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Aim and cope

Parametric polynomial system solving is a challenge coming from many applications,
such as biology, control theory, robotics, deformation of hypersurface singularities,
etc. When a problem can be modelled by a parametric system, the main issue is
not only to return its solutions, but also to describe them. The design of algorithms
to solve parametric systems has recently become an active and expanding research
field. Manipulating parametric systems is at the heart of computer algebra. It calls
upon a wide range of methods, such as comprehensive Gröbner bases, Cylindrical
Algebraic Decomposition, Quantifier Elimination, Comprehensive Triangular Sets,
Comprehensive Involutive Systems, Parametric Local Cohomology System, etc.

This session is focused on the art of parametric system solving, for general class
of systems or dedicated to specific application problems, including the following
topics:

• Comprehensive Gröbner bases (systems)

• Quantifier elimination

• Comprehensive triangular sets

• Deformation of hypersurface singularities

• Modelisation of parametric problems

• Optimization of parametric systems

• Resolution of sparse parametric systems

• Low-level computation with multivariate polynomial coefficients

• Resolution of polynomial systems with boolean parameters

• Description of the real solutions of a parametric system

• Description of the parameter space of a polynomial system

• Extension of algorithms from non parametric to parametric systems
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An overview on marked bases and applications

Cristina Bertone1

The Hilbert scheme was introduced by Grothendieck in the 60s. One can simply
think of the Hilbert scheme Hilbn

p(t) as a set containing all the saturated homogeneous
ideals I in a certain polynomial ring k[x0, . . . , xn] = k[x], with k a field, such that
k[x]/I has a given Hilbert polynomial p(t). Grothendieck proved that Hilbn

p(t) is
not just a set, but it has a projective scheme structure. Although expert researchers
investigated it, the Hilbert scheme is a mysterious object. Few properties are known,
for instance Hartshorne proved connectedness in his Ph.D. Thesis.

A natural appealing application of Gröbner bases in Algebraic Geometry is the
possibility to investigate families of ideals, and understand whether there is a scheme
parameterizing them. In this framework, several authors tried to investigate the
Hilbert Scheme by Gröbner techniques, see for instance [8]. The family of ideals
having a certain initial ideal J for a given term order ≺ is called Gröbner Stratum.
Imposing conditions for a suitable monic set of parametric polynomials to be a Gröb-
ner basis gives the structure of closed scheme to the Gröbner Stratum of J in an
affine space. Applying this construction to J≥r, where J is a monomial ideal such
that k[x]/J has Hilbert polynomial p(t) and r is the Gotzmann number of p(t), one
can obtain a stratification of the Hilbert scheme by means of Gröbner Strata. Each of
these Gröbner Strata is isomorphic to a locally closed subset (in general not an open
subset) of Hilbn

p(t) [8, Theorem 6.3 (i)].
From the point of view of Algebraic Geometry, the fact that a Gröbner Stratum

is not in general an open subset of Hilbn
p(t) is a big issue. This means that Gröbner

Strata are not suitable to locally study Hilbn
p(t). Furthermore, it is not possible to

obtain the ring of coordinates of Hilbn
p(t), as a subscheme of a suitable projective

space, by “glueing” the affine schemes of the Gröbner Strata that cover Hilbn
p(t).

In order to overcome the flaws of Gröbner strata with respect to the investigation
of Hilbert schemes, a successful idea is to replace the use of a term order by consid-
ering special monomial ideals with strong combinatorial structure. Geometrically, it
is totally reasonable to focus on this sort of monomial ideals: for instance Hartshorne
proved the connectedness of the Hilbert scheme using strongly stable monomial ide-
als.

We construct families of ideals by suitable parametric polynomial generators
which are monic in the terms generating a quasi-stable ideal. By imposing condi-
tion on these generators in order to have a marked basis, we describe an open subset
of Hilbn

p(t) around the quasi-stable ideal.



1 Marked bases over a quasi-stable ideal

Here is a summary of the construction of marked bases over a quasi-stable ideal. The
main references are [4, 7, 1].

Assume that x0 > · · · > xn. If σ is a term, we denote by min(σ) (resp. max(σ))
the index of the smallest (resp. biggest) variable dividing σ. We choose a quasi-
stable monomial ideal J ⊂ k[x]. This monomial ideal has a special set of monomial
generators, a Pommaret basis P(J), such that: for every σ ∈ J , there is a unique
η ∈ P(J) such that σ = η · δ where δ is a term and min(η) ≥ max(δ).

Let A be a Noetherian k-algebra. We construct a set of (monic) marked poly-
nomials over J , GP(J), in the following way: for every η ∈ P(J), we define
fη := η −

∑
τ /∈J cηττ , where cητ ∈ A. The term η is the head term of fη. The

set GP(J) is a marked basis if the terms of degree s outside J are a basis of the mod-
ule A[x]s/(GP(J))s, for every s. Thanks to the quasi-stability of J , it is possible to
define a polynomial reduction process.

Definition 1.1. We denote by
GP(J)−−−−→ the transitive closure of the following reduction

relation in A[x]: g and g′ are in relation if g′ = g − cδfη, with δη ∈ J is a term
appearing in g with coefficient c 6= 0A, fη belongs toGP(J), δ is a term and min(η) ≥
max(δ).

The reduction
GP(J)−−−−→ is Noetherian and confluent: for every g ∈ A[x], there is a

unique h such that g
GP(J)−−−−→ h and every term appearing with non-zero coefficient in

h does not belong to J (the support of h is outside J).

Theorem 1.2. [Buchberger-like criterion] For every η ∈ P(J), for every i > max(η),

we compute hη,i such that xifη
GP(J)−−−−→ hη,i and the support of hη,i is outside J .

GP(J) is a marked basis over J if and only if hη,i = 0 for every η ∈ P(J), for every
i > min(η).

We can construct a marked set GP(J), replacing cητ ∈ A by a parameter Cητ .
Let C be the set of paramters Cητ . By Theorem 6, we impose conditions in k[C] for
GP(J) to be a marked basis: in this way we obtain a marked scheme. More precisely:

Theorem 1.3. For every η ∈ P(J), for every i > min(η), compute hη,i as in Theo-
rem 6. Let R ⊂ k[C] be the ideal generated by the x-coefficients of the polynomials
hη,i. The affine scheme MP(J) := Spec(k[C]/R) paramaterizes the ideals in A[x]
generated by a marked basis over J , for every Noetherian k-algebra A. We call
MP(J) marked scheme over J .

Marked schemes give an open cover of Hilbn
p(t) as follows. We compute the

complete list L of saturated quasi-stable ideals J having Hilbert polynomial p(t), and
for each of them we compute the marked scheme over J≥r, where r is the Gotzmann
number of p(t). Each of these marked schemes is an open subset of Hilbn

p(t) [7,



Theorem 1.13].
Furthermore, we consider the usual action of PGL = PGLk(n + 1) on A[x], and
extend it to the points of Hilbn

p(t). Up to this action of PGL, we get an open cover of
Hilbn

p(t) by means of the computed marked schemes [7, Theorem 2.5]:

Hilbn
p(t) =

⋃
g∈PGL,J∈L

g ·M(J≥r). (1)

This open cover is actually functorial: the marked schemes glue together, and it is
possible to explicitely compute equations that define the projective scheme Hilbn

p(t)
in a suitable projective space. This gives a new proof of the existence of the Hilbert
scheme. The complete proof is in [6] for the Hilbert scheme, in [2] for the locus with
bounded regularity, and in [1] this is generalized to Quot Schemes.

2 Some Applications

(1) The parametric system of equations we use to compute the conditions in k[C] for
a marked basis is also used in order to study the liftings of a projective scheme. In [3],
we prove that the liftings of a projective scheme with a given Hilbert polynomial are
parameterized by a closed subscheme of a union of some marked schemes. Although
Gröbner strata are sufficient to complete a first part of the investigation (xn-liftings),
marked schemes turn out to be the suitable approach to geometric liftings, due to the
reasonable geometric assumption that the scheme to lift is in general position and to
the openness of marked schemes in Hilbn

p(t).
(2) We can use marked schemes as open neighbourhoods of interesting points of
Hilbn

p(t), not only those defined by monomial ideals: for instance, we use them in [5]
in order to prove the smoothability of the Gorenstein graded k-algebras with Hilbert
function (1, 7, 7, 1) (and as a byproduct of the computations we obtain that Hilb7
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has at least 3 irreducible components).
(3) As already mentioned, from the open cover (1), it is possible to compute the
equations defining the Hilbert scheme as a subscheme of a suitable projective space
[6]. This construction is generalized in [2] for the locus with bounded regularity, and
in [1] to the case of Quot Schemes. These equations allow the direct study of Hilbert
and Quot schemes. For instance, a paper on the Quot scheme of modules in k[x, y]2

with Hilbert polynomial p(z) = 2 is in progress.

Keywords: quasi-stable ideal, polynomial reduction process, Hilbert scheme
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Fitting a Sphere to Point Cloud Data via Computer Algebra

Robert H. Lewis1, B. Paláncz2 J. Awange3

To determine orientation using different kinds of sensors requires reference ob-
jects. One of the most frequently employed reference object is a sphere with known
radius R and center coordinates (x, y, z).

In this paper we investigate the identification of these parameters from point cloud
data contaminated by outliers and corrupted by low sensor resolution. Our main tools
are Gröbner basis and the Dixon resultant. First the deterministic subsystems of the
overdetermined system are solved. Algebraic computations show that when R is
known, but the center coordinates are unknown, the algebraic and geometric fittings
provide two solutions, while in the case of unknown R, the geometric fitting gives a
unique solution.

The raw data of the point cloud were filtered using a Self Organized Map neural
network. The overdetermined system was solved via a simplified Gauss-Jacobi tech-
nique using the results of the algebraic computations. This involves a polynomial
system with 20 parameters. Our method is illustrated by a symbolic-numeric exam-
ple based on real field measurement data using Mathematica and Fermat computer
algebra systems.

Keywords: point cloud, polynomial system, resultant, symbolic-numeric, Gröbner
basis
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Resultants, Implicit Parameterizations, and Intersections of
Surfaces

Robert H. Lewis1,

A classic problem in computer graphics and computer aided design is to derive
an implicit equation for a surface given a parameterization of it. Since our surfaces
are in three-dimensional space, we conventionally have three equations

x =f(s, t)

y =g(s, t)

z =h(s, t)

If homogeneous coordinates are being used, there is a fourth equation for w.
The implicit equation is produced by eliminating the s and t. As a very simple

two-dimensional example, for a circle of radius r, the parametric equations are x =
r cos(θ), y = r sin(θ). It is easy to eliminate θ by squaring and adding:

x2 + y2 = r2 cos2(θ) + r2 sin2(θ) = r2

yielding the familiar equation for a circle. (r is not a variable, but a parameter in
the other sense of the word “parameter.") Real examples of interest are much more
complicated than this, and sophisticated elimination techniques are needed.

The simple example illustrates an important idea. Parametric systems frequently
involve trig functions, usually sine and cosine. Elimination techniques usually require
polynomial (or rational) functions. A system with sine and cosine is easily converted
to a polynomial system by replacing cosine with, say, ct, sine with st, and adding a
new equation ct2 + st2 − 1 = 0.

The theory of eliminating variables from a system of equations has a long history,
starting with Bezout around 1760. A key idea is the resultant of a system of polyno-
mial equations [2], [8]. Bezout did this for one-variable polynomials. Dixon in 1908
extended it to multivariate polynomials, and proved it would work in a certain ideal
situation. However, for real problems the ideal situation rarely applies and often the
method seems to fail. Kapur, Saxena, and Yang showed how to get around all those
problems in 1994 [3]. Lewis refined and greatly improved the method in 2008 [4] to
what is called Dixon-EDF. Gröbner bases can also be used to eliminate variables [8].

In spite of the 1994 publication, the Kapur-Saxena-Yang (KSY) method seems
to have not been noticed by the computer graphics community. In 2000 the authors
of [1] explicitly reject resultants as unworkable. In 2004 Wang [9] was aware of



the Bezout-Dixon method but not KSY. He develops a new method to implicitize
surfaces and tests fifteen examples with his method, resultants, and Gröbner bases.
As in [1] he reports that in many cases resultants will not work because the Dixon
method returns 0. This is one of the situations that KSY overcomes!

We compare Wang’s reported time using pre-KSY Dixon, Wang’s method, and
our solution today using Dixon-KSY-EDF. We find our method to be greatly superior.

In 2017 Shen and Goldman [6] also report a new method for certain implicitiza-
tions. They also say that some resultant matrices have a 0 determinant and therefore
resultants cannot be used. They do not refer to KSY.

We compare their reported times and our solutions today using Dixon-EDF work-
ing on some of their examples.

They try resultants in the generalized Sylvester form as found in [7] on their
examples, and they also try Gröbner basis techniques. Gröbner bases failed in every
case, meaning that nothing was returned within 10 minutes. Their resultants failed in
the same way in every case except example 10.

Out techniques always work, are more efficient, and are more general.
In the following, Dixon always denotes the complete combination Dixon-KSY-

EDF.
A second very important problem is to compute the intersection of two surfaces.

Many papers have addressed this question. Virtually all the papers assume that the
surfaces are quadric, i.e., degree 2. This means that the implicit equation is of the
form

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j = 0

We describe here an apparently new way to compute intersections so long as
at least one of the surfaces is given by a conventional parameterization, as in the
previous section. There is no restriction on the degrees of the surfaces, at least theo-
retically. Suppose surface one is given by

x = f1(s1, t1), y = g1(s1, t1), z = h1(s1, t1)

and surface two is

x = f2(s2, t2), y = g2(s2, t2), z = h2(s2, t2)

For the intersection simply combine this to form a system of six equations. Use Dixon
to eliminate five variables, say y, z, t1, s2, t2. That yields one equation (resultant)
involving x and s1. If this is linear in x, solve for x and obtain the parametric equation
for the x-coordinate of the intersection curve. Repeat for y and z. One could just as
well express x in terms of s2, t1 or t2. That might have computational advantages.

The process described above also works if one surface has a parameterization and
the second has an implicit definition, say p(x, y, z) = 0. We then have four equations
x = f1(s1, t1), y = g1(s1, t1), z = h1(s1, t1), p(x, y, z) = 0 and we eliminate three
variables, say y, z, t1.



If the resultant is degree 2 in x, one can easily use the quadratic formula to get
two possible expressions for x in terms of s1. Numerical testing could determine
which is correct. Of course, degree 3 or 4 could also be handled by formulas, but the
expressions would no doubt become daunting.

What if the degrees are higher than 2 or we don’t want to deal with messy formu-
las? This leads to a new concept:
Definition: An implicit parameterization of a curve in 3-space is a set of three equa-
tions

f(x, s) = 0, g(y, s) = 0, h(z, s) = 0

whose solution set includes the curve. s is called the curve parameter.
Theorem Given two surfaces defined as above with polynomial functions, the Dixon
resultant will produce an implicit parameterization of their intersection.

This follows immediately from the above discussion. The only possible flaw is
if the set of six (or four) equations does not have a zero-dimensional solution space.
That means for some values of the parameter s1 there are infinitely many values of
x. Dixon can fail in that case.

We will illustrate our techniques with many examples.
In summary,

• Computing an implicitization with Dixon is straightforward and routine. No
special conditions on the surfaces are needed.

• The concept introduced here of “implicit parameterization" is easy to compute
with Dixon. No special conditions on the surfaces are needed.

• Implicit parameterizations can be dealt with in fairly straightforward ways with
commercial software.

Keywords: surface, polynomial system, resultant, Dixon, parameters, intersection,
Gröbner basis
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Presentation of "The Gröbner Cover"
Antonio Montes1

I present the book “The Gröbner Cover" [6], that will be published during the
present year. The contents are the following:

Preface
1. Preliminaries

Part 1. Theory
2. Constructible sets
3. Comprehensive Gröbner Systems
4. I-regular functions on a locally closed set
5. The Canonical Gröbner Cover

Part 2. Applications
6. Automatic Deduction of Geometric Theorems
7. Geometric Loci
8. Geometric Envelopes

Appendix
Bibliography

The genesis of this book is paper [7] for studying parametric polynomial systems.
Part 1 Theory: contains all the necessary tools to prove the existence and compu-

tation methods for obtaining the Canonical Gröbner Cover of a parametric polyno-
mial system; Particularly, in Chapter 3, we provide the definitions and computation
methods for obtaining all the canonical representations of constructible sets [3] and
locally closed sets, that are used in Chapter 5 to obtain the Gröbner Cover, as well as
for defining and computing all the algorithms provided in Part 2.

Part 2 Applications: contains three natural and interesting applications. Chapter 6
develops a new algorithm for Automatic Deduction of Geometric Theorems (ADGT)
that, given a common geometric proposition of the form (H∧¬H1)⇒ (T∧¬T1), de-
termines complementary hypothesis for the proposition to become a Theorem. The
approach to this application was initiated in [5], but the new algorithm has not yet
been published. Concerning Chapter 7, we introduced in [1] the taxonomy of the
irreducible components of a Geometric Locus, which is determined by our locus
algorithm. The content of Chapter 8, which has not yet been published either, gen-
eralizes the classical definitions, theorems and algorithms [2] for determining the



envelope of a family of hyper-surfaces with more degrees of freedom than usual.
Moreover, a new algorithm for determining the irreducible algebraic components of
the envelope, as well as two other algorithms for approaching the real projection of
the envelope are provided.

All the algorithms described in the text are implemented in the Singular library
“grobcov.lib" [8], whose latest implementation can be downloaded from the web [4].
The book can also be used as a User Manual for the library.

In the talk I will present some examples using the new algorithms to show their
utility and I will give a general outlook about the book.

Keywords: Parametric Polynomial System, Canonical Discussion, Parametric Gröb-
ner System, Gröbner System.
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Computation methods of b-functions
associated with µ-constant deformations

– Case of inner modality 2 –

Katsusuke Nabeshima1, Shinichi Tajima2

In this talk, computation methods of parametric b-functions are introduced for µ-
constant deformation of quasihomogeneous singularities. The methods of b-functions
associated with µ-constant deformations are constructed by using comprehensive
Gröbner systems and the set of candidates of roots. In the cases of iner modality
2 ([7]), all b-funtions of associated with µ-constant deformations, can be obtained by
our computation methods.

Let C〈x, ∂x〉 denote the Weyl algebra, the ring of linear partial differential oper-
ators with coefficients in C, where x = (x1, . . . , xn), ∂x = (∂1, . . . , ∂n), ∂i = ∂

∂xi
.

Let f be a non-constant polynomial in C[x]. Then, the annihilating ideal of fs is
Ann(fs) := {p ∈ C〈s, x, ∂x〉|pfs = 0} where s is an indeterminate. The b-function
or the Bernstein-Sato polynomial of f is defined as the monic generator bf (s) of
(Ann(fs) + Id(f)) ∩ C[s] where Id(f) is the ideal generated by f . It is known that
the b-function of f always has s + 1 as a factor and has a form (s + 1)b̃f (s), where
b̃f (s) ∈ C[s]. The polynomial b̃f (s) is called the reduced b-function of f .

It is known that a basis of the ideal Ann(f s) can be computed by utilizing a
Gröbner basis in C〈x, ∂x〉 or PWB algebra ([5]). Moreorver, the reduced b-function
b̃f (s) can be obtained by computing a Gröbner basis of Ann(fs)+ Id( ∂f∂x1 , . . . ,

∂f
∂xn

).
Let f be a parametric polynomial in (C[u])[x] where u = (u1, . . . , um) and u

are parameters. In our previous paper [4], a computation method of comprehensive
Gröbner systems (CGS) has been introduced in Poincare-Birkhoff-Witt (PBW) alge-
bras. Thus, theoretically, a CGS of the ideal Ann(fs) can be computed by utilizing
the computation method. Moreover, a CGS of the ideal Ann(fs) + Id(f) can be
computed, too. Hence, parametric b-functions can be computed by the following al-
gorithm.

Algorithm 1.
Input: f : a parametric polynomial.
Output: reducded b-functions of f .
STEP 1: Compute a CGS of Ann(f s).
STEP 2: Compute a CGS of Ann(f s) + Id( ∂f∂x1 , . . . ,

∂f
∂xn

).

Algorithm 1 has been implemented in the computer algebra system Risa/Asir.



Table 1: reduced b-functions of x2z + yz2 + y6 + u1y
4z + u2z

3

strata reduced b-function
C2\V(u1) B(s)(s+ 9

8)(s+ 23
24)

V(u1)\V(u1, u2) B(s)(s+ 9
8)(s+ 47

24)

V(u1, u2) B(s)(s+ 17
8 )(s+ 47

24)

The Milnor number µ of the singularity x2z+yz2 +y6 = 0 is 17 (S17 singularity,
the inner modality is 2), and the µ-constant deformation is given by f = x2z+yz2 +
y6 + u1y

4z + u2z
3 where u1, u2 are parameters. Our implementation can output

Table 1 as the parametric reduced b-function of f within 5 hours where

B(s) = (s+ 3
2)(s+ 4

3)(s+ 7
6)(s+ 11

6 )(s+ 7
8)(s+ 11

8 )(s+ 13
8 )

×(s+ 25
24)(s+ 29

24)(s+ 31
24)(s+ 35

24)(s+ 37
24)(s+ 41

24)(s+ 43
24).

Let us consider another example. The Milnor number of µ of the singularity
x2z + yz2 + xy4 = 0 is 16 (S16 singularity, the inner modality is 2), and the µ-
constant deformation is given by f = x2z + yz2 + xy4 + u1y

6 + u2z
3 where u1, u2

are parameters. In this case, our implementation of Algorithm 1 cannot return the
parametric reduced b-function of f within “2 months”. However, the implementation
returns a CGS of Ann(fs) within 1 day. Thus, we can infer that the computational
complexity of Ann(fs) + Id( ∂f∂x1 , . . . ,

∂f
∂xn

) is quite big.
In order to avoid the big computation, Levandovskyy and Martin-Morales [3]

have introduced a smart idea. We adopt the idea for computing b-functions of µ-
constant deformations. However, the idea is not good enough to decide b-functions
of µ-constant deformations. We need a further computation step that is checking
local cohomology solutions of each holonomic D-module associted with a root of
b̃(s) = 0, to compute b-functions of µ-constant deformations.

In this talk, we introduce the further computation step and the new algorithm for
computing b-functions associated with µ-constant deformations.

Let f(u, x) = f0 + g ∈ (C[u])[x] be a semi-quasihomogeneous polynomial,
where f0 is the quasihomogeneous part (or weighted homogeneous part) and g is a
linear combination of upper monomials with parameters u. Then, f can be regard as
a µ-constant deformation of f0 with an isolated singularity at the origin. We have the
foolowing classical results.

Theorem 1 Let Ef0 = {γ ∈ Q|b̃f0(γ) = 0} where b̃f0 is the reduced b-function
of f0 on the origin. Then, for e ∈ Cm, the set of roots of b-function of f(e, x), on
the origin, the set Ef(e,x) = {γ|bf(e,x)(γ) = 0} becomes a subset of E = {γ − ` ∈
Q|γ ∈ Ef0 , ` ∈ Z,−n < γ − ` < 0} where Z is the set of integers. That is,
Ef(e,x) ⊂ E, for e ∈ Cm.

Theorem 2 Let f be a non-constant polynomial in C[x], H a basis of Ann(fs) in
C〈s, x, ∂x〉, γ ∈ Q and r ∈ N. Let G be a minimal Gröbner basis of Id(H ∪



{f, ∂f∂x1 ,
∂f
∂x2

, . . . , ∂f
∂xn
} ∪ {(s − γ)r}) w.r.t. a block term order � s.t. x ∪ ∂x � s.

Then, if (s− γ)r ∈ G, (s− γ)r is a factor of the b-function of f .

The outline of the new algorithm is the following.

Algorithm 2.
Input: f : a parametric polynomial.
Output: reducded b-functions of f .
STEP 1: Compute a set E of candidates of roots of b̃f (s) = 0.
STEP 2: Compute a CGS of Ann(fs).
STEP 3: Compute a minimal Gröbner basis G of Ann(fs) + Id((s − γ)r, f) (or
Id((s− γ)r,
f, ∂f∂x1 ,

∂f
∂x2

, . . . , ∂f∂xn )) in C[s]〈x, ∂x〉 where γ ∈ E and r ∈ N>0.
If (s− γ)r ∈ G, then (s− γ)r is a factor of the b-function of f .
STEP 4: For each stratum, check local cohomology solutions of each holonomic
D-module associated with the root of b̃f (s) = 0.

By executing Algorithm 2, we can obtain Table 2 as the parametric reduced b-
function of f = x2z + yz2 + xy4 + u1y

6 + u2z
3 within 4 hours where

B(s) = (s+ 15
17)(s+ 18

17)(s+ 20
17)(s+ 21

17)(s+ 22
17)(s+ 23

17)(s+ 24
17)(s+ 25

17)
×(s+ 26

17)(s+ 27
17)(s+ 28

17)(s+ 29
17)(s+ 30

17)(s+ 31
17).

Table 2: reduced b-functions of x2z + yz2 + xy4 + u1y
6 + u2z

3

strata reduced b-function
C2\V(u1) B(s)(s+ 16

17)(s+ 19
17)

V(u1)\V(u1, u2) B(s)(s+ 19
17)(s+ 33

17)

V(u1, u2) B(s)(s+ 33
17)(s+ 36

17)

In this talk, we present mainly Algorithm 2 and show all b-functions of µ-constant
deformation of inner modality 2.

Keywords: b-functions, comprehensive Gröbner systems, local cohomology
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An algorithm for computing Grothendieck local residues II
— general case —

Katsuyoshi Ohara1, Shinichi Tajima2

We will give an algorithm for exactly evaluating Grothendieck local residues for
rational n-forms of n variables under general condition and show an implementation
on a computer algebra system Risa/Asir. Grothendieck local residue is a natural gen-
eralization of the well-known residue for complex functions of single variable. The
local residue was firstly described in Hartshorne [3] via the local duality in terms of
derived category in much greater generality. The local duality can be also interpreted
as a perfect pairing in terms of homological algebra. When a point is fixed, it can
be realized as an integration of a meromorphic n-form of complex n variables on a
real n-cycle around the point. Griffiths-Harris [2] described the following analytic
definition of Grothendieck local residues.

Definition. Denote byO(U) a ring of holomorphic functions on a ball U ⊂ Cn.
Suppose that f1(x), . . . , fn(x) ∈ O(U) make regular sequence and have only one
isolated common zero β ∈ U . Let Γ(β) be a real n-cycle around β defined by
Γ(β) = {x ∈ U | ‖f1(x)‖ = ε, . . . , ‖fn(x)‖ = ε} and oriented by d(arg f1) ∧
· · · ∧ d(arg fn) ≥ 0. Denote τF = (f1(x) · · · fn(x))−1dx1 ∧ · · · ∧ dxn, where x =
(x1, . . . , xn). For any ϕ(x) ∈ O(U), the integration

Resβ(ϕ(x)τF ) =

(
1

2π
√
−1

)n ∫
Γ(β)

ϕ(x)τF

is called the Grothendieck local residue of meromorphic n-form ϕ(x)τF .

The integration certainly gives an explicit representation of the local residue at
the point β. However, in general, it is very hard to directly evaluate the integration
because of complicated geometric shape of the real n-cycle in the 2n-dimensional
real space. To solve this problem, we use a method based on D-modules.

Let K be a subfield of C and denote K[x] = K[x1, . . . , xn]. We suppose that a
polynomial sequence F = {f1, . . . , fn} with K-coefficients is regular. The polyno-
mial ideal I generated by F is zero-dimensional. The zero set VC(I) = {a ∈ Cn |
g(a) = 0, ∀g ∈ I} is finite and it consists of isolated common zeros of the regular
sequence F .

We introduce the n-th algebraic local cohomology group with support on Z =
VC(I) by

Hn
[Z](K[x]) = lim

k→∞
ExtnK[x](K[x]/(

√
I)k,K[x]).



The algebraic local cohomology group Hn
[Z](K[x]) can be regarded as a collection

of equivalent classes of rational functions whose denominator has zero only on Z.
Here the equivalence is given by cutting holomorphic parts of rational functions in a
cohomlogical way.

According to the primary decomposition I =
⋂`
λ=1 Iλ, the zero set also can

be written as union of irreducible affine varieties: Z =
⋃`
λ=1 Zλ, where Zλ =

VC(
√
Iλ). Then Hn

[Z](K[x]) is decomposed to direct sum

Hn
[Z](K[x]) = Hn

[Z1](K[x])⊕ · · · ⊕Hn
[Zλ](K[x])⊕ · · · ⊕Hn

[Z`]
(K[x]).

Therefore an algebraic local cohomology class σF =
[

1
f1···fn

]
∈ Hn

[Z](K[x]) has
unique decomposition

σF = σF,1 + · · ·+ σF,λ + · · ·+ σF,`,

where σF,λ ∈ Hn
[Zλ](K[x]). Note that supp (σF,λ) ⊂ Zλ. The decomposition above

is a kind of partial fractional expansion of 1
f1···fn in terms of local cohomology.

Let β ∈ Zλ and ϕ(x) ∈ O(U) where U is a small neighborhood of β. We want
to evaluate the local residue Resβ(ϕτF ) where τF = (f1(x) · · · fn(x))−1dx and
dx = dx1∧ · · · ∧dxn. If j 6= λ, then each σF,j vanishes on U because supp (σF,j)∩
U = ∅. Thus Resβ(ϕτF ) = Resβ(ϕσF,λdx) for β ∈ Zλ. We denote by δZλ the
local cohomology class which represents the delta function with the support Zλ.

The algebraic local cohomology group can be naturally endowed with a structure
of D-module. On the support Zλ, from general theory, it follows Hn

[Zλ](K[x]) =
DnδZλ . In other words, there exists a linear differential operator TF,λ ∈ Dn such
that σF,λ = T ∗F,λ • δZλ where T ∗F,λ stands for the formal adjoint of TF,λ. Since the
local residue can be described in terms of local cohomology, we have Resβ(ϕτF ) =

Resβ(
[

ϕdx
f1···fn

]
). Therefore

Resβ(

[
ϕdx

f1 · · · fn

]
) = Resβ(ϕσFdx)

= Resβ(ϕ · (T ∗F,λ • δZλ)dx)

= Resβ((TF,λ • ϕ) · δZλdx)

= (TF,λ • ϕ)|x=β.

That is, the mapping ϕ 7→ Resβ(ϕτF ) is determined by the differential operator
TF,λ. Since the set {(TF,λ, Zλ) | λ = 1, 2, . . . , `} gives the Grothendieck local
residue mapping, the local residue of any meromorphic n-forms can be evaluated
by differential operators TF,λ. Our purpose is to find the differential operator TF,λ
without the use of an explicit representative element of the local cohomology class
σF,λ.

Under certain condition for the regular sequence F , we already gave an algorithm
for computing differential operators TF,λ (see [6]). We have extended the method



for more general setting. In this talk, we will describe new algorithm and show
an implementation on the computer algebra system. Our algorithm consists of the
following steps.

1. Find the primary decomposition I =
⋂`
λ=1 Iλ.

2. Find the annihilating left-ideal AnnDn(σF ).

3. For each λ, find the vector space Vλ over K[x]/
√
Iλ spanned by Noether dif-

ferential operators of the associated prime
√
Iλ.

4. For each λ, find a “monic” operator S∗λ ∈ Vλ such that AnnDn(σF )S∗λ ⊂
AnnDn(δF,λ).

5. For each λ, determine the differential operator T ∗F,λ from S∗λ.

Keywords: Local residues, Local Cohomology, Holonomic System
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A canonical representation of continuity of the roots of a
parametric zero dimensional multi-variate polynomial ideal

Yosuke Sato1, Ryoya Fukasaku2, Hiroshi Sekigawa3

In [2, 3], we introduced the following result Theorem 1 which gives a sufficient
condition of a generator of a multivariate parametric zero dimensional ideal for the
continuity property of its roots. In [3], using the result we also give a correctness
proof of an algorithm for real quantifier elimination one of the authors has recently
developed and implemented in [1]. In this talk, using the theory introduced in [4],
we show the following results Theorem 2 and Theorem 3 which enable us both to
describe and to compute a canonical representation form of continuity of the roots of
a given parametric zero dimensional multi-variate polynomial ideal.

In what follows, Ā = A1, . . . , Am and X̄ = X1, . . . , Xn denote variables, we
consider Ā as parameters X̄ as main variables. The symbol � denotes an admissible
term order on the set of all terms of X̄ , for a polynomial f in Q[Ā, X̄], LM(f),
LT (f) and LC(f) denote the leading monomial, the leading term and the leading
coefficient of f respectively regarding f as a member of the polynomial ring over the
coefficient ring Q[Ā], i.e. f ∈ (Q[Ā])[X].

Definition 1. Let S be an algebraically constructible subset of an affine space Cm
for some natural number m. A finite set {S1, . . . ,Sk} of non-empty subsets of S is
called an algebraic partition of S if it satisfies the following properties 1, 2 and 3:

1. ∪ki=1Si = S.

2. Si ∩ Sj = ∅ if i 6= j.

3. Si is a locally closed set for each i, that is Si = VC(I1)\VC(I2) for the varieties
VC(I1), VC(I2) of some ideals I1, I2 of Q[Ā].

Each Si is called a segment.

Definition 2. Let S be an algebraically constructible subset of Cm. For a finite subset
F of Q[Ā, X̄], a finite set G = {(S1, G1), . . . , (Sk, Gk)} satisfying the following
properties 1, 2, 3 and 4 is called a comprehensive Gröbner system of F over S with
parameters Ā w.r.t. �:

1. Each Gi is a finite subset of Q[Ā, X̄].

2. {S1, . . . ,Sk} is an algebraic partition of S.



3. For each c̄ ∈ Si, Gi(c̄) = {g(c̄, X̄)|g(Ā, X̄) ∈ Gi} is a Gröbner basis of the
ideal 〈F (c̄)〉 in C[X̄] w.r.t. �, where F (c̄) = {f(c̄, X̄)|f(Ā, X̄) ∈ F}.

4. For each c̄ ∈ Si, LC(g)(c̄) 6= 0 for any element g of Gi.

In addition, if each Gi(c̄) is a minimal (reduced) Gröbner basis, G is said to be
minimal (reduced). Being monic is not required. When S is the whole space Cm, the
words “over S” is usually omitted.

The following fact is one of the most important properties of a minimal compre-
hensive Gröbner system.

Fact 1. LT (Gi(c̄, X̄)) is identical for each c̄ ∈ Si. Hence, the dimension of a C-
vector space C[X̄]/〈Gi(c̄, X̄)〉 is invariant for c̄ ∈ Si if it is finite. Consequently,
when the C-vector space has dimension l for each c̄ ∈ Si, the ideal 〈Gi(c̄, X̄)〉 has l
number of roots in Cn counting their multiplicities.

Considering the above roots as a l size multiset and introducing a natural topology
on a set of the same size multisets, we have the following property.

Theorem 1. Let G = {(S1, G1), . . . , (Sk, Gk)} ⊂ Q[X̄, Ā] be a minimal compre-
hensive Gröbner system with parameters Ā w.r.t. an arbitrary term order of main
variables X̄ . If the ideal 〈Gi(c̄)〉 is zero dimensional for each c̄ ∈ Si, then the set of
all roots of the system of the parametric polynomial equations g(Ā, X̄) = 0, g ∈ Gi
is continuous in the segment Si as a function of the parameters Ā.

Note that the multisets of the roots of two ideals 〈Gi(ā)〉 and 〈Gj(b̄)〉 for ā ∈ Si
and for b̄ ∈ Sj may have the same size for some different i, j, even whenLT (Gi(c̄, X̄))
and LT (Gj(c̄, X̄)) are distinct. For such a case we still have the following property.

Theorem 2. Using the same notations in the previous theorem, if the multisets of the
roots of two ideals 〈Gi(c̄)〉 and 〈Gj(c̄)〉 have the same size but LT (Gi(c̄, X̄)) and
LT (Gj(c̄, X̄)) are distinct, then two segments Si and Sj are not path-connected.

This property enables us to describe a canonical representation form of continuity
of the roots of a given parametric multi-variate polynomial ideal as follows.

Theorem 3. Given a finite set F of Q[Ā, X̄] and a term order �. There exists a
unique partition {A1,A2, . . . ,Ak} of Cm such that the following properties hold.

1. Each Ai is an algebraically constructible set.

2. LT (〈F (c̄, X̄)〉) is invariant for c̄ on each Ai.

3. LT (〈F (ā, X̄)〉) and LT (〈F (b̄, X̄)〉) are distinct if ā ∈ Ai and b̄ ∈ Aj for
different i, j.

4. If 〈F (c̄, X̄)〉 has finite zeros in Cn for c̄ on Ai, the map from Ai to the set of
multisets of such zeros is continuous.



5. If C[X̄]/〈F (ā, X̄)〉 and C[X̄]/〈F (b̄, X̄)〉 have the same finite dimension as C
vector space for ā ∈ Ai and b̄ ∈ Aj (i 6= j), then Ai and Aj are not path-
connected.

Remark 1. Using the theory of [4], we can also compute such a partition {A1,A2, . . . ,Ak}
from a given finite set F of Q[Ā, X̄].

Remark 2. The partition {A1,A2, . . . ,Ak} depends on the choice of a term order,
however, it seems to be independent, though we have not shown it yet.

Keywords: Comprehensive Gröbner System, Representation of Continuity, Quan-
tifier Elimination
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An effective method for computing
Grothendieck point residues

Shinichi Tajima1, Katsusuke Nabeshim2

In this talk, we present an effective algorithm for computing Grothendieck local
residues associated to semi-quasi homogeneous hypersurface isolated singularities.
The key idea of our approach is the use of Grothendieck local duality.

The theory of Grothendieck local residue is a cornerstone of algebraic geometry
and complex analysis. It has been used in diverse problems of several different fields
ofmathematics. It is known theoretically that the classical transformation law given
in [2] can be used to compute its values. Whereas computing Grothendieck local
residue is quite difficult even if one uses computer algebra systems, because of the
cost of computation in local rings. Developing effective methods for computing has
been desired in many applications.

We consider in this talk Grothendieck point residues associated to a µ-constant
deformation of quasi-homogeneous hypersurface isolated singularity. Based on the
theory of local cohomology and Grothendieck local duality, we propose a new ef-
fective method for computing Grothendieck local residues. A key innovation of the
resulting algorithm is an improvement of a previous algorithm on extended ideal
membership problems in the ring of convergent power series [5].

To be more precise, let f(x, t) = f0(x) + g(x, t) be a semi-quasi homogeneous
polynomial, where f0(x) is the quasi-homogeneous part, g(x, t) =

∑`
j=1 tjx

βj is a
sum of upper monomials with x = (x1, x2, ..., xn) main variables, t = (t1, t2, ..., t`)

deformation parameters. SetF = [ ∂f∂x1 ,
∂f
∂x2

, ..., ∂f∂xn ] and let τF = [
1

∂f
∂x1
· ∂f∂x2 · · ·

∂f
∂xn

]

denote the local cohomology class inHn{O}(OX) with parameters twhere [
1

∂f
∂x1
· ∂f∂x2 · · ·

∂f
∂xn

]

is the Grothendieck symbol.
Let res{O}(h, τFdx) denote the Grothendieck point residue at the origin O in

Cn of the differential form

h(x)
∂f
∂x1
· ∂f∂x2 · · ·

∂f
∂xn

dx1 ∧ dx2 ∧ · · · ∧ dxn,

where h(x) is a germ of holomorphic function. The linear map which assigns to each
holomorphic function h(x) the Grothendieck point residue

h(x) −→ res{O}(h, τFdx)



can be expressed in terms of partial differential operators. Namely there exists a
linear partial differential operator T , s.t.

(Th)(O) = res{O}(h, τFdx)

By using algorithm for computing algebraic local cohomology classes with pa-
rameters ([4]) , we introduce an effective method for computing the linear partial dif-
ferential operator T . We also show the resulting algorithm for computing Grothendieck
point residues associated to a µ-constant deformation of quasi homogeneous hyper-
surface isolated singularity.

We present some examples of computation.

Keywords: Grothendieck local residue, local cohomology, Grothendieck local
duality
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