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arrays
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On the skew cyclic codes and the reversibility problem for DNA 4-bases
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Wed 20th, 10:00 - 10:30, Aula 7 − Diana H. Bueno-Carreño:
Multiplying Dimension in Abelian Codes

Wed 20th, 10:30 - 11:00, Aula 7 − Simon Eisenbarth:
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Organizers

Irene Márquez Corbella:
Universidad de La Laguna
Spain

Emilio Suárez Canedo:
Universitat Autònoma de Barcelona
Spain

Aim and cope

This session aims to bring together from all areas related to computer algebra (both
theoretical and algorithmic) applied to Coding Theory and Cryptography.

Since much of the work related to these topic is recent or is still ongoing, this
session will provide a stimulating forum where experts will be able to not only re-
port their recent results, but also to propose new lines of research and discuss open
questions.

It will also give us the opportunity to present the interest and the potential appli-
cations of these topics to the rest of the scientific community

Expected topics of presentations include (but are not limited to):

• Computer Algebra and Coding Theory
Codes and applications. Combinatorial structures. Algebraic-geormetric codes.
Network coding. Quantum codes. Group codes. . .

• Computer Algebra in Cryptography
Algebraic Cryptanalysis. Post-quantum cryptography. (Code, Lattice and Hash)–
based PKC. Multivariate PKC. . .

• simulation of quantum computation

• Synergies between Computer Algebra, Coding Theory and Cryptography.
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The enumeration of Hermitian self-dual cyclic codes over
finite chain rings

Arunwan Boripan1, Somphong Jitman2, and Patanee Udomkavanich3

Let Fq2 be a finite field of order q2 and let R := Fq2 [u]/〈ut〉 be a finite chain
ring, where t ≥ 2 is an integer. Cyclic codes over R have been of interest due
to their rich algebraic structures and wide applications. Here, the characterization
and enumeration of Hermitian self-dual cyclic codes of length n over R have been
given based on self-conjugate-reciprocal irreducible monic(SCRIM) factors of xn−1
over Fq2 . Subsequently, the number of SCRIM factors of xn − 1 over Fq2 has been
investigated. Finally, some computational results obtained from computer algebra
MAGMA have been discussed.

Keywords: Cyclic codes, Hermitian self-dual cyclic code, Finite chain ring
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Binary Isodual Codes Having an Automorphism of Odd
Prime Order∗

Stefka Bouyuklieva1, Radka Russeva2, Emine Karatash2

The purpose of this talk is to describe the structure and properties of the binary
isodual codes having automorphisms of odd prime order and to present a method for
their construction. If a code C is equivalent to its orthogonal complement C⊥, then
it is termed isodual, and if C = C⊥, C is a self-dual code. Recently, there has been
growing interest in the isodual codes, and the authors use different methods for their
construction (see for example [5]).

A linear code C is formally self-dual if C and its dual C⊥ have the same weight
enumerator. While self-dual codes contain only even weight vectors, formally self-
dual codes may contain odd weight codewords as well. Many authors consider only
even formally self-dual codes because their weight enumerators are combinations
of Gleason polynomials. The class of isodual codes is between the self-dual and
formally self-dual (fsd) codes. Since all isodual codes are also formally self-dual,
they possess all the properties of the fsd codes.

The minimum weight d of a formally self-dual even code of length n is bounded
by d ≤ 2[n/8] + 2. An fsd even code meeting this upper bound is called extremal.
Self-dual codes meeting this bound exist only for lengths n = 2, 4, 6, 8, 12, 14, 22
and 24 [3]. Extremal formally self-dual even codes which are not self-dual exist only
for lengths 6, 10, 12, 14, 18, 20, 22, 28 and 30, and all these codes are classified
[2]. For some lengths, there are odd fsd codes with higher minimum weight than
the even ones. For example, the unique linear [16, 8, 5] code has dual distance 5 and
therefore it is formally self-dual, but the highest possible minimum weight of an even
code of the same length is 4 (see [6]). The smallest length for which a fsd code is not
isodual is 14, and there are 28 such codes amongst 6 weight enumerators. The even
fsd [30, 15, 8] codes are classified (see [2]) but it is still not known whether odd fsd
codes with these parameters exist.

In the eighties of the last century, Huffman and Yorgov proposed a method for
constructing and classifying binary self-dual codes with an automorphism of odd
prime order (see [4, 7]). This method can be modified and applied to other linear
codes. The closest class is the class of binary isodual codes, and therefore we study
the structure of those isodual codes that have an automorphism of odd prime order.
Let C be a binary linear code of length n and σ be an automorphism of C of odd
prime order p with c independent p-cycles. Without loss of generality we can assume

∗This research is supported by Bulgarian Science Fund under Contract DN-02-2/13.12.2016 and by
Shumen University, Project RD-08-111/ 05.02.2018



that σ = Ω1 . . .ΩcΩc+1 . . .Ωc+f , where Ωi = ((i − 1)p + 1, . . . , ip), i = 1, . . . , c,
are the cycles of length p, and Ωc+i = (cp + i), i = 1, . . . , f , are the fixed points.
Obviously, cp+ f = n.

Let Fσ(C) = {v ∈ C : vσ = v} and Eσ(C)={v ∈ C : wt(v|Ωi) ≡ 0
(mod 2), i = 1, . . . , c + f}, where v|Ωi is the restriction of v on Ωi. Then the code
C is a direct sum of the subcodes Fσ(C) (fixed subcode) and Eσ(C) (even subcode).

Consider first the fixed subcode. Clearly, v ∈ Fσ(C) if and only if v ∈ C and
v is constant on each cycle. Let π : Fσ(C) → F c+f2 be the projection map, so if
v ∈ Fσ(C), (vπ)i = vj for some j ∈ Ωi, i = 1, 2, . . . , c+ f . Denote by Cπ the code
π(Fσ(C)).

For v ∈ Eσ(C) and 1 ≤ i ≤ c, we identify v|Ωi = (v0, v1, · · · , vp−1) with the
polynomial v0 + v1x + · · · + vp−1x

p−1 from P , where P is the set of even-weight
polynomials in F2[x]/(xp − 1). Thus we obtain the map φ : Eσ(C) → P c. Denote
φ(Eσ(C)) by Cφ. Obviously, Cφ is a P-module, and if P is a field then Cφ is a linear
code. On Pc, we use the Hermitian inner product:

〈u, v〉 =
c∑
j=1

ujvj , (1)

where vj = vj(x
−1) = vj(x

p−1), u = (u1, . . . , uc), v = (v1, v2, . . . , vc).
For the equivalence we use the following theorem

Theorem 1: The following transformations preserve the decomposition and send
the code C to an equivalent one:

a) the substitution x→ xt in Cϕ, where t is an integer, 1 ≤ t ≤ p− 1;
b) multiplication of the jth coordinate of Cϕ by xtj where tj is an integer, 0 ≤

tj ≤ p− 1, j = 1, 2, . . . , c;
c) permutation of the first c cycles of C;
d) permutation of the last f coordinates of C.
If σ ∈ Aut(C), σ ∈ Aut(C ′), and p2 does not divide the orders of both groups,

then the codes C and C ′ are equivalent if and only if C ′ can be obtained from C by
applying a sequence of the given transformations.

The proof is similar to the proof of Theorem 3 in [7].
Now let C be a binary isodual code, so C ∼= C⊥. Since Aut(C) = Aut(C⊥),

the permutation σ is an automorphism of C⊥, too. Hence C⊥ = Fσ(C⊥)⊕Eσ(C⊥).
Let C ′π = π(Fσ(C⊥)), and C ′φ = φ(Eσ(C⊥)∗).

If 2 is a multiplicative root modulo p then P is a field with 2p−1 elements and Cφ
is a linear code over this field. Therefore here we consider only such primes p. We
say that two codes over P are equivalent if one of them can be obtain from the other
one after a sequence of transformations of types a), b) and c) from Theorem 1. Using
this theorem, we obtain the following results.

Theorem 2: The binary codes Cπ and C ′π are equivalent. The same is true for
the codes Cφ and C ′φ over the field P .



Theorem 3: Let C be a binary linear [2k, k, d] code having an automorphism σ
of odd prime order p. If 2 is a multiplicative root modulo p and p2 does not divide
the order of Aut(C) then C is an isodual code if and only if the codes Cπ and Cφ are
isodual.

As an application of the presented structure we focus on the isodual [30, 15,≥ 7]
codes with an automorphism of order 5 with 6 independent 5-cycles. If C is such a
code, then C is a direct sum of a [30, 3,≥ 10] fixed subcode projected in a binary
[6, 3,≥ 2] isodual code Cπ, and a [30, 12,≥ 8] even code Eσ(C). There exist exactly
six binary isodual codes of length 6, one of them has minimum distance 3, and the
other five codes have minimum distance 2, including the only self-dual [6, 3, 2] code.
The only isodual [6, 3, 3] code has weight enumerator 1 + 4y3 + 3y4 [6].

The image of the even subcode under the map φ is a [6, 3, dφ] linear code over the
field P ∼= GF (16). For the field we have P∗ = {αiδj , i = 0, 1, . . . , 4, j = 0, 1, 2},
where e = x + x2 + x3 + x4 is the identity element, α = xe is an element of order
5, and δ = x+ x4 is of order 3.

First, we constructed all [6, 3, dφ] linear codes over P such that d(φ−1(M)) ≥ 8.
There are 61 [6, 3, 3] and 326 [6, 3, 4] inequivalent codes with the needed properties.
Then we combined these codes with all codes π−1(C ′) where C ′ is equivalent to any
of the isodual [6, 3,≥ 2] binary codes. After that we check all these binary isodual
codes of length 30 for minimum weight and also for equivalence, using the program
Q-EXTENSION [1]. In this way we obtained exactly 642 binary isodual [30, 15,≥ 7]
inequivalent codes having an automorphism of order 5 with 6 independent 5-cycles.
Only 13 of these codes have minimum weight 8. All constructed [30, 15, 8] codes
have the same weight enumerator 1 + 450y8 + · · ·+ y30 and so they are even isodual
codes.

Keywords: linear codes, isodual codes, automorphisms
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Multiplying Dimension in Abelian Codes

José Joaquín Bernal1, Diana H. Bueno-Carreño2 , Juan Jacobo Simón1

In [1], we improve the notion and computation of the apparent distance for abelian
codes given in [4] and [7] by means of the q-orbit structure of defining sets of abelian
codes. These results allows us to design, based on a suitable election of q-orbits,
abelian codes having nice bounds and parameters. In this note, we apply those tech-
niques to construct bivariate BCH codes from cyclic codes, in such a way that we
preserve apparent distance but multiplying their dimension; in particular, this drives
us to multiply Reed-Solomon codes to abelian codes. As it happens with others
families of abelian codes, there are alternative constructions to get this one (see, for
example [6]); however, we think that this point of view allows us to determine many
structural properties, parameters and even true minimum distance, in a better way.

We denote I = Zr1 × Zr2 and for i = 1, 2, we denote by Uri the set of all ri-th
primitive roots of unity and define U = Ur1 ×Ur2 . It is a known fact that, for a fixed
α̂ = (α, β) ∈ U , any abelian code C is determined by its defining set, with respect
to α̂, which is defined as

Dα̂ (C) =
{

(a, b) ∈ I : c(αa, βb) = 0, ∀c ∈ C
}
.

In [1], we introduced the notion of strong apparent distance of polynomials and
hypermatrices and we applied it to define and study a notion of multivariate BCH
bound and BCH abelian codes. As it was pointed out in the mentioned paper, the
notion of strong apparent distance was based in the ideas and results in [4] and [7].

We use those results and techniques to prove the following results, among others.

Theorem 1. Let n and r be positive integers such that gcd(q, nr) = 1. Let C be
a nonzero cyclic code in Fq(r) = Fq[y]/(yr − 1) with sd∗(C) = δ > 1 and α̂ =
(α1, α2) ∈ Un × R(C). Then, the abelian code Cn in Fq(n, r) = Fq[x, y]/(xn −
1, yr − 1) with defining set Dα̂(Cn) = Zn ×Dα2(C) verifies that sd∗(Cn) = δ and
dimFq(Cn) = n dimFq(C).

Proposition 2. Let n and r be positive integers with gcd(q, nr) = 1 and let C
be a nonzero cyclic code in Fq(r) such that sd∗(C) = d(C). Then there exists
α̂ = (α1, α2) ∈ Un ×R(C) such that the abelian code Cn in Fq(n, r) with defining
set Dα̂(Cn) = Zn ×Dα2(C) verifies the equality d(Cn) = d(C).

BCH multivariate codes have also been defined in [1, Definition 33]. Following
this definition we prove the following result.



Proposition 3. Let α ∈ Ur and let R = Bq(α, δ, b) be a Reed-Solomon code. Then,
for each positive integer n and any α′ ∈ Un, there exists a multivariate BCH code,
C = Bq ((α′, α), {2}, {δ}, {b}), such that dim(C) = (r − δ + 1)n = n · dim(R)
and d(C) = sd∗α̂(C) = δ.

Some examples and applications will be presented.

Keywords: Abelian codes, Multiplying dimension, Cyclic codes, Reed-Solomon
codes
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On the skew cyclic codes and the reversibility problem for
DNA 4-bases

Yasemin CENGELLENMIS1, Abdullah DERTLI2

The skew cyclic codes over the finite ring R = F4 + uF4 + vF4 + uvF4, where
u2 = u, v2 = v, uv = vu are introduced, by defining a non trivial automorphism
over R. DNA 4-bases are matched with the elements 256 of the finite ring R. With
the method as in [3], the reversible DNA codes are obtained. Moreover, the Gray
images of the skew cyclic codes over the finite ring R are determined.

Keywords: Reversible code, DNA cyclic code
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Quantum codes from constacyclic codes over the finite ring
Fp + uFp + vFp

Abdullah Dertli1, Yasemin Cengellenmis2

In this paper, the quantum codes over Fp from constacyclic codes over the finite
ring Fp + uFp + vFp, where u2 = u, v2 = v, uv = vu = 0, p is an odd prime are
studied. A constacyclic codes over the finite ring Fp+uFp+vFp is decomposed into
three codes over Fp in order to determine the parameters of the corresponding quan-
tum codes. Finally, we have constructed some examples of quantum error-correcting
codes.

Keywords: Quantum code, Constacyclic code, Finite ring
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Self-dual codes over chain rings

Simon Eisenbarth1, Gabriele Nebe1

Let F be a finite field of characteristic p and : F → F be some automorphism
of order one or two. A code C in Fn is called self-dual if it coincides with its dual
code with respect to the standard Hermitian inner dot product

v · w :=

n∑
i=1

viwi.

In [4], upper bounds for the minimum distance of several families of self-dual codes
were given. Self-dual codes which achieve those bounds are called extremal. In [1]
and [2], a generel decomposition theory for self-dual codes over F admitting permuta-
tion automorphisms of order prime to p has been developed. This has been frequently
used, for example to classify ternary extremal codes with an automorphism of prime
order≥ 5 (see [3], [5]). In a recent work (together with G. Nebe), we developed tech-
niques to classify F-linear, self-dual codes with an automorphism g of order q = pe,
where it can w.l.o.g. be assumed that g ∈ Sn.

The group ring F〈g〉 is an Artinian chain ring with ideals 〈(1 − g)i〉, 0 ≤ i ≤ q
and it carries a natural involution defined by

q−1∑
i=0

αigi :=

q−1∑
i=0

αig
−i.

Our work focused on the case where g has no fix points on {1, . . . , n = pt} and C is
a free F〈g〉-module. Then the map

Fn → F〈g〉t, (c1, . . . , cpt) 7→

(
p∑
i=1

cig
i−1, . . . ,

p∑
i=1

c(t−1)p+ig
i−1

)

is a bijection between the self-dual codes in Fn and the self-dual codes in F〈g〉t with
respect to an inner product defined in the next section. This motivated the analysis of
the structure of self-dual codes over chain rings.

Let R be a commutative Artinian chain ring with 1 and let : R → R be an
involution, i.e. a ring automorphism of order one or two. If m ≤ R denotes the
maximal ideal of R, then induces an involution of the residue field F = R/m



which we again denote by . If this involution is the identity on the residue field,
then there is ε ∈ {1,−1} such that x ≡ εx (mod Rx2) for any generator x of m. If

has order 2 on F (which we refer to as the hermitian case) then by Hilbert 90 we
may choose a generator x of m such that x ≡ x (mod Rx2). We fix such a generator
x of the maximal ideal R such that

x ≡ εx (mod Rx2)

with ε = 1 in the Hermitian case. Let a ∈ N0, such that

R ⊃ Rx ⊃ Rx2 ⊃ · · · ⊃ Rxa+1 = {0}

is the complete chain of ideals in R. Then all indecomposable R-modules are of the
form

Sb := Rxb for some 0 ≤ b ≤ a

where S0 = R is the free module of rank 1 and Sa is the unique simple R-module.
To consider codes let t ∈ N and

V := Rt = {(v1, . . . , vt) | vi ∈ R}

denote the freeR-module of rank t. We define the -Hermitian standard inner product

〈·, ·〉 : V × V → R, 〈v, w〉 :=

t∑
j=1

vjwj .

on V . We call an R-submodule C of V a code of length t (over R). Then by the
theorem of Krull, Remak, Schmidt, there are unique t0, t1, . . . , ta ∈ Z≥0 such that

C = St00 ⊕ S
t1
1 ⊕ · · · ⊕ S

ta
a .

Now let C = C⊥ be a self-dual code of even length t which is a free R-module, i.e.
t0 = t/2 and t1 = · · · = ta = 0. Then the subcodes

C(i) := Cxi

form the following chain:

V = Rt ⊃ C(a)⊥ ⊃ · · · ⊃ C(1)⊥ ⊃ C = C⊥ ⊃ C(1) ⊃ · · · ⊃ C(a) ⊃ {0}.

We now want to iteratively construct the codes C(a), C(a−1), . . . , C, starting with
the socle soc(C) = C(a).

The multiplication by xa defines an isomorphism between the residue field and
the socle of R, and the map

ϕ : F = R/Rx
∼−→ Rxa = Sa, r +Rx 7→ rxa



can be naturally extended to the socle soc(V ) = V xa of V , i.e.

π : soc(V )→ Ft, (v1, . . . , vt) 7→ (ϕ−1(v1), . . . , ϕ
−1(vt))

is an F-linear isomorphism.
In our initial setting, this means that the fixcode of g is generated by some matrix

M ⊗
(
1 . . . 1

)
,

where M generates a self-dual code in Ft with respect to the standard Hermitian in-
ner product. Using the classification of self-dual codes of moderat lengths, one can
therefore find all possibilities for C(a).

For the iteration process, let 0 ≤ i < a and fix some C(i+1). We want to find all
admissible C(i), i.e. all codes D which are self-orthogonal and Dx = C(i+1). We
put

Wi := C(i+1)⊥xi/C(i+1) ∼= Ft

and define

(·, ·)i : Wi ×Wi → F, (Axi, Bxi)i := ϕ−1(〈A,B〉xi).

Then (·, ·)i is a well-defined, non-degenerate inner product which is Hermitian in the
Hermitian case and ε(i+a)-symmetric bilinear otherwise.
With respect to this inner product, Xi := (soc(V ) + C(i+1))/C(i+1) ≤ Wi is self-
dual code (Wi, (·, ·)i). Moreover, C(i)/C(i+1) is a self-dual code as well that com-
plements Xi, i.e.

Wi = C(i)/C(i+1) ⊕Xi.

By constructing all complements of Xi, we can find all lifts of C(i+1).

This theory has been used to show in an exhaustive search that every extremal
ternary code of length 36 with an automorphism of order 3 is isomorphic to the Pless
Code P36, strengthening the result given in [3].

Keywords: Self-dual codes, automorphisms, chain ring
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Constacyclic and Cyclic Codes over the Class of Finite
Rings F2k + uF2k + u2F2k + vF2k

G.Gozde GUZEL1, Abdullah DERTLI2, Yasemin CENGELLENMIS3

In this paper, a new class of finite rings includes the finite ring which is presented
in [9] is given. It is shown that these rings are semilocal, principally ideal and Frobe-
nious rings. It is studied the units and the ideals of the ring. It is introduced a Gray
map on it. The Gray images of both cyclic and (1 + u)-constacyclic codes over the
finite ring are obtained.

Keywords: Gray map, Cyclic codes, Quasicyclic codes
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Cyclic structures in convolutional codes and free distance∗

José Gómez-Torrecillas1, F. J. Lobillo1, Gabriel Navarro2

The results of this talk are included in [6].
A rate k/n convolutional code C over a finite field F can be modeled as a rank k

direct summand of F[z]n, i.e. C = im(·G) where G =
∑m

i=0 z
iGi ∈Mk×n(F[z]) is

basic. One of the main parameters of convolutional codes is the free distance, which
is directly related with the correction capability of a convolutional code. The free
distance is defined as

dfree(C) = min {wH(f) : f ∈ C, f 6= 0} ,

see [7, Ch. 3], where the Hamming weight of a polynomial over Fn is the coefficient-
wise extension of the Hamming weight in Fn. The free distance of a convolutional
code can be calculated computing the classic associated column and row distances
until they coincide. Both sequences must be computed since there is not regularity in
their respectively increase and decrease.

Cyclic structures on convolutional codes can be provided enriching the algebraic
structure of Fn. Concretely, let A be an n-dimensional F-algebra, σ : A → A an
F-automorphism and v : A[z;σ]→ Fn[z] the canonical isomorphism associated to a
fixed basis ofA. A convolutional code C is said to be skew cyclic, see [2], if C = v(I)
for some left ideal I ≤ A[z;σ] = R. If, in addition, I is a direct summand as left
ideal, i.e. I = R(1− e) = Ann`R(e) for some idempotent e =

∑m
i=0 z

iei ∈ R, then
C is called an idempotent convolutional code, see [4, 5].

Let
Eck =

[
σ−j(ej−i)

]
0≤i,j≤k

∈Mk+1(A).

We introduce the kth cyclic column distance of C as

δck = min {w(a0, . . . , ak) | (a0, . . . , ak) ∈ ker(·Ecl ), a0 6= 0} .

The main result of this talk is

Theorem. Let A be an n-dimensional F-algebra and let σ be an isometry on A with
respect to a fixed basis. Let R = A[z;σ] and v : R → Fn[z]. Let C = v(Ann`R(e))
for some idempotent e =

∑m
i=0 z

iei ∈ R. Let Eck and δck be as before. Then δck ≤
δck+1 ≤ dfree C. If δck = δck+m, then dfree(C) = δck.

The theorem allows to compute the free distance by using the cyclic column
distance sequence. No row distance is needed.

∗Research partially supported by grant MTM2016-78364-P from Agencia Estatal de Investigación
and from FEDER.



Keywords: Cyclic convolutional code, Free distance

References

[1] S. Estrada, J. R. García-Rozas, J. Peralta, and E. Sánchez-García. 2008. Group
convolutional codes. Advances in Mathematics of Communications 2, 1 (2008),
83–94. https://doi.org/10.3934/amc.2008.2.83

[2] H. Gluesing-Luerssen and W. Schmale. 2004. On Cyclic Convolutional Codes.
Acta Applicandae Mathematicae 82, 2 (2004), 183–237. https://doi.
org/10.1023/B:ACAP.0000027534.61242.09

[3] J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2016a. Convolutional codes
with a matrix-algebra word ambient. Advances in Mathematics of Communica-
tions 10, 1 (2016), 29–43.

[4] J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2017b. Ideal codes over
separable ring extensions. IEEE Transactions on Information Theory 63, 5
(May 2017), 2796 – 2813. https://doi.org/10.1109/TIT.2017.
2682856

[5] J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2017a. Computing separa-
bility elements for the sentence-ambient algebra of split ideal codes. Journal of
Symbolic Computation 83 (2017), 211–227.

[6] J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2018. Computing free
distances of idempotent convolutional codes. In Proceedings of the 2018 ACM
on International Symposium on Symbolic and Algebraic Computation (ISSAC
’18). ACM, New York, NY, USA.

[7] R. Johannesson and K. Sh. Zigangirov. 1999. Fundamentals of Convolutional
Coding. Wiley-IEEE Press. http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-0780334833,miniSiteCd-IEEE2.
html

[8] S. R. López-Permouth and S. Szabo. 2013. Convolutional codes with additional
algebraic structure. Journal of Pure and Applied Algebra 217, 5 (2013), 958 –
972. https://doi.org/10.1016/j.jpaa.2012.09.017

[9] P. Piret. 1976. Structure and constructions of cyclic convolutional codes. IEEE
Transactions on Information Theory 22, 2 (1976), 147–155. https://doi.
org/10.1109/TIT.1976.1055531



1CITIC and Department of Algebra
University of Granada
E18071 Granada
Spain
gomezj@ugr.es
jlobillo@ugr.es

2CITIC and Department of Computer Science and Artificial Intelligence
University of Granada
E18071 Granada
Spain
gnavarro@ugr.es



Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

Generalized Hamming Weights of Binary Linear Codes

I. Márquez-Corbella1, E. Martínez-Moro2

We can associate to each linear code C defined over a finite field the matroid
M [H] of its parity check matrixH . For any matroidM one can define its generalized
Hamming weights which are the same as those of the code C. In [1] the authors show
that the generalized Hamming weights of a matroid are determined by the N-graded
Betti numbers of the Stanley-Reisner ring of the simplicial complex whose faces are
the independent set of M . In this talk we go a step further. Our practical results
indicate that the generalized Hamming weights of a linear code C can be obtained
from the monomial ideal associated with a test-set for C. Moreover, recall that in [2]
we use the Gröbner representation of a linear code C to provide a test-set for C.

Our results are still a work in progress, but its applications to Coding Theory and
Cryptography are of great value.
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On additive cyclic codes over chain rings

E. Martínez-Moro1, K. Otal2 and F. Özbudak2

Additive codes are a direct and useful generalization of linear codes, and they
have applications in quantum error correcting codes. There are several studies using
different approaches on them and their applications. On the other hand cyclic codes
are one of the most attractive code families thanks to their rich algebraic structure
and easy implementation properties. In this talk we will investigate the structure of
Additive cyclic codes over finite (commutative) chain rings. When we focus on non-
Galois finite commutative chain rings, we observe two different kinds of additivity.
One of them is a natural generalization of precedding studies whereas the other one
has some unusual properties especially while constructing dual codes. We interpret
the reasons of such properties and illustrate our results giving concrete examples.
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On varieties and codes defined by quadratic equations

Ruud Pellikaan1

We will review the work on algebraic geometry codes C = CL(X , P, E) that
have a unique representation (X , P, E), where X is an algebraic curve, P is an n-
tuple of mutually distinct points and E is a divisor. See [1, 2, 4, 5]. As a consequence
algebraic geometry codes with certain parameters are not secure for the code based
McEliece public crypto system.

One of the key ingredients of these results is the classical fact that certain curves
embedded in projective space are defined by quadratic equations. We consider gen-
eralizations to higher dimensional varieties [6] and order domains [3] and their cor-
responding codes.

Keywords: McEliece public crypto system, algebraic geometry codes

References

[1] A. Couvreur, I. Márquez-Corbella and R. Pellikaan, “Cryptanalysis of public-key
cryptosystems that use subcodes of algebraic geometry codes”. In Coding theory
and applications, pp. 133—140, CIM Ser. Math. Sci., 3, Springer, Cham, 2015.

[2] A. Couvreur, I. Márquez-Corbella and R. Pellikaan, “Cryptanalysis of McEliece
cryptosystem based on algebraic geometry codes and their subcodes”. IEEE
Trans. Inform. Theory vol. 63, pp. 5404—5418, 2017.

[3] O. Geil and R. Pellikaan, “On the structure of order domains”. Finite Fields Appl.
vol. 8, pp. 369-–396, 2002.

[4] I. Márquez-Corbella, E. Martínez-Moro and R. Pellikaan, “On the unique repre-
sentation of very strong algebraic geometry codes”. Designs, Codes and Cryp-
tography, vol.70, pp. 215—-230, 2014.

[5] I. Márquez-Corbella, E. Martínez-Moro, D. Ruano and R. Pellikaan, “Compu-
tational aspects of retrieving a representation of an algebraic geometry code”, J.
Symbolic Comput. vol. 64, pp. 67—87, 2014.

[6] D. Mumford, “Varieties defined by quadratic equations”. In: Questions on Alge-
braic Varieties, C.I.M.E., III Ciclo, Varenna, 1969, pp. 29—100. Edizioni Cre-
monese, Rome 1970.



1Department of Mathematics and Computing Science
Technical University of Eindhoven
g.r.pellikaan@tue.nl



Applications of Computer Algebra – ACA2018
Santiago de Compostela, June 18–22, 2018

Computer algebra tales on
Goppa codes and McEliece cryptography

Narcís Sayols1, Sebastià Xambó-Descamps2

Abstract

The fourty-year old McEliece public-key crypto-system is revisted with the
help of recently developed resources: an improved Peterson-Gorenstein-Zierler
decoder for alternant error-correcting codes; PYECC, a purely Python CAS; a
package of PYECC functional utilities for the computations involved in defin-
ing, coding and decoding error-correcting codes; a web page with free-access
to the materials generated by the project.

Keywords: Error-correcting codes, Classical Goppa codes, Post-quantum cryptog-
raphy

One of the motivations for this work was the development of a purely Python CAS
environment to cover the computational needs of a book such as [11] and the con-
fidence gained in implementing decoders like the old Peterson-Gorenstein-Zierler
[7, 3, 8], including the improvements presented in [2], and the computations for [5].
Further developments led to the CAS system that is now available at https://mat-
web.upc.edu/people/sebastia.xambo/PyECC.htmlPyECC. The revisiting of the McEliece
public-key crypto-system [4], which is based in a class of binary classical Goppa
codes, was a further test of these tools. One friendly feature of the environment is the
availability of the source code through Jupyter notebooks.∗

The main purpose of our talk is to present an overview of those developments
and will be structured as follows: A brief introduction to Goppa codes, particularly
to their decoding (see [11, 2]); a detailed description of the McEliece system [4] and
analysis of its security levels (see [1, 6]); a report on the structure and functionality of
PYECC, with emphasis on the utilities needed for the implementation of that system.
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On the rank and kernel of new HFP-codes

E. Suárez-Canedo1

Hadamard codes with a subjacent group structure were principally studied from
the point of view of cocyclic Hadamard matrices, Hadamard groups, and relative
difference sets [1, 2, 3]. Propelinear codes, introduced in 1989 [4], also played an
important role on the computation of Hadamard codes; indeed, they allow to classify
Hadamard codes with a subjacent Z2Z4 and Z2Z4Q8 group structure attending to
the values of the rank and dimension of the kernel [5]. In [6] we define the family
of HFP-codes and we prove the equivalences between them and Hadamard groups.
Furthermore, constructions on HFP-codes with a subjacent Cn×Q8 and the dicyclic
Q8n group structure appear in [7, 8]. Now we classify new families of HFP-codes
attending to the values of the rank and dimension of the kernel.

Keywords: Rank, kernel, HFP-codes.
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Satisfiability modulo theory in finding the distance
distribution of binary constrained arrays

Putranto Utomo1

Despite of the hardness of finding the distance distribution of a code, it is one of
the important topics in coding theory. By knowing the distance distribution of a code,
we can measure the performance of the code.

The development in satisfiability (SAT) theory has been improved recently. The
modern SAT solver is performing much better in terms of computational efficiency.
Unfortunately not all problems could easily be expressed as a propositional satisfib-
iality problem, and some could lead to a very complex representation. This problem
gives rise to a new topic called satisfiability modulo theory (SMT). The idea is to
restrict the fragment of first order logic to some logical background theory. By doing
this, it can solve more varied problems efficiently using the SAT solver engine.

The constrained system, especially the 1-D constraint, has proved to be beneficial
for the magnetic tape recording. Recent developments in data recording technology
allows us to store data in 2-D format, such as the holographic recording technol-
ogy. However, in constrast with the constrained sequence, the theory is not yet well
developed.

In this paper, we utilize the power of the SMT solver to find the distance distri-
bution of 2-D binary constrained systems.

Keywords: Constrained arrays, Distance distribution
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