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Supporting automated reasoning in the classroom has a long history in the era of computer
algebra. Several systems have been developed and introduced as prototypes at various school
levels during the last decades. A breakthrough in using computers to obtain automated proofs
is still expected, even if some freely available systems offer easy access to such technical
means.

In teaching geometry we refer to GeoGebra which became the de facto standard of a handy
geometry toolset in many schools worldwide. It allows conjecturing and proving equational
statements, including the geometric properties like parallelism, perpendicularity or equality
of lengths of segments in a planar geometric figure [9, 13], and more recently, inequational
theorems [16].

It is well-known that proving geometric inequalities is a more difficult scenario. Even if
there were robust frameworks created in the last 30 years including QEPCAD B [6, 3], Re-
duce/Redlog [8], Maple/RegularChains [4], Maple/SyNRAC [10] or Mathematica [18], prac-
tical use of them was not yet in the focus of educational research. In our talk we introduce an
extension of GeoGebra by adding a layer that is capable of using QEPCAD B (via the Tarski
[17] system) to conjecture and prove, or directly prove some simple geometric inequalities.

In our extension we build on the classical way of translating the geometric setup into an alge-
braic system, based on the revolutionary work of Wu [19], Chou [5], and improved later by
Recio and Vélez [14] with elimination theory. On the other hand, we partly use general pur-
pose real quantifier elimination (RQE) methods to find the best possible geometric constants
to conjecture and prove sharp inequalities between two expressions. Our implementation
uses cylindrical algebraic decomposition (CAD) that promotes effective RQE. In fact, the
translation of the geometric setup sometimes involves inequalities well, for example, when a
point is put on a segment or inside a triangle, or angle bisectors are drawn.

Fig. 1 shows how the inequality s ≤ 3
√
3R (where s stands for the semiperimeter and R for

the circumradius) can already be mechanically proven by our toolset in an intuitive way. The



Figure 1: A simple inequality that is automatically discovered and proven by GeoGebra
Discovery

underlying semi-algebraic translation is shown if Fig. 2.

In our communication we do not go into the hidden technical difficulties, but refer to the
paper [16] that focuses on the RQE related issues, and points to a large set of benchmarks
based on our tool (including several examples from [1]). Instead, we focus on the practical
use: how our work can be fruitful for the student and the teacher in a classroom.

Our experimental system is already capable of solving a large set of open questions in planar
Euclidean geometry. But speed remains an important issue: we recall that solving a CAD
problem has doubly exponential complexity in the number of variables (see [2, 7]).

GeoGebra Discovery is freely available at [11] for all three majors platforms (for Linux a 64
bit version and a Raspbian variant are published).

In our communication we will reflect on the potential impact of GeoGebra Discovery in
the educational world. We will mention self-experimenting as well as student and teacher
trainings to prepare for mathematics contests and exams. To illustrate our concept we will
show some examples that are based on the books [1] and [15].
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