Surfaces and their Duals

Josef Böhm ${ }^{1}$

[nojo.boehm@pgv.at]
${ }^{1}$ DUG, ACDCA, Austria
Recently I found among my many papers a one-page article about Dual Surfaces, written by Dr. Richard Morris, Liverpool University, which appeared in the Maths\&Stats journal which was published for several years by the University of Birmingham. It must have been before 2000 because I couldn't find the article in the MSOR Maths\&Stats archives:
https://journals.gre.ac.uk/index.php/msor/issue/archive and http://icse.xyz/mathstore/node/5682.html

Dr. Morris wrote: The dual of a surface is the set of planes tangent to the surface.
The mapping works as follows:
Any plane $a x+b y+c z=d$ can be interpreted as a point (a, b, c, d) in $\mathbf{R} \mathbf{P}^{2}$. Morris performs a projection of these points into \mathbb{R}^{3} using the map

$$
\begin{equation*}
(a, b, c, d) \longrightarrow\left(\frac{a}{c}, \frac{b}{c}, \frac{d}{c}\right) \tag{1}
\end{equation*}
$$

Some pictures in a low quality were presented. This was all. I will show how to perform this mapping using DERIVE and TI-Nspire CAS as well and present various surfaces together with their duals. Then I will vary the mapping followed by parameter curves and their duals. More questions came up, like "How does the dual of the dual look like?" This would be a nasty and boring calculation done by hand, but using a CAS ... Finally, I don't raise the problem from the third dimension up to the fourth, but do it the reverse way: I make a step down and try to find the dual of a plane curve. Cusps appear, where do they come from? So, this short article of Dr. Morris kept me busy some time and brought a lot of pleasure and surprise into my mathematical life, which I would like to share with an auditorium.

