method for extending linear rewriting systems so that they become conflu-
ent.

Keywords: Reduction operators, Lattice structure, Confluence, Completion proce-
dure

1Computer science
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Observability and orders of derivatives of data

Sette Diop1

Observability of nonlinear systems has been approached using differential alge-
braic geometry with quite interesting breakthroughs in this systems theory notion.
Among detailed aspects to be studied is the relationship between observability of,
say z, and the minimum order of derivatives of data. This relationship is an ingredi-
ent in the design and the complexity of observers. This talk will give new insights in
this topic.

Keywords: Observability, systems theory, differential algebra
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Effective criterion to test differential transcendence of
special functions.

Carlos Arreche1, Thomas Dreyfus2, Julien Roques3

Consider a field k equipped with an automorphism φ. Typical examples are

• k = CZ, φ(un) := (un+1);

• k = C(x), φf(x) := f(x+ 1);

• k = C(x), φf(x) := f(qx), q ∈ C∗;

• k = ∪`∈N∗C(x1/`), φf(x) := f(xp), p ∈ N∗.

A difference equation is a linear equation of the form

a0y + · · ·+ anφ
n(y) = 0,

with a0, . . . , an ∈ k. The difference Galois theory, see [1], attaches to such equation
a linear algebraic subgroup of GLn(C) that measures the algebraic relations among
the solutions of the difference equation. More recently, it has been developed in [2]
a Galois theory that aims at understanding the algebraic and differential relations
among the solutions of the difference equation

The goal of this talk is to give explicit and computable criterias to ensure that a
solutions of an order two difference equation does not satisfy any algebraic differen-
tial equations in coefficients in k. We apply this criterion to the elliptic analogue of
the hypergeometric functions.

Keywords: Difference Galois theory
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Symbolic computation for integro-differential-time-delay
operators with matrix coefficients

Thomas Cluzeau1, Jamal Hossein Poor2, Alban Quadrat3, Clemens G. Raab4,
Georg Regensburger5

In order to facilitate symbolic computations with systems of linear functional
equations, we require an algebraic framework for such systems which enables effec-
tive computations in corresponding rings of operators. We briefly explain the recent
developed tensor approach from scalar equations [1] to the matrix case [2], by allow-
ing noncommutative coefficients. Noncommutative coefficients even allow to handle
systems of generic size. Normal forms are a key ingredient for computing with oper-
ators and rely on a confluent reduction system.

The tensor approach is flexible enough to cover many operators, like integral
operators, that do not fit the well established framework of skew-polynomials. For
instance, it can be used to construct the ring of integro-differential operators with lin-
ear substitutions (IDOLS) having (noncommutative) matrix coefficients, containing
the ring of integro-differential-time-delay operators. In the Mathematica package
TenRes we provide support for tensor reduction systems [3]. In addition, we im-
plement the ring of IDOLS and corresponding normal forms. We illustrate how, by
elementary computations in this framework, results like the method of steps can be
found and proven in an automated way. We also apply normal forms of IDOLS to
partly automatize certain computations related to differential time-delay systems, e.g.
Artstein’s transformation [4] and its generalization [5].

This work is supported by PHC AMADEUS project no. 35602WA, WTZ project
no. FR10/2016, and FWF project no. P27229.

Keywords: integro-differential operators with linear substitutions, Artstein’s re-
duction, algebraic analysis approach to linear systems theory
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Low-Order Recombinations of C-Finite Sequences

Maximilian Jaroschek1,2, Manuel Kauers1, Laura Kovács2

One of the central open problems for C-finite sequences, that is sequences that
admit a linear recurrence equation with constant coefficients, is the Skolem problem,
which asks if a given sequence includes the term 0. Special instances for which an
answer can be given algorithmically include the case where there exists an annihilat-
ing recurrence of order less than or equal to 4. The Skolem problem is of particular
interest in program verification, as the values of loop variables in practice often de-
scribe C-finite sequences. We investigate how to combine these C-finite sequences
via term-wise multiplication and addition so that the resulting sequences admit re-
currences of low order. These combinations then can be used as inequality loop
invariants in automatic program analysis.

Keywords: C-finite Sequences, Skolem Problem, Invariant Generation
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Some Properties and Invariants of Multivariate
Difference-Differential Dimension Polynomials

Alexander Levin1

Multivariate dimension polynomials associated with finitely generated differen-
tial and difference field extensions arise as natural generalizations of the univariate
differential and difference dimension polynomials defined respectively in [1] and [2].
It turns out, however, that they carry more information about the corresponding ex-
tensions than their univariate counterparts (see [3, Theorem 4.2.17] and [4]). In this
presentation we extend the known results on multivariate dimension polynomials to
the case of difference-differential field extensions with arbitrary partitions of sets of
basic operators. We also describe some properties of multivariate dimension polyno-
mials and their invariants. The following is the outline of the talk.

Let K be a difference-differential field, CharK = 0, and let ∆ = {δ1, . . . , δm}
and σ = {α1, . . . , αn} be basic sets of derivations and automorphisms of K, respec-
tively. Below we often use the prefix ∆-σ- instead of “difference-differential”. Sup-
pose that the sets ∆ and σ are represented as unions of disjoint subsets: ∆ = ∪pi=1∆i

and σ = ∪qj=1σj where Card ∆i = mi (1 ≤ i ≤ p) and Cardσi = ni (1 ≤ i ≤ q).
Let Λ denote the free commutative semigroup of all power products of the form
λ = δk11 . . . δkmm αl11 . . . α

ln
n where kµ ∈ N, lν ∈ Z and for every such λ, let

ord∆iλ =
∑
µ∈∆i

kµ and ordσjλ =
∑
ν∈σj

|lν |

(1 ≤ i ≤ p, 1 ≤ j ≤ q). Furthermore, for any (r1, . . . , rp+q) ∈ Np+q, let
Λ(r1, . . . , rp+q) = {λ ∈ Λ |ord∆iλ ≤ ri for i = 1, . . . , p and ordσjλ ≤ rp+j
for j = 1, . . . , q}. The following theorem generalizes the main result of [4].

Theorem 0.2. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension generated by a set
η = {η1, . . . , ηs}. Then there exists a polynomial Φη ∈ Q[t1, . . . , tp+q] (called the
∆-σ-dimension polynomial of the extension L/K) such that

(i) Φη(r1, . . . , rp+q) = tr. degK K(

s⋃
j=1

Λ(r1, . . . , rp+q)ηj)

for all sufficiently large (r1, . . . , rp+q) ∈ Np+q (it means that there exist s1, . . . , sp+q ∈
N such that the equality holds for all (r1, . . . , rp+q) ∈ Np+q with r1 ≥ s1, . . . , rp+q ≥
sp+q);



(ii) degti Φη ≤ mi (1 ≤ i ≤ p), degtp+j
Φη ≤ nj (1 ≤ j ≤ q) and

Φη(t1, . . . , tp+q) can be represented as

Φη =

m1∑
i1=0

. . .

mp∑
ip=0

n1∑
ip+1=0

. . .

nq∑
ip+q=0

ai1...ip+q

(
t1 + i1
i1

)
. . .

(
tp+q + ip+q

ip+q

)

where ai1...ip+q ∈ Z and 2n | am1...mpn1...nq .

We sketch the proof of this theorem and present a method of computation of the
polynomial Φη based on a generalization of the Ritt-Kolchin method of characteris-
tic sets. Furthermore, we determine invariants of a ∆-σ-dimension polynomial, i. e.,
numerical characteristics of the ∆-σ-field extension that are carried by such a poly-
nomial and that do not depend on the set of ∆-σ-generators this ∆-σ-dimension poly-
nomial is associated with. We also give conditions under which the ∆-σ-dimension
polynomial is of the simplest possible form.

Keywords: Difference-differential field extension, Dimension polynomial, Char-
acteristic set
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Computer algebra and the Lanczos problems
in arbitrary dimension

J.-F. Pommaret1

When D is a linear partial differential operator of any order, a direct problem is
to look for an operator D1 generating the compatibility conditions (CC) D1η = 0 of
Dξ = η. We may thus construct a differential sequence with successive operators
D,D1,D2, ..., where each operator is generating the CC of the previous one. Intro-
ducing the formal adjoint ad(), we haveDi◦Di−1 = 0⇒ ad(Di−1)◦ad(Di) = 0 but
ad(Di−1) may not generate all the CC of ad(Di). When D = K[d1, ..., dn] = K[d]
is the (non-commutative) ring of differential operators with coefficients in a differen-
tial field K, it gives rise by residue to a differential module M over D. The homo-
logical extension modules exti(M) = extiD(M,D) with ext0(M) = homD(M,D)
only depend on M and are measuring the above gaps, independently of the previous
differential sequence.

The purpose of this talk is to explain how to compute extension modules for
certain Lie operators involved in the formal theory of Lie pseudogroups in arbitrary
dimension n. In particular, we prove that the extension modules highly depend on
the Vessiot structure constants c. When one is dealing with a Lie group of trans-
formations or, equivalently, when D is a Lie operator of finite type, then we shall
prove that exti(M) = 0, ∀0 ≤ i ≤ n − 1. It will follow that the Riemann-Lanczos
and Weyl-Lanczos problems just amount to prove such a result for i = 2 and arbi-
trary n when D is the Killing or conformal Killing operator. We finally prove that
exti(M) = 0, ∀i ≥ 1 for the Lie operator of infinitesimal contact transformations
with arbitrary n = 2p+ 1. Most of these new results have been checked by means of
computer algebra.

Keywords: Differential sequence, Variational calculus, Differential constraint, Con-
trol theory, Killing operator, Riemann tensor, Bianchi identity, Weyl tensor, Lanczos
tensor, Contact transformations, Vessiot structure equations
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Algebraic proofs of operator identities
Jamal Hossein Poor1, Clemens G. Raab2, Georg Regensburger2

Many interesting properties of linear operators can be phrased as operator iden-
tities, which then can be proven algebraically. In practice, however, linear operators
often map between different spaces, then we can no longer add or compose any two
such operators. For instance, this already happens with rectangular matrices or with
differential operators having rectangular matrix coefficients.

In order to still be able to do meaningful symbolic computations with such op-
erators on the computer, an algebraic framework is needed that deals with the cor-
responding domains and codomains of operators when adding and multiplying op-
erators. In principle, symbolic computation with such operators (or matrices) would
require at each step taking care of the domains and codomains of those operators (or
of the formats of the matrices). In contrast, we aim at an a-posteriori justification of
an identity, independent of how it was computed algebraically.

In this talk we present first results towards such an algebraic framework based
on quivers and noncommutative Gröbner bases, which could be applied to operators
with rectangular matrix coefficients. We will also present examples from the theory
of generalized inverses using noncommutative Gröbner bases.

Keywords: Linear operators, noncommutative Gröbner bases
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Definite Integration of D-finite Functions via Generalized
Hermite Reduction

Alin Bostan1 Frédéric Chyzak1, Pierre Lairez1, Bruno Salvy2

Hermite reduction is a classical algorithmic tool in symbolic integration. It is
used to decompose a given rational function as a sum of a function with simple poles
and the derivative of another rational function. It provides a canonical form mod-
ulo derivatives of rational functions. We extend Hermite reduction to arbitrary linear
differential operators instead of the pure derivative, and develop efficient algorithms
for this reduction. We then apply the generalized Hermite reduction to the compu-
tation of linear operators satisfied by definite integrals. The resulting algorithm is a
generalization of reduction-based methods for creative telescoping.

Keywords: Hermite reduction, symbolic integration, creative telescoping
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Solution of non homogenous Ordinary Differential
Equations using Parametric Integral Method

Thierry N. Dana-Picard1, David G. Zeitoun2

The solution of non homogenous ordinary differential equation (ODE) is an im-
portant research subject appearing in numerous engineering fields. When the ODE
is associated with boundary conditions (BC), the problem is referred to as a Bound-
ary Value Problem (BVP). Numerical schemes such as finite differences and finite
elements have been used for the solution of such problem.

A general homogeneous ODE may be expressed as:
n=p∑
n=0

an(x)d
(n)y
dxn = 0

a ≤ x ≤ b
(BC) at x = a and at x = b

(1)

This equation may be decomposed into the homogenous part and a non ho-
mogenous part, using a MacLaurin expansion of each coefficient an(x). For any
n ∈ {1, ..., p}, we have:

an(x) = an(0) + a′n(0)x+
x2

2
a′′n(0) + .... =

∞∑
n=0

xn

n!
a(n)(0) (2)

Inserting this last identity into Equation (1) leads to:
L0(y) = −L(y)

a ≤ x ≤ b
(BC) at x = a and at x = b

(3)

where the differential operator L is defined by:

L =

n=p∑
n=0

[ ∞∑
n=1

xn

n!
a(n)(0)

]
d(n)

dxn
(4)

The operator L0 is defined as :

L0 =

n=p∑
n=0

an(0)
d(n)

dxn
(5)



In this contribution we present a general methodology based on the Adomian
decomposition method (ADM) as described in [3]), where the inverse operator L−1

is expressed in terms of eigenvectors and eigenvalues expansion. The ADM is a
systematic method for solution of either linear or nonlinear operator equations, in-
cluding ordinary differential equations (ODEs), partial differential equations (PDEs),
integral equations, integro-differential equations, etc. The ADM is a powerful tech-
nique, which provides efficient algorithms for analytic approximate solutions and
numeric simulations for real-world applications in the applied sciences and engineer-
ing. It enables to solve both nonlinear initial value problems (IVPs) and boundary
value problems (BVPs) (see [5]) without physical restrictive assumptions, such as
those required by linearization, perturbation, ad hoc assumptions, and guessing the
initial term or a set of basis functions.

Using ADM, we denote a possible solution by y(x) =
∞∑
m=0

ym(x). A general

solution of the non homogenous ODE may be found in an iterative way as follows:

• Solve for y0(x): 
L0(y0) = 0

a ≤ x ≤ b
(BC) at x = a and at x = b

(6)

• Solve for ym(x);m = 1, 2, ....
L0(ym) = −L(ym−1)

a ≤ x ≤ b
(BC) at x = a and at x = b

(7)

After solving for y0(x), the general solution for Equations (7) may be derived
using the Green function associated with the operator L0.

L0(G(x, ξ)) = δ(x− ξ)
a ≤ x ≤ b
(BC) at x = a and at x = b

Using Equation (8) and suitable boundary conditions for G(x, ξ), we obtain an
iterative solution for m ≥ 1:

ym(x) =

∫ b

a
G(x, ξ)L(ym−1(ξ)dξ (8)

In a large class of boundary value problems, the Green function G(x, ξ) may be
expressed as an eigenfunction expansion as follows:

G(x, ξ) =

r=q∑
r=1

φr(x)φr(ξ)

λr
(9)



where λr is the eigenvalue associated with the eigenfunction φr(x) which is the so-
lution of the following ODE:

L0(φr) = λrφr

a ≤ x ≤ b
(BC) at x = a and at x = b

(10)

So finally the iterative Adomian solution of Equation (7) may be written as:

ym(x) =

r=q∑
r=1

φr(x)

λr

∫ b

a
φr(ξ)L(ym−1(ξ)dξ (11)

In this talk, this last expression will be used to generate different types of iterative
algorithms for the solution of the BVP. This iterative algorithm generates an iterative
algorithm which can be implemented in a CAS. As examples, we will present so-
lutions of groundwater flow through non homogenous formations using parametric
integral solutions. This type of integrals have been already analysed by the authors
in [1, 2, 4].

Keywords: parametric integral, non homogenous ODE, Adomian decomposition
method

References

[1] Th. Dana-Picard, Parametric integrals and symmetries of functions, Mathematics
and Computer Education (Spring 2005), 5–12 (2005).

[2] Th. Dana-Picard and D. G. Zeitoun, Exploration of Parametric Integrals related
to a Question of Soil Mechanics, International Journal of Mathematics Education
in Science and Technology 48 (4), 617–630 (2017).

[3] G. Adomian, A Review of the Decomposition Method in Applied Mathematics,
Journal of Mathematical Analysis and Applications 135 (2), 501–544 (1988).

[4] Th. Dana-Picard and D. G. Zeitoun, A framework for an ICT-Based Study
of Parametric Integrals, Mathematics in Computer Science 11 (3-4), 285–296
(2017).

[5] W.J. Parnell, Green functions, integral equations and applications, MATH34032,
https://www.scribd.com/document/319286236/greens-notes-pdf (Spring 2013).



1Department of Mathematics
Jerusalem College of Technology
Havaad Haleumi St. 21
Jerusalem 9116011
Israel
ndp@jct.ac.il

2Mathematics Department
Orot College of Education
Rehovot
Israel
ed.technologie@gmail.com



Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

Desingularization in the q-Weyl algebra

Christoph Koutschan1, Yi Zhang2

The desingularization problem has been primarily studied for linear differential
operators with polynomial coefficients. The solutions of such an equation are called
D-finite functions. It is well known that a singularity at a certain point x0 of one
of the solutions must be reflected by the vanishing (at x0) of the leading coefficient
of the differential equations. However, the converse however is not always true:
not every zero of the leading coefficient polynomial induces a singularity of at least
one function in the solution space. The purpose of desingularization is to construct
another equation, whose solution space contains that of the original equation, and
whose leading coefficient vanishes only at the singularities of the previous solutions.
Typically, such a desingularized equation will have a higher order, but a lower degree
for its leading coefficient. In summary, desingularization provides some information
about the solutions of a given differential equation.

The authors of [1, 3] give general algorithms for the Ore case. However, from
a theoretical point of view, the story is not yet finished, in the sense that there is no
order bound for desingularized operators in the Ore case. We consider the desingu-
larization problem in the first q-Weyl algebra. Our main contribution is to give an
order bound for desingularized operators, and thus derive an algorithm for comput-
ing desingularized operators in the first q-Weyl algebra. In addition, an algorithm
is presented for computing a generating set of the first q-Weyl closure of a given q-
difference operator. As an application, we certify that several instances of the colored
Jones polynomial from knot theory are Laurent polynomial sequences by computing
the corresponding desingularized operator.

Keywords: Desingularization, q-Weyl algebra, Knot Theory

References

[1] S. CHEN, M. KAUERS, AND M. F. SINGER, Desingularization of Ore operators.
Journal of Symbolic Computation, 74, 617–626 (2016).

[2] C. KOUTSCHAN AND Y. ZHANG, Desingularization in the q-Weyl algebra. arXiv
1801.04160, 1–19 (2018).

[3] Y. ZHANG, Contraction of Ore ideals with applications. In Proc. of ISSAC’16,
413–420, ACM, New York, NY, USA, 2016.



1Johann Radon Institute for Computational and Applied Mathematics (RI-
CAM)
Austrian Academy of Sciences
Altenbergerstraße 69, A-4040 Linz, Austria
christoph.koutschan@ricam.oeaw.ac.at

2Johann Radon Institute for Computational and Applied Mathematics (RI-
CAM)
Austrian Academy of Sciences
Altenbergerstraße 69, A-4040 Linz, Austria
zhangy@amss.ac.cn




