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Preface ACA 2022 15-19 AUGUST 2022

Welcome to ACA’2022! This is the first ACA (Applications of Computer Algebra) confer-
ence that will have in-person attendance since the beginning of the SARS-CoV-2/COVID-19
pandemic. ACA’2021 was completely online, while this meeting is a hybrid of in-person and
virtual appearances. Since ACA is not simply a conference series, but a community of friends,
we rejoice in restarting in-person interactions this year.

This conference is the 27th ACA, a series started by Stanly Steinberg and myself in Albu-
querque, New Mexico in 1995 and held every year since except for 2020. See the table below
for a complete listing of the ACA series. I note that the Gebze meeting is the third ACA in
Asia. This year, ACA is part of SCALE 2022 (Symbolic Computation: Algorithms, Learning,
and Engineering), a gathering together of ACA’2022 and CASC’2022 (Computer Algebra
in Symbolic Computing) along with three summer schools and two workshops related to
computer algebra. Zafeirakis Zafeirakopoulos is the energetic general chair of SCALE, while
Veronika Pillwein is the program chair for ACA, and both along with many others have done
much to make for a successful conference!

This is the second year of the ACA-ERA (Early Researcher Award). Special thanks goes
to Ilias Kotsireas, ACA working group co-chair along with me, who initiated this idea and
encouraged funding from a number of sponsors. We hope this will establish a tradition of
honoring and encouraging researchers early in their careers who are interested in computer
algebra applications. We had some fine nominees this year and each one deserves recognition
for their research and service to the community.

Thank you all very much for participating!

— Michael J. Wester
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Conferences on Applications of Computer Algebra

ACA’95 May 16–19, 1995 Albuquerque, New Mexico, USA
ACA’96 July 17–20, 1996 RISC-Linz, Hagenberg, Austria
ACA’97 July 24–26, 1997 Wailea, Maui, Hawaii, USA
ACA’98 Aug. 9–11, 1998 Prague, Czech Republic
ACA’99 June 24–27, 1999 El Escorial, Spain
ACA’2000 June 25–28, 2000 Saint Petersburg, Russia
ACA’2001 May 31–June 3, 2001 Albuquerque, New Mexico, USA
ACA’2002 June 25–28, 2002 Volos, Greece
ACA’2003 July 28–31, 2003 Raleigh, North Carolina, USA
ACA’2004 July 22–24, 2004 Beaumont, Texas, USA
ACA’2005 Aug. 8–10, 2005 Nara, Japan
ACA’2006 June 26–29, 2006 Varna, Bulgaria
ACA’2007 July 19–22, 2007 Rochester, Michigan, USA
ACA’2008 July 27–30, 2008 RISC-Linz, Hagenberg, Austria
ACA’2009 June 25–28, 2009 Montréal, Québec, Canada
ACA’2010 June 24–27, 2010 Vlora, Albania
ACA’2011 June 27–30, 2011 Houston, Texas, USA
ACA’2012 June 25–28, 2012 Sofia, Bulgaria
ACA’2013 July 3–6, 2013 Málaga, Spain
ACA’2014 July 9–12, 2014 Bronx, New York City, New York, USA
ACA’2015 July 20–23, 2015 Kalamata, Greece
ACA’2016 Aug. 1–4, 2016 Kassel, Germany
ACA’2017 July 17–21, 2017 Jerusalem, Israel
ACA’2018 June 18–22, 2018 Santiago de Compostela, Spain
ACA’2019 July 16–20, 2019 Montréal, Québec, Canada
ACA’2021 July 23–27, 2021 Athens, Greece (virtual)
ACA’2022 Aug. 15–19, 2022 Gebze, Istanbul, Turkey
ACA’2023 2023 Warsaw, Poland
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Timetable ACA 2022 15-19 AUGUST 2022

General Table

S1–Computational Differential and Difference Algebra and its Applications Session

S2–Computer Algebra in Education Session

S3–Computer Algebra Modeling in Science and Engineering Session

S4–Effective Ideal Theory and Combinatorial Techniques in Commutative and non Commu-
tative Rings and Their Applications Session

S5–Algorithmic and Experimental Combinatorics Session

S6–D-finite Functions and Beyond: Algorithms, Combinatorics, and Arithmetic Session

S8–Algebraic and Geometric Methods in Coding Theory Session

S9–Parametric Polynomial Systems Session

S11–q-Analogues in Combinatorics: Matroids, Designs and Codes Session

S13–Computer Algebra Applications in the Life Sciences Session

S14–Algorithms in Cryptography and Blockchain Session

S15–General Session

5

https://sites.google.com/view/computational-diffalg-2022
https://math.unm.edu/~aca/ACA/2022/education.html
https://iit.sggw.edu.pl/aca-2022-istanbul-turkey-august-15-19-2022/
https://sites.google.com/view/michela-ceria-home-page/aca-2022-eit_deg
https://sites.google.com/view/michela-ceria-home-page/aca-2022-eit_deg
https://sites.google.com/view/aca2022-alg-n-exp-combo/home
http://www.mmrc.iss.ac.cn/~schen/ACA2022-Dfinite-ACA.html
https://sites.google.com/view/aca22-agmct/
https://www.rs.tus.ac.jp/~nabeshima/ACA2022/paraACA2022.html
https://sites.google.com/view/michela-ceria-home-page/aca-2022-q-mat
https://sites.google.com/view/aca22-casinlife/home
https://blog.metu.edu.tr/oguz/aca2022-acb/


Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Invited Talks

TIME TUESDAY–2022/08/16

11:30 The discrete logarithm problem in finite fields
Cécile Pierrot

THURSDAY–2022/08/18

11:30 Computer Algebra and Satisfiability Modulo Theories
James H. Davenport
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Computational Differential and Difference
Algebra and its Applications Session (S1)

Organized by Alexander Levin, Alexey Ovchinnikov, and Daniel Robertz
TIME WEDNESDAY–2022/08/17

09:30 Computing rational first integrals of polynomial vector fields on surfaces
Thierry Combot

10:00 On normal forms in differential Galois theory for the classical groups
Matthias Seiß, Daniel Robertz

10:30 Generalized characteristic sets and a new type of multivariate difference dimen-
sion polynomials

Alexander Levin
11:30 Integrable cases of the autonomic polynomial system

Victor Edneral
12:00 Twisted Mahler discrete residues

Carlos E. Arreche, Yi Zhang

THURSDAY–2022/08/18

09:30 Reynolds algebras and their free objects by Gröbner-Shirshov bases
Xing Gao, Li Guo, Tianjie Zhang

10:00 Elimination of unknowns in dynamical systems
Antonio Jiménez-Pastor, Alexey Ovchinnikov, Sonia L. Rueda

FRIDAY–2022/08/19

09:30 Algorithmic detection of conserved quantities of finite-difference schemes using
difference algebra

Diogo Gomes, Friedemann Krannich, Ricardo de Lima Ribeiro
10:00 Holonomic modules and 1-generation in the Jacobian Conjecture

Vladimir Bavula
10:30 Computing the exceptional parameter set for a family of linear differential equa-

tions
Ruyong Feng, Michael Wibmer
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Computer Algebra in Education Session (S2)

Organized by Michel Beaudin, Michael Wester, Noah Dana-Picard, Alkis Akritas, José Luis Galán
García, and Elena Varbanova

TIME MONDAY–2022/08/15

11:30 Computer Algebra Systems – powerful tools for creating teaching-learning re-
sources in undergraduate mathematics

E. Varbanova
12:00 Using CAS in theclassroom: personal thought (Part II)

M. Beaudin

WEDNESDAY–2022/08/17

11:30 Simplified models of planetary orbits, virtual space mandalas and beyond
T. Dana-Picard

FRIDAY–2022/08/19

11:30 Comprehensive solutions to problems in Maple, using the parametric option
D. J. Je�rey

14:00 Multivalued functions and cubic equations
V. M. Quance, M. R. Vancea, D. J. Je�rey
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Computer Algebra Modeling in Science and
Engineering Session (S3)

Organized by Alexander Prokopenya and Haiduke Sarafian
TIME WEDNESDAY–2022/08/17

14:00 Designing physics problems with Mathematica: Example I
H. Sarafian

14:30 Designing physics problems with Mathematica: Example II
H. Sarafian

15:00 Photoelastic and numerical stress analysis of a pin on a plan contact subjected to
a normal and a tangential load

M. Beldi, A. Bilek
15:30 Numerical and experimental analysis of stress fields in mechanical contacts be-

tween solids (rigid/deformable and deformable/deformable)
M. Beldi, A. Bilek

FRIDAY–2022/08/19

09:30 Discrete models of epidemic spread in a heterogeneous population
M. Choiński, M. Badzioch, U. Foryś

10:00 Fitting sparse reduced data
R. Kozera

10:30 Resonances and periodic motion of Atwood’s machine with two oscillating bodies
A. Prokopenya

14:00 Perturbations in the restricted three-body problem of variable masses
A. Prokopenya, M. Minglibayev, A. Ibraimova

14:30 Evolutionary equations of the two-planet three-body problem with variable
masses

A. Prokopenya, M. Minglibayev, A. Ibraimova
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Effective Ideal Theory and Combinatorial
Techniques in Commutative and non Commutative Rings and

Their Applications Session (S4)

Organized by Michela Ceria, André Leroy, Samuel Lundqvist, and Teo Mora
TIME MONDAY–2022/08/15

10.00 Generalized weights of codes via graded Betti numbers
Elisa Gorla

11.30 Faster Change of Order Algorithm for Gröbner Bases Under Shape and Stability
Assumptions

Jérémy Berthomieu, Vincent Neiger, Mohab Safey El Din
12.00 Gröbner Bases and Tate Algebras of Varying Radii

Xavier Caruso, Tristan Vaccon, Thibaut Verron
14:00 Duality, Trace Inversion Formula and Extreme Combinatorics: Yet another proof

of Perles-Sauer-Shelah Lemma
Luis M.Pardo

14:30 Solving degree and last fall degree
Alessio Caminata, Elisa Gorla

15:00 Noncommutative Novikov algebras
Pavel Kolesnikov

15:30 Discrete Vector Fields for Monomial Resolutions
Eduardo Sáenz-de-Cabezón, Francis Sergeraert

16:30 Round table - discussions
17:00 Private Distributed Coded Computation

Malihe Aliasgari, Yousef Nejatbakhsh
17:30 Algebraic, Geometric, and Combinatorial Aspects of Unique Model Identification

Brandilyn Stigler
18:00 On computing isomorphisms between algebraic number fields

Michael Monagan

TUESDAY–2022/08/16

09:30 Linear Label Code of a Lattice Using Gröbner bases
Malihe Aliasgari, Daniel Panario, Mohammad-Reza Sadeghi

10:00 On Toric Resolutions of Rational Singularities
Büşra Karadeniz Şen

10:30 Sum of Disjoint Products approach to System Reliability based on Involutive Di-
visions

Rodrido Iglesias, Patricia Pascual-Ortigosa, Eduardo Sáenz-de-Cabezón
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Algorithmic & Experimental Combinatorics
Session (S5)

Organized by Miklos Bona, Ilias Kotsireas, and Ali K. Uncu
TIME MONDAY–2022/08/15

10:00 Searching for Kochen–Specker systems with orderly generation and satisfiability
solving

Curtis Bright, Zhengyu Li, Vijay Ganesh
10:30 Counting points of modular curves over finite fields

Valerio Dose, Pietro Mercuri, Claudio Stirpe
14:00 Experimenting with Young Tableaux

Doron Zeilberger
14:30 Schmidt type partitions

Ae Ja Yee
15:00 The Factorial-Basis Method for Finding Definite-Sum Solutions of Linear Re-

currences
Antonio Jimenez-Pastor

15:30 Regular languages and the enumeration of permutation classes
Vince Vatter

TUESDAY–2022/08/16

09:30 Well-Indumatched Pseudoforests
Yasemin Büyükçolak, Didem Gözüpek, Sibel Özkan

10:00 Counting Labelled Trees of Certain Families
Emre Yivli, Emrah Akyar, Handan Akyar

10:30 On the Directed Hamilton-Waterloo Problem with Uniform Cycle Sizes
Fatih Yetgin, Uğur Odabaşı, Sibel Özkan

14:00 On generalizations of the third order mock theta functions ω(q) and v(q)
Atul Dixit, Bruce Berndt, Rajat Gupta

14:30 Linked partition ideals and computer algebra
Shane Chern

15:00 Missing cases in parity considerations in Rogers–Ramanujan–Gordon type over-
partitions

Kağan Kurşungöz, Mohammad Zadeh Dabbagh
15:30 The Combinatorial Exploration Framework and its Consequences

Michael Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone,
Henning Ulfarsson
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WEDNESDAY–2022/08/17

09:30 Partitions, Kernels, and the Localization Method
Nicolas Smoot

10:00 Combinatorial constructions of generating functions of cylindric partitions with
small profiles into unrestricted or distinct parts

Kağan Kurşungöz, Halime Ömrüuzun Seyrek
10:30 Sum-of-tails Identities

Rajat Gupta
10:30 For Hui Huang’s talk please look the schedule of Computer Algebra Applications

in the Life Sciences session
16:30 A Gessel Way to the Diagonal Theorem on D-finite Power Series

Shaoshi Chen, Pingchuan Ma, Chaochao Zhu
17:00 Factorizable systems of differential equations from particle physics: preprocessing

and solving
Nikolai Fadeev
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for D-finite Functions and Beyond: Algorithms,
Combinatorics, and Arithmetic Session (S6)

Organized by Shaoshi Chen, Frederic Chyzak, Antonio Jimenez-Pastor, Manuel Kauers, and Veronika
Pillwein

TIME TUESDAY–2022/08/16

16:30 q-Difference Equation Systems for Cylindric Partition
Ali Uncu

17:00 Series defined by quadratic differential equations
Bertrand Teguia Tabuguia

17:30 Symbolic-Numeric Factorization of Differential Operators
Alexandre Goyer

THURSDAY–2022/08/18

9:30 Shift equivalence testing of polynomials and symbolic summation of multivariate
rational functions

Lixin Du
10:00 Arithmetic of polynomial dynamical systems

Mohammad Sadek
10:30 Decision Problems for Second-Order Holonomic Recurrences

Eike Neumann

FRIDAY–2022/08/19

9:30 C2 -finite Sequences: A Computational Approach
Philipp Nuspl

10:00 Factoring differential operators in positive characteristic
Raphael Pages

10:30 Working with DD-finite functions automatically on SageMath
Antonio Jiménez-Pastor

11:30 Galois groups of linear difference-differential equations
Ruyong Feng

12:00 Computing logarithmic parts by evaluation homomorphisms
Ziming Li

14:00 Efficient q-integer linear decomposition of multivariate polynomials
Hui Huang

14:30 D-finiteness, rationality, and height
Jason P. Bell
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Algebraic and Geometric Methods in Coding
Theory Session (S8)

Organized by Alessandro Neri and Ferdinando Zullo
TIME TUESDAY–2022/08/16

09:30 Computational classification of symplectic 4-dimensional semifields over finite
fields

Michel Lavrauw, John Sheekey
10:00 Divisible codes and few-weight codes in the rank metric

John Sheekey, Olga Polverino, Paolo Santonastaso, Ferdinando Zullo
10:30 Construction of Subspace Codes using Evaluation

Joachim Rosenthal

WEDNESDAY–2022/08/17

09:30 Protograph-based LDPC codes with chordless short cycles and large minimum
distance

Farzane Amirzade, Daniel Panario, Mohammad-Reza Sadeghi
10:00 Ordered Covering Arrays and NRT-metric Covering Codes

Lucia Moura
10:30 Better CRC Codes

Anton Betten
11:30 Constructions of new matroids and designs over Fq

Eimear Byrne, Michela Ceria, Sorina Ionica, Relinde Jurrius, Elif Saçikara
12:00 Critical Problem, q-Polymatroids and Rank-Metric Codes

Gianira N. Alfarano, Eimear Byrne
14:00 On the geometry of (q + 1)-arcs of PG(3, q), q even

Michela Ceria, Francesco Pavese
14:30 Trifferent codes and affine blocking sets

Anurag Bishnoi, Dion Gijsiwijt, Jozefien D’haesleer, Aditya Potukuchi
15:00 Cameron–Liebler type sets and completely regular codes

Morgan Rodgers
15:30 Mutually Orthogonal Latin Squares based on e-Klenian polynomials

Jaime Gutierrez, Jorge Jimenez Urroz
16:30 On Optimal Binary Linear Complementary Pair of Codes

Cem Güneri
17:00 On LCP of 1-generator QC codes

Zohreh Aliabadi
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Parametric Polynomial Systems Session (S9)

Organized by Katsusuke Nabeshima and Yosuke Sato
TIME MONDAY–2022/08/15

11:30 A deterministic method for computing Bertini type invariants of parametric ideals
Shinichi Tajima, Katsusuke Nabeshima

12:00 Imaginary projections: Complex versus real coefficients
Stephan Gardoll, Thorsten Theobald, Mahsa Sayyary Namin

TUESDAY–2022/08/16

14:00 Generic Gröbner basis of a parametric ideal and its application to a comprehensive
Gröbner system

Katsusuke Nabeshima
14:30 Comprehensive Gröbner systems over finite fields

Ryoya Fukasaku, Yasuhiko Ikematsu
15:00 Implementation report on parametric absolute factorization of multi-variate

Kazuhiro Yokoyama
15:30 Simplification of comprehensive Gröbner systems using disequalities

Yosuke Sato
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for q-Analogues in Combinatorics: Matroids,
Designs and Codes Session (S11)

Organized by Gianira Alfarano, Michela Ceria, and Relinde Jurrius
TIME TUESDAY–2022/08/16

14:00 An alternative for the q-matroid axiom (I4)
Michela Ceria, Relinde Jurrius

14:30 The direct sum of q-matroids
Michela Ceria, Relinde Jurrius

15:00 q-Matroids and Rank-Metric Codes
Gianira N. Alfarano, Eimear Byrne

15:30 A Geometric Characterization of Near MRD Codes
Alessandro Neri

16:30 q-analog of Sidon sets and linear sets
Vito Napolitano, Olga Polverino, Paolo Santonastaso, Ferdinando Zullo

17:00 Independent Spaces of q-Polymatroids
Vito Napolitano, Olga Polverino, Paolo Santonastaso, Heide Gluesing-Luerssen,
Benjamin Jany

17:30 Categories of q-Matroids
Benjamin Jany, Heide Gluesing-Luerssen

18:00 Round table - Discussion

THURSDAY–2022/08/18

9:30 A q-analogue of Critical Theorem for polymatroids
Koji Imamura, Keisuke Shiromoto

10:00 Shellability and homology of q-complexes associated to q-matroids
Sudhir Ghorpade

10:30 Generalized rank weights and Betti numbers
Rakhi Pratihar
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Computer Algebra Applications in the Life
Sciences Session (S13)

Organized by AmirHosein Sadeghimanesh, Ali Kemal Uncu, Hamid Rahkooy, and Matthias Seiß
TIME MONDAY–2022/08/15

16:30 Detecting and precluding toricity in reaction network theory
Elisenda Feliu, Oskar Henriksson

17:00 Estimating Genomic Periodicities
Daniel Lichtblau

17:30 Are generic bifurcations always generic on chemical reaction networks?
Nicola Vassena

18:00 Stability analysis and Hopf bifurcations in a tumor growth model
Dániel András Drexler, Ilona Nagy, Valery G. Romanovski

TUESDAY–2022/08/16

16:30 The shape of the parameter region of multistationarity in reaction networks
Elisenda Feliu, Máté L. Telek

17:00 Disaster Incident Analysis via Algebra Stories
Berina Celic, Bernhard Garn, Dimitris E. Simos

17:30 Nondegenerate Andronov–Hopf bifurcations in a class of bimolecular mass-
action systems (Part I)

Murad Banaji, Balázs Boros
18:00 Nondegenerate Andronov–Hopf bifurcations in a class of bimolecular mass-

action systems (Part II)
Murad Banaji, Balázs Boros

WEDNESDAY–2022/08/17

14:00 Polynomial Systems Theories in Biology
James H. Davenport

14:30 Open problems in parameteric dynamical systems from life sciences
Alexey Ovchinnikov

15:00 Algebraic sequence modelling for disaster management
Klaus Kieseberg, Bernhard Garn, Dimitris E. Simos

THURSDAY–2022/08/18

10:30 Efficient Rational Creative Telescoping
Mark Giesbrecht, Hui Huang, George Labahn, Eugene Zima

- Hui Huang’s talk is from Algorithmic & Experimental Combinatorics session
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for Algorithms in Cryptography and Blockchain
Session (S14)

Organized by Oğuz Yayla, Ahmet Sınak, Hamid Rahkooy, and Matthias Seiß
TIME MONDAY–2022/08/15

10:00 Algebraic Network Analysis for Anti-Money Laundering
Ceren Culha, Bernhard Garn, Dimitris E. Simos

10:30 A General Version of Carlet’s Construction of APN Functions
İlksen Acunalp Erleblebici, Oğuz Yayla

14:00 Handover Authentication Protocols in Mobile Networks
Hakan Yıldırım, Murat Cenk

14:30 A Three-Party Lattice-Based Hybrid PAKE Protocol with Anonymity
Kübra Seyhan, Sedat Akleylek

15:00 A Lattice-based Group Signature Scheme with Applications in Blockchain
Meryem Soysaldı Şahin, Sedat Akleylek

15:30 Two Post-Quantum Code-Based Cryptosystems
Sedat Akleylek, Ebubekir Aydoğmuş, Ahmet Sınak
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Timetable ACA 2022 15-19 AUGUST 2022

Schedule for General Session (S15)

Organized by Zafeirakis Zafeirakopoulos
TIME Monday–2022/08/15

16:30 A Call for more Automata Theory in Sequential Combinatorial Testing
Ludwig Kampel, Manuel Leithner, Dimitris E. Simos

FRIDAY–2022/08/19

12:00 Computer Algebra, Student Assessment and Learning Data Analysis
David Smith, Stephen M. Watt

12:00 Certified Hermite Matrices from Approximate Roots
Tülay Ayyıldız Akoğlu, Agnes Szanto
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The discrete logarithm problem in finite fields

Cécile Pierrot [Cecile.Pierrot@inria.fr]

Abstract: The security of currently deployed public key protocols in cryptography relies on
the presumed hardness of problems often coming from number theory, such as factoring a
large integer or solving the discrete logarithm problem in some groups.

In this talk I focus on discrete logarithms in finite fields. I explain what is a discrete logarithm
and why cryptographers need them. I focus on the best currently known algorithms to solve
the related problem, together with open questions in this area.
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Computer Algebra and Satisfiability Modulo
Theories

James H. Davenport [J.H.Davenport@bath.ac.uk]

Since Erika Abraham’s seminal talk at ISSAC 2015, there has been fruitful interaction be-
tween the fields of Computer Algebra and Satisfiability Modulo Theories. This has been
helped by the SCSC (Symbolic Computation and Satisfiability Checking) EU project and
workshop series. But what are the lessons for both fields from this collaboration? The author
sees several such. Firstly for computer algebra.

1) The importance of pragmatics as well as complexity theory. SAT is the quintessential NP-
complete problem, but has many excellent solvers in practice. Conversely, Computer Algebra
has historically looked at worst-case complexity, which makes sense in many contexts, but
not all.

2) The importance of curated benchmark sets. Both the SAT community and the SMT com-
munity have such sets, but computer algebra by-and-large does not. Each author invents his
own collection, borrowing those that are borrowable (and too often they are only published in
PDF) and publishing those that will fit in a page limit, and possibly publishing the complete
set on a private website.

3) The question of being fast on trivial examples. The usual SAT/SMT benchmarking does a
lot of this, whereas Computer Algebra tends to focus on the difficult examples.

There are also lessons for SMT, especially as it asks more questions about finite fields (a
major trend at SMT 2022).

1) Large finite fields are not a problem: computer algebra systems have efficient big number
arithmetic, so large primes are easily implemented, and large powers of small primes are also
feasible.

2) However the usual way of working in GF(q) is to add the polynomial xq − x (for every
variable x). This can indeed be very expensive, but there are partial solutions.

3) Difficult NRA (Nonlinear Real Arithmetic) problems are genuinely hard, and the full might
of Computer Algebra should be deployed.

A problem for both fields, but where the SMT community is probably more advanced, is the
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question of the accuracy of the systems. Both Computer Algebra and SMT systems are large,
complex, and often multi-generational, systems.
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Computing rational first integrals of polynomial
vector fields on surfaces

Thierry Combot1 [thierry.combot@u-bourgogne.fr]

1 Institut mathématiques de Bourgogne, Université de Bourgogne, Dijon, France

Consider an algebraic surface S defined by a prime ideal I ⊂ Q[x, y, z1, . . . , zl], and a
vector field X on the tangent of S. If S projects properly on the x, y plane, X represents
an algebraic vector field in x, y. A rational first integral of X is a rational function on S
which is constant along the orbits of X . In [1], an algorithm is presented to find rational
first integrals for polynomial vector fields in the plane up to degree N . In the surface case,
two new difficulties arise: the field of first integrals of X is not always generated by a single
element, and the notion of degree of a first integral is not well defined. A set of rational first
integrals generating the field of first integral defines an application of S to a curve of genus g.
We will define the notion of minimal rational first integral, a notion of degree, and prove that
minimal rational first integral are those whose image curve is of maximal genus. Depending
on the genus g, we will see that three possibilities arise:

• If g = 0, the field is generated by a single first integral with coefficients in at worst a
quadratic extension.

• If g = 1, the field is generated by two first integrals with an elliptic algebraic relation.

• If g ≥ 2, the image curve can be complicated but the degree of first integrals can be
bounded.

For each case, we will present an algorithm to compute such rational first integral up to degree
N in time O(Nω+1). Some significant differences with the planar case will arise depending
on the homology of S.

Keywords
First integrals, Curve parametrization, Poincaré problem

[1] ALIN BOSTAN, GUILLAUME CHÈZE, THOMAS CLUZEAU, AND JACQUES-ARTHUR
WEIL, Efficient algorithms for computing rational first integrals and Darboux polynomials of
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On Normal Forms in Differential Galois Theory
for the Classical Groups
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2 Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, D–52056 Aachen,
Germany

In classical Galois theory there is the well-known construction of the general polynomial
equation over Q with Galois group the symmetric group Sn. The coefficients of the general
equation are (up to sign) the elementary symmetric polynomials in n indeterminates x1, . . . ,
xn over Q. Every algebraic extension of Q defined by a polynomial p(x) of degree n is
obtained as a specialization by substituting the roots of p(x) for x1, . . . , xn in the general
equation.

In an analogous way a general linear differential equation with differential Galois group
the general linear group GLn(C) over an algebraically closed field C of characteristic zero
is obtained as follows. Extend the linear action of GLn(C) on the vector whose coordi-
nates are differential indeterminates y1, . . . , yn to the differential field of rational functions
C〈y1, . . . , yn〉. Introducing a new differential indeterminate Y and denoting byw(y1, . . . , yn)
the Wronskian of y1, . . . , yn, the general differential equation is given by

0 = Y (n) + cn−1Y
(n−1) + . . .+ c0Y :=

w(Y, y1, . . . , yn)

w(y1, . . . , yn)
. (1)

In fact, cn−1, . . . , c0 are differentially algebraically independent generators of the fixed field
of C〈y1, . . . , yn〉 under GLn(C) (and recall that the elementary symmetric polynomials are
algebraically independent generators of the fixed field of Q(x1, . . . , xn) under Sn). Every
Picard-Vessiot extension of a differential field F , with field of constants C, defined by a
linear differential polynomial of order n is obtained as a specialization of (1) by substituting
the linearly independent solutions η1, . . . , ηn for y1, . . . , yn. Generalizations to groups other
than GLn(C) were obtained in [1] and [2]. In all these cases the general differential equation
involves n differential indeterminates over C (apart from Y ).

Another approach to constructing general differential equations for the classical groups was
presented in [4] and [5]. This approach combines the geometric structure of a classical group
G of Lie rank l with Picard-Vessiot theory and involves only l differential indeterminates.
More precisely, the construction starts with a differential fieldC〈v〉 generated by l differential
indeterminates v = (v1, . . . , vl) over C. The general extension field in this approach is a
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Liouvillian extension E ofC〈v〉 with differential Galois group a fixed Borel subgroupB−(C)
ofG(C). As in the case of GLn(C) we construct a fundamental matrix Y and define an action
of G(C) on it which will then induce an action on E . Fixing a Chevalley basis of the Lie
algebra g of G, the defining matrix of E is chosen such that its conjugate by a representative
w of the longest Weyl group element is the sum of the Cartan subalgebra, parametrized by
v, and the basis elements of the root spaces corresponding to the simple roots. Choosing a
fundamental matrix b ∈ B−(E) generating E over C〈v〉, we can construct a matrix u in the
maximal unipotent subgroup of B−(C〈v〉) such that the logarithmic derivative of Y = uwb
is the matrix AG(s) constructed in [4] and [5]. The differential polynomials s = (s1, . . . , sl)
in C{v} are differentially algebraically independent over C. The matrix u is the product
of matrices of root groups corresponding to all negative roots Φ− and it depends on |Φ−|
differential polynomials p in C{v}, those corresponding to the negative simple roots being
the indeterminates v. Multiplying Y from the right by an element of the full group G(C)
and then taking the Bruhat decomposition defines an action on p and on the generators of
the Liouvillian extension, i.e. the entries of b, and therefore on E . The fixed field under the
induced action ofG(C) on E is C〈s〉 and it is shown that the extension E of C〈s〉 is a Picard-
Vessiot extension with differential Galois group G(C). The construction is only generic for
Picard-Vessiot extensions of F with defining matrix gauge equivalent to a matrix in normal
form, i.e. a specialization of AG(s). Deciding such a gauge equivalence is non-trivial as a
consequence of the fact that E and C〈s〉 have differential transcendence degree l over C.

This talk is dedicated to the question of the genericity properties of the extension E over
C〈s〉. We consider the problem of gauge equivalence of a generic element of the Lie algebra
to a matrix in normal form. More precisely, let d be the dimension of the classical group
G and let a = (a1, . . . , ad) be differential indeterminates over a differential field F with
constants C. Further let A(a) be a generic element in the Lie algebra g(F 〈a〉) obtained
from parametrizing the Chevalley basis from above with the indeterminates a. It is known
(cf. [3]) that the differential Galois group of y′ = A(a)y over F 〈a〉 is G(C). We present
the construction of a differential field extension L of F 〈a〉 such that the field of constants of
L is C, the differential Galois group of y′ = A(a)y over L is still the full group G(C) and
A(a) is gauge equivalent over L to a specialization of AG(s), i.e. to a matrix in normal. In
the special case ofG = SL3 we show how one obtains an analogous result for specializations
of the coefficients of A(a).

Keywords
Differential Galois theory, generic inverse problem, normal forms, gauge equivalence
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Let K be a difference field of characteristic zero with a basic set of endomorphisms σ =
{α1, . . . , αm} (we also called K a σ-field). Suppose that the set σ is represented as the
union of p disjoint subsets (p ≥ 1): σ = σ1 ∪ · · · ∪ σp. Let T denote the free com-
mutative semigroup of all power products of the form τ = αk11 . . . αkmm (ki ∈ N) and
for any such element and for any i ∈ {1, . . . , p}, let ordi τ be the sum of all exponents
kν such that αν ∈ σi. If r1, . . . , rp, s1, . . . , sp ∈ N and si ≤ ri for i = 1, . . . , p, let
T (r1, . . . , rp; s1, . . . , sp) = {τ ∈ T | si ≤ ordi τ ≤ ri (1 ≤ i ≤ p)}.
We introduce a new type of reduction of difference polynomials overK that uses the effective
orders with respect to the sets σi (the corresponding concept generalizes the concept of ef-
fective order of an ordinary difference polynomial defined in [1]). We consider characteristic
sets associated with such a reduction and use their properties to obtain the following result.

Theorem. LetL = K〈η1, . . . , ηn〉 be a σ-field extension generated by a set η = {η1, . . . , ηn}.
Then there exists a polynomial φη|K(t1, . . . , tp, x1, . . . , xp) in 2p variables with rational co-
efficients and r(0)i , s

(0)
i , s

(1)
i ∈ N (1 ≤ i ≤ p) with s(1i < r

(0)
i − s

(0)
i such that

φη|K(r1, . . . , rp, s1, . . . , sp) = tr.degK K({τηj | τ ∈ T (r1, . . . , rp; s1, . . . , sp), 1 ≤ j ≤
n}) for all (r1, . . . , rp, s1, . . . , sp) ∈ N2p with ri ≥ r(0)i , s(1)i ≤ si ≤ ri − s

(0)
i .

We give some properties of the polynomial φη|K and show that it carries more invariants of
the extension L/K (that is, parameters that do not depend on the σ-generators of L over K)
than previously known difference dimension polynomials (see [2, Chapter 4] and [3]).
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Difference field extension, Effective order, Dimension polynomial

References
[1] R. M. COHN, Difference Algebra. Interscience, New York, 1965.
[2] A. LEVIN, Difference Algebra. Springer, New York, 2008.
[3] A. LEVIN, Reduction with Respect to the Effective Order and a New Type of Dimension
Polynomials of Difference Modules. To appear in the Proceedings of ISSAC 2022. DOI:
https://doi.org/10.1145/3476446.3535497.

30



Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey, | August 15-19, 2022
Session on “Computational Differential and Difference Algebra and its Applications”

Integrable Cases of the Autonomic Polynomial
System
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The paper considers the relationship between the local integrability of an autonomous two-
dimensional ODE system with polynomial right hand sides and its global integrability. A
hypothesis is put forward that for the existence of the first integral of motion in a certain
region of the phase space it needs the local integrability in the neighborhoods of all points of
this domain.
Using the example of a polynomial case of a plane dynamical system, we wrote out the
conditions for local integrability near the stationary points and found the constrains on the
parameters under which these conditions are satisfied. In this way we found several cases
of integrability. Thus, we propose a heuristic method that allows one to determine the cases
of integrability of an autonomous ODE with a polynomial right-hand side in the algorithmic
way. For the example we chose the parametrized system of the Lunkevich–Sibirskii type [1]

ẋ = y + a1x
2 + a2xy + a3y

2,
ẏ = −x+ b1x

2 + b2xy + b3y
2.

In the same way the degenerated dynamical system has been studied [2].
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Twisted Mahler Discrete Residues
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Continuous residues are fundamental tools in complex analysis, and have compelling ap-
plications in combinatorics. In the last decade, a theory of discrete residues and q-discrete
residues was proposed by Chen and Singer in [4] for the study of telescoping problems, and
it has since found applications in a number of related problems, particularly in the develop-
ment of algorithms to compute differential Galois groups for (shift and q-dilation) difference
equations in [1,2]. We refer to the introduction and references in [3] for more details.

Very recently in [3] we developed a notion of Mahler discrete residues, and proved that
they comprise a complete obstruction to the Mahler summability problem of deciding, for a
given integer p ≥ 2 and f(x) ∈ K(x), the field of rational functions in an indeterminate x
with coefficients in an algebraically closed field K of characteristic zero, whether there exists
g(x) ∈ K(x) such that f(x) = g(xp) − g(x). This is in analogy with the properties of the
discrete residues and q-discrete residues of Chen and Singer in [4], which comprise complete
obstructions to the (q-)summability problems of deciding, for a given f(x) ∈ K(x), whether
f(x) = g(x + 1) − g(x) (in the shift case) or whether f(x) = g(qx) − g(x) for some
g(x) ∈ K(x) and q ∈ K neither zero nor a root of unity (in the q-dilation case). Each of
these summability problems is a special case of a more general telescoping problem. For σ
a K-linear automorphism of K(x) (for example, the shift operator σ : g(x) 7→ g(x + 1) or
the q-dilation operator σ : g(x) 7→ g(qx), for q ∈ K as above), one lets δ be a derivation
of K(x) that commutes with σ, that is, such that σ ◦ δ = δ ◦ σ. In the shift case one
takes the usual derivation δ = d

dx , and in the q-dilation case one takes the Euler derivation
δ = x d

dx . In either case we say (K(x), σ, δ) is a σδ-field, and the corresponding telescoping
problem is to decide, for f(x) ∈ K(x), whether there exist a certificate g(x) ∈ K(x) and
a linear differential operator L ∈ K[δ] such that L(f) = σ(g) − g. In this case we say L
is a telescoper for f . The discrete and q-discrete residues of Chen and Singer in [4] reduce
the question of the existence of a telescoper L ∈ K[δ] to linear algebra over K, all whilst
bypassing the potentially expensive computation of a certificate g ∈ K(x).

The corresponding summability and telescoping problems in the case of the Mahler operator
σ : g(x) 7→ g(xp) for some integer p ≥ 2 are technically more complicated. First, be-
cause σ is only an endomorphism of K(x) and not an automorphism, it is often (though not
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always) convenient to replace the usual basefield of rational functions K(x) with the over-
field K(xn)n≥0 where the family of indeterminates xn are decreed to satisfy xpn = xn−1 for
n ≥ 1; morally, we think of xn as x1/p

n

for some base indeterminate x := x0. We write,
as a matter of notation, K(x1/p

∞
) := K(xn)n≥0, so that now σ : g(x) 7→ g(xp) is an auto-

morphism of K(x1/p
∞
). A second technical difficulty is that even this larger field does not

admit a derivation δ commuting with σ. This additional technical issue is often (though not
always) addressed by introducing a new indeterminate denoted “log x”, which is decreed to
satisfy the usual properties of the natural logarithm: σ(log x) = p log x and d

dx log x = x−1,
and endowing the field K(x1/p

∞
)(log x) with the derivation δ = (log x)x d

dx , which together
with the Mahler operator σ makes it into a σδ-field, because we now again have σ ◦δ = δ ◦σ.

We study Mahler summability and telescoping problems over K := K(x1/p
∞
)((log x)) the

field of formal Laurent series in the indeterminate log x with coefficients in K(x1/p
∞
). The

basefield of interest K(x1/p
∞
)(log x) is embedded into K in the natural way, along with the

natural extensions of the Mahler operator σ and the commuting derivation δ, making once
again K into a σδ-field. There is an analogous telescoping problem over this field: given

F (x) :=
∑

λ≥N
fλ(x) log

λ x ∈ K,

where logλ x := (log x)λ for λ ∈ Z, and each fλ(x) ∈ K(x1/p
∞
), does there existG(x) ∈ K

andL ∈ K[δ] such thatL(F ) = σ(G)−G? Our main interest in summability and telescoping
in the Mahler case over K is motivated by questions that arise naturally in the computation
of (differential) Galois groups associated with Mahler difference equations.

In order to address Mahler summability and telescoping over K, we introduce the notion of
(twisted) λ-Mahler discrete residues for λ ∈ Z, which will comprise a complete obstruction
to the corresponding (twisted) λ-Mahler summability problem: given fλ(x) ∈ K(x1/p

∞
) for

some λ ∈ Z, does there exist gλ(x) ∈ K(x1/p
∞
) such that fλ(x) = pλgλ(x

p)− g(x)? This
is directly related to the summability problem for F =

∑
λ fλ log

λ x ∈ K as above, because
a term-by-term computation immediately shows that F = σ(G)−G for some G ∈ K if and
only if, for every λ ∈ Z, fλ = pλσ(gλ) − gλ for some gλ ∈ K(x1/p

∞
), namely by setting

G =
∑
λ gλ log

λ x. In further analogy with the shift and q-dilation settings, the collection
of λ-Mahler discrete residues for λ ∈ Z reduce the existence of a telescoper L ∈ K[δ] for
F ∈ K to linear algebra over K.
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Mahler difference equations, discrete residues, summability, creative telescoping
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Reynolds algebras and their free objects by
Gröber-Shirshov bases
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Reynolds algebras originated from the celebrated work of Reynolds in 1895 on turbulence
theory in fluid mechanics. The subject has attracted broad interests in recent years. In this
talk we review general background on Reynolds algebras. We then constructs free Reynolds
algebras, responding to a problem posed by G. Birkhoff in 1961. The structures of rooted
trees and bracketed words, and the method of Gröbner-Shirshov bases are applied.
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Reynolds operator, Reynolds algebra, Gröbner-Shirshov basis, free object, bracketed word
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Elimination of unknowns in dynamical systems
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We will discuss elimination of unknowns to simplify systems of difference-differential equa-
tions with parameters. For this task we will analyze how different approaches using differen-
tial and difference resultants can help in this process.

Existing algorithms for the computation of differential [1] and difference [2] resultants use
prolongation and specialization techniques. Prolongation of a given set of n differential (dif-
ference) polynomials in n − 1 differential (difference) variables to obtain a system S of L
polynomials in L−1 algebraic variables. Specialization of a Sylvester style coefficient matrix
of S to obtain a multiple of the resultant.

When considering differential-difference (DD) polynomials similar prolongation techniques
can be applied, but alternative methods are needed to achieve elimination of the desired vari-
ables when applied to models in biology.
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difference-differential polynomials, resultants
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Algorithmic detection of conserved quantities of
finite-difference schemes using difference algebra
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Many partial differential equations (PDEs) admit integral quantities, that are conserved in
time. When approximating a PDE by a finite-difference scheme, the question arises whether
related discretized quantities remain conserved by the scheme. Such information can be
crucial to estimate whether a scheme approximates a PDE accurately and to determine its
stability.
Computations for determining conservation can get rather tedious. Hence, automating them
in computer algebra systems is desirable.
Conserved quantities correspond to conservation laws, admitted by the PDE. A conservation
law [1] is an equation of the form

DtΦ[u] +DxΨ[u] = 0

holding for all solutions u of the considered PDE, that induces the conserved quantity
∫

Φ[u] dx
as

d

dt

∫
Φ[u] dx =

∫
DtΦ[u] dx = −

∫
DxΨ[u] dx = 0

assuming periodic boundary conditions in x.
An analog formulation describes conservation laws for schemes of PDEs, where the deriva-
tives are replaced by differences. The key for the construction of schemes, that admit certain
conservation laws from the continuous PDE, is the use of the discrete Euler operator [1] (also
called discrete variational derivative). Kupershmidt discovered, that an equation is a discrete
conservation law if and only if it belongs to the kernel of the discrete Euler operator [6].
Hence, standard approaches for constructing schemes with conservation are either discretiz-
ing the continuous conservation law or finding multipliers for the scheme, such that the result
is in the kernel of the discrete Euler operator [1].
This strategy was, for example, recently used by Dorodnitsyn et al. to develop a scheme for
the shallow water equation, that preserves energy [2]. Cheviakov et al. used this idea to find
schemes for the linear and nonlinear wave equation, that admit several discrete analogs of
continous conservation laws [1].
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Hereman et al. [5] proposed an algorithm to compute conserved densities for semi-discretized
schemes for PDEs with first-order time derivative. Their algorithm uses the scaling symme-
tries of the scheme to construct conserved quantities and calculates their coefficients using
the discrete Euler operator.
In this talk, we describe an approach, that uses difference algebra to check, if a quantity is
conserved in time under a finite-difference scheme. Our approach differs from the ideas de-
scribed above, as we do not try to construct discrete Φ and Ψ, using the scheme, but we check
if a given discrete Φ is conserved in time under a given scheme.
Gerdt showed [3], that a quantity is conserved, if its discrete time derivative belongs to the
difference ideal generated by the scheme. However, some quantities may add to a constant
(e.g. telescopic sums) and thus be trivially preserved without belonging to the difference
ideal. Moreover, Gerdt’s algorithm may not terminate, as the Gröbner basis for the difference
ideal may not be finite. We overcome these issues by combining the discrete partial vari-
ational derivative with a polynomial ideal instead of a difference ideal with finite Gröbner
basis. We have implemented this algorithm as part of a package in MATHEMATICA [7]. We
show that our code finds conserved quantities and proper schemes for the time-implicit and
time-explicit discretization of the Burgers equation and a system of PDEs arising in the study
of mean-field games.
This talk is based on the preprint [4].

Keywords
Symbolic computations, Finite-difference schemes, Discrete variational derivative, Discrete
partial variational derivative, Conserved quantities, Difference algebra
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The Jacobian Conjecture, the Conjecture of Dixmier and the Poisson Conjecture are questions
about whether certain algebra/Poisson endomorphisms are epimorphisms. We show that the
Jacobian Conjecture, the Conjecture of Dixmier and the Poisson Conjecture are questions
about holonomic modules for the Weyl algebra An. This fact allows us to measure the ‘size’
of the images of the maps. Using this approach we show that the images of the Jacobian
maps, endomorphisms of the Weyl algebra An and the Poisson endomorphisms are large in
the sense that further strengthening of the results on largeness would be either to prove the
conjectures or produce counter examples. A short direct algebraic proof (without reduction to
prime characteristic) is given of equivalence of the Jacobian and the Poisson Conjectures (this
gives a new short proof of equivalence of the Jacobian, Poisson and Dixmier Conjectures).
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Based on a study of torsion points on abelian varieties, Masser and Zannier [1] recently
showed that the set of values of t such that an algebraic function ft(x), depending on a
parameter t, can be integrated (with respect to x) in elementary terms, is “small”, in fact, often
finite, if ft(x) cannot be integrated in elementary terms generically (i.e., when t is considered
to be transcendental). As integration can be seen as solving a very particular differential
equation, it is natural to wonder about generalizations to linear differential equations. More
precisely:

Let k be an algebraically closed field of characteristic zero and let B be a finitely generated
k algebra that is an integral domain. Furthermore, let f ∈ B[x] be a monic polynomial.
We think of a linear differential equation y′ = Ay, with A ∈ B[x]f

n×n as a family of
linear differential equations parametrized by the algebraic variety X = Spec(B): Applying
c ∈ X(k) = Homk(B, k) to the coefficients of the entries of A, one obtains a specialized
linear differential equation y′ = Acy over k(x).

If y′ = Ay does not have a basis of Liouvillian solutions, it is natural to expect that the
exceptional set of all c ∈ X(k) such that y′ = Acy has a basis of Liouvillian solutions
is “small”. However, in this situation, we typically cannot expect a finiteness result. For
example, if B = k[α], f = x and

A =

(
0 1

(αx )
2 − 1 − 1

x

)
∈ B[x]f = k[α, x]x

is the companion matrix of Bessel’s differential equation y′′ + 1
xy
′ + (1− (αx )

2)y = 0, then
the exceptional set is {m+ 1

2 |m ∈ Z}.

Due to the lack of finiteness of the exceptional set, a notion encapsulating the “smallness” of
the exceptional set is needed. Generalizing a result of Hrushovski from [2], we show that the
exceptional set is indeed “small” in an appropriate sense and we describe the various sources
that yield exceptional points of the parameter space.

Indeed, we establish a general specialization theorem for the differential Galois group of a
linear differential equation, that can be used to transfer results in inverse differential Galois
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theory over the rational function field from one single field of constants to an arbitrary field of
constants. Our prime illustration of this principle is the completion of our program to estab-
lish Matzat’s conjecture ([3,4,5,6]): The absolute differential Galois group of a one-variable
function field over k, equipped with a non-trivial k-derivation, is the free proalgebraic group
on a set of cardinality |k|.

Keywords
Specializations of differential Galois groups, families of linear differential equations, Matzat’s
conjecture
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Ideas, approaches and tools for enhancement of undergraduate engineering mathematics are
considered. A long lasting experiment with constant improvements in development and im-
plementation of basic elements of holistic education - through development of the student’s
full potential, has proved a synergy effect of these activities. Some of them are represented.
Computer Algebra Systems (CASs) are considered as a means to improve the overall effect of
the quality of teaching-learning resources (TLR) on the student’s learning path (trajectory).
This quality is looked to with the hope of creating effective learning.

Two of the leading sentences for us are: “Knowledge can help you move from a point A to a
point B, imagination can bring you from A to any other point” (A. Einstein) and “An individ-
ual’s incorrect thoughts are due to insufficient development of his/her ability to distinguish”
(Paramahansa Yogananda).

What we were trying to do is keeping the focus on the student/learner and the learning. We
started with using different colors for different content and learning outcomes, e.g. new terms
and definitions are highlighted in one color, important statements and sentences in another
([1, 2, 3, 4]) . In addition, different symbols enable a clear presentation of the content and
make TLR easy to read/follow, e.g. a special symbol for pointing out that one often overlooks,
ignores or wrongly understands or interprets.

Tips and rules are used to make it easier to work through the examples and exercises; struc-
turing points and orientation aids are provided; the summaries are highlighted in color; im-
portant formulas and results are marked; model examples are appropriately placed in the
text. Thoroughly calculated examples, tasks with solutions, illustrations and visualizations
are included.

The next figures (figure 1 and figure 2) show an application of CAS Derive :
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Figure 1: Graphical illustration of geometrical prototype of a sufficient condition for the
convergence of an iterative method for solving nonlinear equations

Figure 2: Graphical illustration of geometrical prototype of a rule for numerical integration
and the error of the approximation value

The impact of colors on correct calculation of partial derivatives by students are illustrated
by the next two equalities. And the correct rearrangement of terms in an ordinary differential
equation is illustrated by the third one.

(
x2 y sinx)

)
x

=
∣∣ y is treated as a constant

∣∣ = y (2x sinx+ x2 cosx)︸ ︷︷ ︸
Product rule

(
tan(x− y)

)
y
=

1

cos2(x− y) (x− y)y︸ ︷︷ ︸
Chain rule

=
1

cos2(x− y) (0− 1) = − 1

cos2(x− y)

cosx

1 + y2
dy

dx
= sin(x)⇒ dy

1 + y2
=

sin(x)

cos(x)
dx⇒

∫
1

1 + y2
dy =

∫
sin(x)

cos(x)
dx

CASs can be used for creating non-trivial questions to check the deepness of students’ knowl-
edge and to help them master the competence “reflection”. For instance, we ask them to
“read”/explain the lines #38 and #39 of figure 3. The student has to develop the ability for
controlling the results (critical thinking), i.e. to built up the competence "reflection". If so,
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Figure 3: Newton’s method with Derive

he/she can guess the relationship between the terms of the sequence in #39 and #40 of figure
3. For example, it has to be clear to him/her that there exists the relationship between the
third and fourth number in #39 of figure 3.

And it has to be related to the third iteration obtained by Newton’s method (abstract thinking):

xn+1 =
1

2

(
xn +

3

xn

)
, n = 0, 1, 2.

In general, one needs to “read” symbolic, numerical, and graphical results and interpret them
correctly. And to know that the components in the chain Knowledge-Skills-Control (Reflec-
tion) are interrelated. ("One can see as much as one knows.")

About Microlearning ([5]). Microlearning is a skill-based approach to learning that delivers
information in small, highly focused chunks. A microlearning module (= a learning unit) is
“as long as necessary and as short as possible”. Learners tend to engage with microlearning
more often, which increases learning retention. Microlearning is a strategy where indepen-
dent learning units work for a single purpose and are part of the total learning picture.

Illustration of microlearning module and step-by-step (structured) approach to the solution.
Solve the following ordinary differential equation of order one : y′−y tan(x) = exp(sin(x)).
Solution.

• Step 0. Recognition of the type of the equation

• Step 1. Extraction of necessary information

• Step 2. Writing the formula for the general solution of a linear equation

• Step 3. Determination of the integrating factor

• Step 4. Replacement of the corresponding functions into the formula in Step 2

• Step 5. Solution of the integral in the right-hand side

• Step 6. Final answer (using Step 4 and Step 5): the general solution.
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To communicate and collaborate with peers and engage on educational tasks students are
provided questions for self-preparation; the opportunities of CASs are used for setting the
questions up. The represented ideas and approaches for creating TLR can be used for blended
or hybrid learning considered as a learning approach that combines traditional/conventional
teaching-learning-assessment (TLA) process and remote learning activities. Purposeful and
appropriate TLR could be effective in bridging the gap among remote and conventional learn-
ing and so to contribute to improve the hybrid learning. During the TLA process students
develop learning abilities and habits, as well as educational values that are helpful for the real
life and, above all, for their work. "Future of Work Is Nothing Without Consideration For
The Future of Learning” ([6]). Future of learning solutions require the components of the
triad Teaching-Learning-Assessment to become interdependent, not stand alone.
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In this presentation, we will continue our reflection started at ACA2021 about the use of
computer algebra in the classroom. Trying to find examples of how CAS technology can
be easily used to teach subjects where only pencil and paper techniques would discourage
the user. Examples that should appear in textbooks but, unfortunately, not so often. At the
last ACA conference (virtual ACA2021), we focused on how computer algebra could help
to understand how third degree polynomial roots should be simplified. We wrote that future
ACA conferences could cover more examples: trying to update some integration tables in
relation with the Rubi system and trying to use computer algebra to teach some parts of
complex analysis.

This year, we chose complex analysis because it doesn’t seem to fit with computer algebra.
But many concepts in analysis can be introduced and/or illustrated by CAS. We will look at
some examples:

• how the user can visualize the complex roots of a polynomial using 2D and 3D plots;

• how Laurent series, residue integration techniques and numerical line integrals can be
combined to verify some answers;

• how to use a built-in Rieman Zeta function to observe some non trivial zeros of ζ(s).

Nspire CX CAS and Maple software will be used.
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Simplified models of planetary orbits, virtual
space mandalas and beyond

Thierry Dana-Picard1 [ndp@jct.ac.il]

1 Department of Mathematics, Jerusalem College of Technology, Jerusalem, Israel

Generally, in books such as [1] and online catalogues of plane curves, such as [2,3], the curves
are presented individually. In many cases, strong connections can be revealed. Studying isop-
tic curves in [4], we showed a strong connection between conic sections and toric sections.
The toric section are quartics, sometimes called also spiric curves. An important property is
that they are the intersection of self-intersecting tori with a plane, which is not frequent in the
literature. Internal connections between these curves have been shown in [5], as the Hessian
of a spiric is also a spiric. This enabled to determine the points of inflexion of these curves.

Networking between a Computer Algebra System (CAS) and a Dynamic Geometry System
(DGS), as in [6], we study some plane curves given by parametric presentations. The ubiq-
uitous articles in newspapers about spacecrafts, in particular about the triple launch towards
Mars 2 years ago, incited students to ask questions about their trajectories and , in general,
about modeling planetary orbits. Using simple models of circular orbits centered at the Sun,
with constant velocity, we defined the loci of some virtual points (we mean points which do
not have a strong physical meaning, but can be studied with mathematical methods). Figure
1(a) has been obtained with software, using GeoGebra’s Locus command and an animation.
Figure 1(b) is Kepler hand-drawing of Mars’s orbit viewed from the Earth [7]. This yields a
great number of curves, which artists call mandalas. We obtain also generalizations of Lis-
sajous curves. Moreover, the above mentioned catalogues describe families of curves called
epitrochoids, hypotrochoids, etc. Exploration with software reveals a uniforming framework
for these families.

The needed orbital data is obtained from dedicated websites. The students discover that most
of the data is not made of integer numbers, and that every website makes its own decisions
regarding the decimal approximations. The usage of a slider bar enables to explore the in-
fluence of the precision on the obtained mandalas. At this stage, mostly curves given by
parametrizations of the form

{
x(t) = cos t+ r cos( t

h )

y(t) = sin t+ r sin( t
h )

where r encodes the ratio of orbital radii and h the ratio of orbital velocity, taking here the
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(a) The midpoint of Mars and the Earth (b) Mars viewed from the Earth, by Kepler

Figure 1: Two space mandalas

Earth as the first planet. Its distance to the Sun is equal to 1 AU (astronomical unit) and its
orbital period is 1 year.

This is where a double slider is useful.

As a generalization, we explore a model with an additional 3rd planet. In this talk, we prefer
to show more abstract situations, where the hypothetic 3rd object runs in reverse direction,
which is encoded in a parametrization of the form

{
x(t) = cos t+ b cos(ω1t) + c sin(ω2t)

y(t) = sin t+ b sin(ω1t) + c cos(ω2t)

Once again, the first coefficient is equal to 1 as the distance from Earth to the Sun is defined
as 1 astronomical unit (AU). For a similar reason, the angular velocity of the Earth is put as 1
(orbital period equal to 1 year). Changing the parameters reveals curves with symmetries of
non trivial order (we mean of order 7, 9 , 11, etc.), which are generally not constructed with
simple tools. Two examples are on display in Figure 2 .

The symmetries can be enhanced by two means: visually by playing on the plotting intervals
and changing the colors, with automated methods by plotting a "basic part" of the curve, then
using the automated commands for rotations, algebraically using substitution and trigono-
metric identities.

Finally, we wish to recall that STEM Education is well-known and documented. During
the past decade, new developments occurred and an A has been added, A for Arts, defining
STEAM Education [8]. The proposed activities, dominated by M, S and T have a nice A
aspect with the space mandalas. that the kind of activities that we propose here is typical of
STEAM Education. We have here a mathematical topic with strong connections with the real
world and the cultural background of the students (here the daily newspapers), Physics (true,
we used a very simplified model) and artistic creation. Technology is the medium which
enables to build these connections.
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(a) Rotational symmetry of order 5 (b) Rotational symmetry of order 9

Figure 2: Two generalizations of mandalas
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Comprehensive solutions to problems in Maple,
using the parametric option.
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It is very common for mathematical problems and mathematical tables to contain parameters.
For example, every calculus book contains a table of integrals with entries such as

∫
xn dx =

xn+1

n+ 1
, and

∫
cos(ax) dx =

sin(ax)

a
.

Few books bother to write a 6= 0, and it is even less likely that anyone of them adds the
comment that a = 0 has the integral x. If a user asks Maple for the solution of ax = a,
should Maple reply x = 1, or x = 1, a 6= 0 or something else? When a problem with
parameters has different solutions depending upon the value actually taken by a parameter,
then a list of all possibilities is called a comprehensive solution. Early computer algebra
systems did not attempt to return comprehensive solutions. Recently, however, Maple has
been extending the range of problems for which it can return comprehensive solutions. A
user can usually obtain these solutions by specifying the option ‘parametric’. In this talk a
number of examples of where the option is available will be presented as well as on-going
projects that will add the option to new problems.

Keywords
Comprehensive solutions, parametric option, Maple.

References
[1] R. M. CORLESS, D. J. JEFFREY, D. R. STOUTEMYER, Integrals of functions containing
parameters, The Mathematical Gazette. 104, 412–426, 2020, doi:10.1017/mag.2020.96

50



Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey | August 15-19, 2022
Session on Computer Algebra in Education

Multivalued functions and cubic equations
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This talk combines a discussion of multivalued functions in computer algebra with the solu-
tion of cubic equations. The first solutions to cubic equations were discovered 500 years ago
[1], but the discussion of the solutions takes on new dimensions in the age of computer alge-
bra systems. The early solutions of the cubic famously brought the first sight of imaginary
numbers to mathematics; they caused “mental agonies" for poor old Cardano. In the modern
world, Maple assumes every quantity is complex by default, and this can result in surprises
for its users. We shall explain why some sources say the solution of x3+3px− 2q = 0 is [2]

(
q +

√
p3 + q2

)1/3
+
(
q −

√
p3 + q2

)1/3
,

but Maple says it is

(
q +

√
p3 + q2

)1/3
− p
(
q +

√
p3 + q2

)1/3 .

We shall also explain why Maple has 2 cube-root functions: z1/3 and surd(z,3). We give
further consideration to different ways to get solutions of cubics.
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Designing Physics Problems with Mathematica.
Example I
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We envision utilizing the versatility of a Computer Algebra System, specifically Mathemat-
ica to explore designing physics problems. As a focused project we consider for instance
a thermo-mechanical-physics problem showing its developmental from the ground up. In
accordance with the objectives of this investigation first by applying the fundamentals of
physics principles we solve the problem symbolically. Applying the solution we investigate
the sensitivities of the quantities of interest for various scenarios generating feasible numeric
parameters. Although a physics problem is investigated, the proposed methodology may as
well be applied to other scientific fields. The codes needed for this particular project are
included enabling the interested reader to duplicate the results, extend and modify them as
needed to exploring various extended scenarios.

Keywords
Thermo-Mechanical Physics, Designing Physics Problems, Computer Algebra System,
Mathematica
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Designing Physics Problems with Mathematica.
Example II
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Customarily in the physics of sound, static-acoustic-related topics are addressed. For in-
stance, the change in the sound level vs discrete change in the distance. In dynamic cases,
e.g. the Doppler shit although the relative motion of the components i.e. the source and
the sensor are essential the movements are limited to uniform motions. In this investigating
report, scenarios are considered departing these limitations. In the former time-dependent
sound level and the latter nonuniform motions are analyzed. Aside from light long-hand
mathematical formulations, the majority of the analysis is carried out utilizing a Computer
Algebra System (CAS) specifically Mathematica. The analysis and the format of the devel-
opment are crafted flexibly conducive opportunities for furthering quests for the "what if"
scenarios.

Keywords
Physics of Sound, Time-dependent Sound Level, Designing Physics Problems, Computer
Algebra System, Mathematica

53



Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey, | August 15-19, 2022
Session on “Computer algebra modeling in science and engineering”

Photoelastic and numerical stress analysis of a pin
on a plan contact subjected to a normal and a

tangential load

Mustapha Beldi, Ali Bilek, and Said Djebali [ali.bilek@ummto.dz]

L.M.S.E. Laboratory, Mechanical Engineering Department, UMMTO University, 15000 Tizi-
Ouzou, Algeria

Theoretical studies of contact stresses can be in some cases very complex. Several methods,
experimental as well as numerical, have then be used to analyze these types of problems. In
this paper two methods have been used: the photoelasticity method and the finite element
method. Stresses were determined in the neighborhood of the contact zone for a plan sub-
jected to a normal load and a tangential load via a pin of rectangular cross section. The
purpose here is to study the effect of applying simultaneously a normal and a tangential load
on the stress field developed in the plan. In the finite element solution, the pin made of
aluminum was considered to be rigid relatively to the plan which is made of a birefringent
material necessary to analyze optically the model stresses. The photoelastic fringes obtained
on the analyzer of a polariscope allowed us to obtain stress values on the plan, particularly in
the neighborhood of the contact zone, in order to compare them with the numerical results.
Comparisons were also made between experimental and simulated isochromatic and isoclinic
fringes. Relatively good agreements have been observed. Problems with more complicated
geometries can therefore be studied numerically. Good care should be taken though when
dealing with the limit conditions to achieve better simulation.
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Numerical and experimental analysis of stress
fields in mechanical contacts between solids

(rigid/deformable and deformable/deformable)
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Ouzou, Algeria

This paper deals with contact problems between solids. This type of problem can be encoun-
tered in mechanical systems where contact between moving components can give rise to high
stresses, particularly in the neighborhood of contact zones. The analyzed model consists of
a birefringent epoxy disk under diametric compression between two plates, one made of a
birefringent epoxy and the other one made of steel. The model allows therefore analyzing on
a polariscope, with plan polarized light and circularly polarized light, both types of contact
(rigid/deformable and deformable/deformable). A numerical solution is used to determine
stresses in the whole model, particularly in the neighborhood of the contact zones. Simulated
isochromatic fringes and isoclinic fringes are compared to the experimental ones obtained on
the analyzer of a polariscope. Relatively good agreements are achieved between the experi-
mental solution and the finite element solution; by zooming on the contact zones one can see
that photoelastic fringes show clearly the areas of maximum shear stresses and their relative
positions in the neighborhood of the contact zones. Comparison is also made with theoretical
results obtained by Hertz theory of contact.
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Discrete models of epidemic spread in a
heterogeneous population
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We will present discrete models of epidemic spread in a population in which we consider
two groups of people: with a low risk of an infection and with a high one. These models are
built with the use of the explicit Euler method and the non-standard discretization. We will
focus on stability analysis of stationary states appearing in the systems. In the case of the
non-standard discretization we will also consider a simplified version of the model in which
we assume that there is no transmission of the infection from the group of the low risk of
the infection to the group of the high one. The theoretical results will be complemented with
numerical simulations.
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Fitting Sparse Reduced Data

Ryszard Kozera1 [ryszard_kozera@sggw.edu.pl]
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We discuss the problem of fitting data points Qm = {qi}mi=0 in arbitrary Euclidean space En.
It is additionally assumed here, that the corresponding interpolation knots {ti}mi=0 remain
unknown and as such they need to be somehow replaced by T̂ = {t̂i}mi=0 (subject to t̂i <
t̂i+1). Here, without loss of generality t̂0 = 0 and t̂m = T , for some T > 0. In the case of
Qm dense the issue of convergence rate of a given interpolation scheme γ̂ (based on Qm and
T̂ ) in approximating γ (satisfying γ(ti) = qi) has been extensively studied (see e.g. [1]). In
contrast for Qm sparse a possible criterion to select the new knots T̂ is to minimize:

J (t̂1, t̂2, . . . , t̂m−1) =

∫ T

0

‖γ̈N (t̂)‖dt̂, (1)

where γ̂N is a natural spline based on Qm = {qi}mi=0 and T̂ . Finding such optimal knots
T̂ opt forms a highly nonlinear optimization task (see e.g. [2]). One of the computational
schemes handling (1) (called Leap-Frog) relies on the composition of overlapping univariate
optimizations schemes - see [3]. We discuss special conditions under which the unimodality
of these univariate functions holds and show the robustness in case of their perturbation.
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Resonances and periodic motion of Atwood’s
machine with two oscillating bodies
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The swinging Atwood machine under consideration consists of two masses m1, m2 attached
to opposite ends of a massless inextensible thread wound round two massless frictionless
pulleys of negligible radius (see [1]). Both masses m1 and m2 are allowed to oscillate in a
plane. Such a system has three degrees of freedom and its equations of motion may be written
in the form

rϕ̈ = −g sinϕ− 2ṙϕ̇,

(L− r)ψ̈ = −g sinψ + 2ṙψ̇, (1)
(m1 +m2)r̈ = m1g cosϕ−m2g cosψ +m1rϕ̇

2 −m2(L− r)ψ̇2,

where the dot above the symbol denotes a total time derivative of the corresponding function,
the variables r, ϕ, ψ describe geometrical configuration of the system, g is a gravity constant.
Note that equations of motion (1) are essentially nonlinear, and their general solution cannot
be found in symbolic form. However, there exist periodic solutions which may be repre-
sented in the form of power series (see [2,3]). In the present talk, we construct such periodic
solutions and demonstrate that they exist only if the frequencies of the bodies oscillations are
commensurable or a resonance of frequencies takes place.
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Perturbations in the restricted three-body
problem of variable mass
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Real space systems are nonstationary, their masses, sizes, shapes changes in the process of
evolution [1-3], as a result their mathematical models become more difficult. Modern com-
puter algebra allows new symbolic computation algorithms for obtaining evolutionary equa-
tions. The restricted three-body problem with non-isotropically varying masses in the pres-
ence of reactive forces was investigated. Astronomical observations determine the reactive
forces in the orbital coordinate system, so the perturbation theory in the form of Newton’s
equation was used [4]. The expansion of perturbing forces needs time-consuming and very
cumbersome analytical calculations. We obtained expansions of the perturbing function in
the orbital coordinate system. In the nonresonant case, averaging over the mean longitude,
we obtained the equations of secular perturbation of the restricted three-body problem with
variable masses in the presence of reactive forces. All analytical calculations are done in
Wolfram Mathematica [5].
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2 Al-Farabi Kazakh National University, Almaty, Kazakhstan
3 Fesenkov Astrophysical Institute, Almaty, Kazakhstan
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Masses of real celestial bodies changes anisotropically [1-2]. Due to this the reactive forces
appear, and they need to be taken into account in the study of the bodies dynamics. We studied
the two-planet problem of three bodies with variable masses in the presence of reactive forces
and obtained the equations of perturbed motion in the form of Newton’s equations in the
orbital coordinate system [3]. These equations are more convenient for taking into account the
reactive forces than the Lagrange equations [4]. The perturbing forces are expanded in terms
of osculating elements. The expansion of perturbing force is a time-consuming analytical
calculation and results in very cumbersome analytical expressions. In the considered problem
we obtained expansions of perturbing functions in powers of small parameters up to the
second order. In the non-resonant case, we obtained the evolution equations in the Newton
equation form. All symbolic calculations were performed with the Mathematica [5].
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In the past seventy years, much effort has been devoted to the study of algebraic and combina-
torial objects associated to linear error-correcting codes. Of particular interest is the matroid
associated to a linear code via its parity-check matrix, whose circuits are the minimal Ham-
ming supports of the codewords. Many central results in classical coding theory, including
the celebrated MacWilliams identities, their generalizations, and the duality between punc-
turing and shortening can be elegantly obtained via this correspondence, see e.g. [1,2,3,6]
and the references therein.

The matroid associated to a linear code via its parity check matrix retains a wealth of infor-
mation about the structure of the code, including its length, dimension, minimum distance,
weight distribution, and generalized weights. In [5] it is shown that the code’s generalized
weights are determined by the graded Betti numbers of the Stanley-Reisner ideal of the ma-
troid. The approach of [5] heavily relies on matroid theory and on the properties of the
Hamming support.

In this talk, we report on a joint work with Alberto Ravagnani [4]. We consider the more
general setting of R-linear codes C ⊆ Rn, where R is a finite commutative unitary ring. We
propose a general definition of support as a function σ : Rn → Nu that enjoys a few natural
properties. This naturally extends the notion of Hamming support traditionally studied in
coding theory [7, page 177]. We define the support of a code C ⊆ Rn as the join of the
supports of its elements.

We then define the generalized weights of a code via the supports of its subcodes. We identify
a class of supports under which the algebra of the module Rn is compatible with the com-
binatorics of the poset Nu with the product order, which we call modular supports. As one
might expect, the Hamming support is an example of a modular support.

Our main result connects the generalized weights of a code with the graded Betti numbers of
a suitable monomial ideal. More precisely, we associate a monomial ideal to a code C ⊆ Rn

via the supports of its codewords. Under this correspondence, inclusion of supports translates
into divisibility among monomials. Under suitable assumptions, the generalized weights
of an R-linear code endowed with a modular support are determined by the graded Betti
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numbers of the associated monomial ideal. This generalizes a result of [5], with a stand-
alone proof that relies on commutative algebra, rather than on matroid theory.
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This talk reports on updates on a work published in the proceedings of ISSAC 2022 [2].

Solving zero-dimensional polynomial systems using Gröbner bases is usually done by, first,
computing a Gröbner basis for the degree reverse lexicographic order, and next computing
the lexicographic Gröbner basis with a change of order algorithm. Currently, despite the
progress brought by [4, 3, 5], the change of order takes a significant part of the whole solving
time on a wide range of problems (see [1, Tbl. 1]).

Like the fastest known change of order algorithms described in the above references, we will
focus on the situation where the ideal defined by the system satisfies natural properties which
can be recovered in generic coordinates. First, the ideal has a shape lexicographic Gröbner
basis. Second, the set of leading terms with respect to the degree reverse lexicographic order
has a stability property; in particular, the multiplication matrix of the smallest variable can be
read on the input Gröbner basis.

The current fastest algorithms rely on the sparsity of this matrix. The improvement stems
from the fact that this sparsity is actually a consequence of an algebraic structure, which is
classically exploited to represent the matrix concisely as a univariate polynomial matrix [7,
Sec. 9]. We show that the Hermite normal form of that matrix yields the sought lexicographic
Gröbner basis, under assumptions which cover the shape position case. Under some mild
assumption implying n ≤ t, the arithmetic complexity of our algorithm isO (̃tω−1D), where
n is the number of variables, t is a sparsity indicator of the aforementioned multiplication
matrix, D is the degree of the zero-dimensional ideal under consideration, and ω is the ex-
ponent of matrix multiplication. This improves upon both state-of-the-art complexity bounds
O (̃tD2) and O (̃Dω), since ω < 3 and t ≤ D. Practical experiments, based on the msolve
library [1] and the Polynomial Matrix Library [6], confirm the high practical benefit.

Keywords
Gröbner basis, polynomial system solving, change of monomial order, polynomial matrix,
Hermite normal form.
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Tate series are a generalization of polynomials introduced by John Tate in 1962 [5], when
defining a p-adic analogue of the correspondence between algebraic geometry and analytic
geometry. This p-adic analogue is called rigid geometry, and Tate series, similar to analytic
functions in the complex case, are its fundamental objects. Tate series are defined as mul-
tivariate formal power series over a p-adic ring or field, with a convergence condition on a
closed ball given by a convergence radius.

Tate series are naturally approximated by multivariate polynomials over Fp or Z/pnZ, and it
is possible to define a theory of Gröbner bases for ideals of Tate series, which opens the way
towards effective rigid geometry.

In [1, 2, 3], efforts have been made so that advanced algorithms to compute classical Gröbner
bases (F4, F5, FGLM) can be adapted to Gröbner bases over Tate algebras.

In this talk, motivated by the phenomenon of overconvergence (series converging on a ball
of larger convergence radius) and the local study of polynomial ideals, we will present algo-
rithms we have developped in [3, 4] to handle a change of convergence radius of convergence
(in case of overconvergence) and how to compute bases made of polynomial for an ideal in a
Tate algebra spanned by polynomials.

Finally, we will present the concept of universal analytic Gröbner basis for a polynomial
ideal: a finite polynomial basis of an ideal such that it is a Gröbner basis in any Tate algebra
for any (rational) convergence radius.
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This talk is just a modest contribution to prove several classical results in Extreme Combina-
torics form the notions of Duality and Trace in some Artinian K−algebras (mainly through
the Trace Inversion Formula), where K is a perfect field of characteristics not equal to 2. We
prove how several classic combinatorial results are particular instances of a Trace Inversion
formula in finite Q−algebras. This is the case with the Exclusion-Inclusion Principle (in its
general form, both with direct and reverse order associated to subsets inclusion). This ap-
proach also allows us to exhibit a basis of the space of null t−designs, which differs from
the one described in Theorem 4 of [1]. Inspired and motivated by the proof in [2] of the
Perles-Sauer-Shelah Lemma (cf. [3], [4]), we produce a new one based only in Duality and
Trace in a Q−algebra Q[Vn], which we introduced ad hoc. All results are equally true if we
replace Q[Vn] by K[Vn], where K is any perfect field of characteristics 6= 2. We have tried
to be as self-contained and elementary as possible, trying to make this material accessible to
a wide mathematical audience.
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As computational problems can often be modelled via polynomial equations, several security
estimates in Cryptography depend on the complexity of polynomial system solving. The so-
lutions of a system of polynomial equations over a finite field can be computed in polynomial
time from a lexicographic Gröbner basis of the system. Nowadays, the most efficient algo-
rithms to compute Gröbner bases belong to the family of linear-algebra-based algorithms,
for example F4/F5 and the family of XL Algorithms. The complexity of these algorithms is
bounded from above by a known function of the solving degree, which is the highest degree
of the polynomials appearing during the computation. However, finding the solving degree of
a system without computing its Gröbner basis is often hard. This motivated the introduction
of several algebraic invariants related to the solving degree. One such invariant is the last fall
degree introduced by Huang, Kosters, Yang, and Yeo.

In this talk, I will discuss some equivalent definitions for the last fall degree and provide a new
one that involves the concept of degree falls. Moreover, I will discuss the relation between
solving degree and last fall degree and I will show that for any degree-compatible term order,
the solving degree of a system is the maximum between its last fall degree and the largest
degree of an element in a reduced Gröbner basis of the system. This provides a proof for the
intuitive fact that the two key ingredients in determining the solving degree of a system are
the degrees of the elements in its reduced Gröbner basis and the degree falls.
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The variety of Novikov algebras appeared in the paper [1] devoted to the study of Poisson
brackets of hydrodynamic type, though it emerged earlier in [2] as a tool for constructing
Hamiltonian operators in formal variational calculus. The axioms of Novikov algebras appear
in [1] as necessary and sufficient conditions for the local algebra of a formal Poisson bracket
to meet the Jacobi identity.

Let us state the corresponding construction in a “coordinate-free” form. Suppose V is a non-
associative algebra over a field k with a bilinear product ◦, and A is the algebra of smooth
functions in one variable z. Consider the space A ⊗ V equipped with a skew-symmetric
bilinear operation [·, ·] given by

[a(z)⊗ v, b(z)⊗ w] = a′(z)b(z)⊗ (v ◦ w)− b′(z)a(z)⊗ (w ◦ v),

a, b ∈ A, v, w ∈ V . Then [·, ·] is a Lie bracket if and only if the algebra (V, ◦) meets the
following relations for all u, v, w ∈ V :

(u ◦ v) ◦ w = (u ◦ w) ◦ v, (u, v, w)◦ = (v, u, w)◦,

where (x, y, z)◦ = (x◦y)◦z−x◦ (y ◦z). These two identities define the variety of Novikov
algebras.

A series of examples of Novikov algebras may be constructed as follows [2]. For an associa-
tive and commutative algebra V with a derivation d, let u ◦ v = ud(v), for u, v ∈ V . Then
(V, ◦) is a Novikov algebra.

This construction is known to be generic [3], i.e., every Novikov algebra embeds into an
appropriate commutative algebra with a derivation. The proof of this statement in [3] is
based on the Gröbner–Shirshov bases theory for Novikov algebras, the latter essentially uses
the fundamental result of [4], where it was shown that the free Novikov algebra Nov(X)
generated by a set X embeds into the algebra of differential polynomials in X . However,
modulo this fact from [4], the embedding of an arbitrary Novikov algebra into a commutative
differential algebra may be proved in a shorter way (see [5]). Therefore, the result of [4]
(which is mostly combinatorial) still plays a key role in the theory of Novikov algebras.

71



The embedding of the free Novikov algebra into the free commutative differential algebra is
an essential part of the general theory on identities of derived algebras. Suppose A is a (non-
associative, in general) algebra with multiplication µ(x, y) = xy, and let d be a derivation of
A. Then the same space A equipped with two new operations

x � y = d(x)y, x ≺ y = xd(y), x, y ∈ A,

is said to be a derived algebra of A. For example, for every associative and commutative
algebra A (A ∈ Com), its derived algebra is a Novikov one (note that x � y = y ≺ x in
the commutative case). The result of [4] on the free Novikov algebra states that there are no
more (independent) identities that hold on all derived commutative algebras apart from the
identities of Novikov algebras.

Let Var be a variety of linear algebras with binary operations µi(x, y) = x ·i y, i ∈ I , the
corresponding (symmetric) binary operad is denoted by the same symbol Var. In particular
Nov, is the operad of Novikov algebras generated by one binary operation µ(x, y) = x ◦ y.
Let us denote by DVar the variety of algebras with duplicated family of operations

µ�i (x, y) = x �i y, µ≺i (x, y) = x ≺i y, i ∈ I,

defined by all those identities that hold for all Var-algebras with a derivation d relative to the
operations

x �i y = d(x) ·i y, x ≺i y = x ·i d(y).
As it was shown in [6], the operad DVar is isomorphic to the Manin white product of Var
and Nov, so that µ�i = µi ⊗ µ(12), µ≺i = µi ⊗ µ.

In particular, for Var = As (the variety of associative algebras), the identities that hold on
DAs were found by J.-L. Loday [7]:

x � (y ≺ z) = (x � y) ≺ z,
(x ≺ y) � z − x � (y � z) = x ≺ (y � z)− (x ≺ y) ≺ z. (1)

The general result on DVar implies that there are no more independent identities on DAs,
and it is not hard to derive that every DAs algebra embeds into an appropriate associative
differential algebra. The keystone of the proof is again the result of [4] on free Novikov
algebras.

Our purpose was to find a straightforward way to prove the embedding of a DAs-algebra
into an appropriate associative differential algebra by means of the (differential) Gröbner–
Shirshov bases theory. In particular, restricting to the commutative algebras and their Gröbner
bases, we get an independent proof the embedding of a Novikov algebra into a commutative
differential algebra.

On the one hand, Gröbner and Gröbner–Shirshov bases are the tools that are especially
designed for solving such embedding problems. Given a Novikov algebra V with a lin-
ear basis X and multiplication table S, let us construct the algebra F of polynomials in
X ∪X ′ ∪X ′′ ∪ · · · ∪X(n) ∪ . . . with a derivation d : x(n) 7→ x(n+1), x ∈ X , and find the
differential ideal I generated by the polynomials

xy′ − fxy, x, y ∈ X,
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where fxy is the linear form in X equal to x ◦ y in V . The quotient F/I is the “universal
differential envelope” of V , so it remains to show that nonzero linear forms do not belong
to I , i.e., V ⊆ F/I .

On the other hand, the explicit calculation of the Gröbner basis (relative to a chosen order
of monomials) for the ideal I highly depends on the particular multiplication table S. For
example, the composition of xy′ − fxy and zy′ − fzy relative to the natural deg-lex order is
equal to zfxy−xfzy , and the principal part can be determined by the particular form of f . In
other words, the pair (Nov,ComDer) has no PBW-property in the sense of [8], and the same
holds for the pair (DAs,AsDer).

We present a way how to overcome this problem. Suppose V is a DAs-algebra with opera-
tions �, ≺, and let X be a basis of V . Working in the noncommutative setting, construct the
free associative algebra F as above, and define I to be the differential ideal generated by

xy′ − (x ≺ y), x′y − (x � y), x, y ∈ X.

Although it is hard to control the corresponding rewriting system G in general, we may choose
a subgraph G−1 whose vertices are weight-homogeneous noncommutative polynomials of
weight −1 (the weight of a monomial x(i1)1 . . . x

(in)
n is set to be i1 + · · ·+ in − n).

It turns out that G−1 is a confluent rewriting system for every DAs-algebra V . Hence, every
algebra that meets the identities (1) embeds into an associative differential algebra.
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The construction and computation of minimal free resolutions of monomial ideals is a central
problem in combinatorial commutative algebra. There is a large body of research on the topic
that has led to extensive literature on monomial resolutions. The two main lines of research on
this subject consist, on the one hand, in finding explicit minimal free resolutions for particular
families of monomial ideals and, on the other hand, in finding general procedures to obtain
free resolutions that (although possibly not minimal) provide homological information on the
ideal.

The main result of the first approach is the explicit description of the minimal free resolution
of stable ideals given by Eliahou and Kevaire [5]. Squarefree versions of this were given
in [3, 7]. In [13], Seiler gave a (non-minimal) explicit free resolution for quasi-stable ide-
als based on the work of Eliahou and Kervaire. The main construction within the second
approach is the Taylor resolution [15], which is a combinatorial explicit resolution that is
usually not minimal. A more compact resolution derived from this was given by Lyubeznik
[11]. Taylor and Lyubeznik resolutions are two instances of cellular resolutions [4], which
take advantage of the combinatorial nature of monomial ideals to encode their resolutions by
means of cellular complexes. As a complement to this line of research, several techniques for
minimizing a given resolution have been developed, in particular those based on those based
on Discrete Vector Fields (a subject initiated by R. Forman in [6], satellite of his Discrete
Morse Theory), see [2] for a recent example. Another general technique for constructing
monomial resolutions is the iterated mapping cone [10], which allows the construction of
(non-minimal) free resolutions for arbitrary polynomial and monomial ideals. For instance,
the already mentioned Taylor, Eliahou-Kervaire and Pommaret-Seiler resolutions are exam-
ples of iterated mapping cones.

The computational aspects of the problem, i.e. the explicit computation of monomial resolu-
tions, in particular the minimal one and the invariants related to it have also received much
attention [14, 12] and the main computer algebra systems focused on commutative algebra
have algorithms to construct minimal free resolutions [1, 8, 9].

Our contribution is the following. We develop an effective version of the iterated mapping
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cone approach that makes it completely constructive, avoiding in this way the limitations of
the method, as expressed in [10]. We use discrete vector fields to explicitly iterate on the
mapping cone construction so that an actual algorithm can be built from it for any monomial
ideal. Furthermore, we use Discrete Vector Fields to minimize the iterated mapping cone
resolution. This reduction step, can however be applied to any monomial resolution. We also
build algorithms to construct free resolutions of monomial ideals based on these results and
give details on the implementation.
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The era of Big Data and the immensity of real-life datasets compels computation tasks to
be performed in a distributed fashion, where the data is dispersed among many servers that
operate in parallel [1,2]. However, massive parallelization leads to computational bottlenecks
due to faulty servers and stragglers. The key idea is that, by employing suitable linear codes
operating over fractions of the original data, a function may be completed as soon as enough
number of processors, depending on the minimum distance of the code, have completed their
operations.

In this talk we consider the problem of secure and private distributed matrix multiplication in
a big size and present the trade-off between communication load and recovery threshold.
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Biological data science is a field replete with many substantial data sets from laboratory ex-
periments and myriad diverse methods for analysis and modeling. Given the abundance of
both data and models, there is a growing need to group data sets to reveal salient features
of the data and untimely of the underlying network. For discrete data, that is n-tuples with
entries in a finite field F , a special class of discrete models called polynomial dynamical sys-
tems can be used to capture all models which fit the given data from a network with n nodes.
Specifically a polynomial dynamical system over F is a polynomial map f : Fn → Fn

where f = (f1, . . . , fn) and each coordinate function fi : Fn → F is a polynomial in
F [x1, . . . , xn]. We say that f fits the input-output data D = {(s1, t1), . . . , (sm, tm)} ⊂
Fn × Fn if f(sj) = tj for each 1 ≤ j ≤ m. Typically a data set can have a large number of
associated models, requiring model selection. In the face of limited understanding of the un-
derlying network, selecting models which accurately reflect the network can be challenging.

A key question is to identify data sets which guarantee a unique polynomial dynamical sys-
tem. The problem translates mathematically to identifying input sets V ⊂ Fn such that the
associated quotient ring F [x1, . . . , xn]/I(V ) has a unique basis (up to scalar multiple) as a
vector space over F . For data sets corresponding to a large number of bases, finding all bases
may be cumbersome. Gröbner bases offer an algorithmic solution, albeit an incomplete one:
while not all bases of the quotient ring are compatible with a monomial order, all the ones
that are can be found algorithmically. The advantage of this strategy is that one can view
all possible bases of the quotient ring to select those that are the most biologically relevant.
Hence the revised problem we consider is identifying input data sets with an ideal of points
I(V ) having a unique reduced Gröbner basis (URGB) for any monomial ordering.

In this talk we show a necessary and sufficient condition on I(V ) that guarantees that it has
a URGB. In fact it is an algebraic property on the generators of I(V ) that can be easily
checked [2]. We also summarize two distinct sufficient conditions on the input data V so that
I(V ) has a URGB: if V is the linear shift of a staircase (a geometric property) [1] and if V
is the variety of the distraction of some monomial ideal (an algebraic property) [2]. Since
we are were interested in grouping data which facilitates model selection, we used linear
shifts to partition data into equivalence classes and showed that each equivalence class has an
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associated collection of (standard monomial) bases [3].

Next we relax the condition of requiring a unique polynomial dynamical system and focus
on identifying data sets with a unique wiring diagram, that is a directed graph on n nodes
representing the connections in the network. While the wiring diagram represents only a
static picture of the network, knowledge of the connectivity is crucial for studying network
robustness, regulation, and control strategies.

For each node xr in the network, consider the data for xr: Dr = {(s1, t1), . . . , (sm, tm)} ⊂
Fn × F ; notice that each ti is now a scalar. For every pair of distinct input n-tuples si =
(si1, . . . , sin) and sj = (sj1, . . . , sjn) with distinct corresponding output values (ti 6= tj),
we can encode the coordinates in which they differ by a square-free monomial

m(si, sj) =
∏

sik 6=sjk

xk.

LetM be the ideal generated by all such monomials, that is,

M = 〈m(si, sj) | si 6= sj , ti 6= tj〉.

We call the generators of the associated primes in its primary decomposition the minimal sets
of xr. Each set of generators is a list of variables representing the incoming edges to xr in
the wiring diagram. Furthermore each set has the property that there exists a polynomial in
those variables that fits the data in Dr and there is no such polynomial for any proper subset.

We present a couple of algebraic conditions on I(V ), where V is the set of inputs as before,
that each guarantees that there is a unique minimal set. We also provide a geometric condition
on the data that guarantees the existence of multiple minimal sets. This is ongoing joint work
with E. Dimitrova, C. Fredrickson, N. Rondoni, and A. Veliz-Cuba.

These results increase the utility of polynomial dynamical systems as models of complex
networks by establishing the minimal amount of the data for unique model identification.
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Let K = Q(α1, α2, . . . , αk) be an algebraic number field. For example K = Q(
√
2,
√
3).

Then K is a vector space over Q. Let d = dim(K : Q). Without loss of generality we
assume Q(α1, . . . , αi) is a proper subfield of Q(α1, . . . , αi, αi+1) for 1 ≤ 1 < k.

Let c1, c2, . . . , ck be integers and let γ =
∑k

i=1 ci αi. For almost all ci we have K ' Q(γ).
In this work we want to compute the field isomorphism ϕ : K → Q(γ) as fast as possible.

Our motivation is the modular GCD algorithm of van Hoeij and Monagan from [3]. For two
polynomials A,B ∈ K[x] their algorithm computes G = gcd(A,B) modulo a sequence
of primes p1, p2, . . . , then applies the Chinese remainder theorem to compute G modulo m
where m is the product of primes, and then uses Wang’s rational number reconstruction from
[4] to recover the rational coefficients of G from their images modulo m. The speed of their
algorithm depends on the speed of arithmetic in K modulo a prime p.

How do we represent the elements of K and K mod p and how do we do arithmetic in K
and in K mod p? The approach taken by the computer algebra systems Pari and Maple is
to construct K as a sequence of quotients (see below) and use a recursive polynomial data
structure to represent the elements of K.

Set K0 = Q.

For i = 1 to k do

Letmi(zi) be the minimal polynomial for αi overKi−1 and let di = deg(mi, zi).

Set Ki = Ki−1[zi]/〈mi〉.

We have K ' Kk and d =
∏k

i=1 di. Also K is isomorphic to the quotient ring R =
Q[z1, . . . , zk]/I where I is the ideal 〈m(z1), . . . ,m(zk)〉.

One way to do arithmetic in R would be to represent elements of R as sparse multivariate
polynomials in Q[z1, z2, . . . , zk] and use Gröbner bases. We have {m1,m2, . . . ,mk} is a
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Gröbner basis for I in lexicographical order with z1 < z2 < · · · < zk. However, this is
expensive as a multiplication in R will do many multivariate polynomial operations.

Pari represents multivariate polynomials recursively, that is, Pari thinks of a polynomial in
Q[z1, z2, . . . , zk] as a polynomial in Q[z1][z2] · · · [zk] and it uses a dense recursive polyno-
mial data structure so that it needs univariate polynomial arithmetic only. Inspired by Pari’s
representation, van Hoeij and Monagan [3] also used a dense recursive representation for
polynomials for their Maple implementation of the modular GCD algorithm in K[x]. For
example, the polynomial 7x2 + 5z22 + 3z21 in Q[z1][z2][x] is stored as the Maple list of lists
of lists of integers [[[0,0,3],0,[5]],0,[[7]]].

We have observed that when k > 1 and m1 has low degree, which is often the case practice,
it is faster (typically 5 to 10 times faster) to multiply in Q(γ) mod p than to multiply in K
mod p. One reason for this is that to multiply in K3 mod p we do many multiplications in
K2 mod p, each of which does many multiplications in K1, each of which requires memory
to be allocated for the intermediate product and several function calls. This overhead is
minimized when k = 1. In our talk we will present timing data to measure the overhead in
Pari, Maple and Magma. Thus our hypothesis: to compute gcd(A,B) mod p, for deg(A, x)
and deg(B, x) sufficiently large, it should be faster if we first compute ϕ mod p and map the
GCD computation from K mod p into Q(γ) mod p.

How do we compute the isomorphism ϕ : K → Q(γ)? In our talk we present three methods
(sketched below) to compute ϕ. The first method uses Gröbner bases, the second uses Linear
Algebra, and the third uses iterated resultants. We have implemented the second method in C
modulo a prime p. Our C implementation uses a dense recursive representation for elements
of K mod p and supports primes up to 63 bits. We present timings for computing GCDs in
K[x] mod p comparing Pari, Magma, and Maple with our C code.

Method 1: Gröbner Bases.

Let γ =
∑k

i=1 cizi and let m(z) be the minimal polynomial for γ over Q. Let

F = [m1(z1), . . . ,mk(zk), z − γ]
and let G be the reduced Gröbner basis for F in lexicographical order with z < z1 < · · · <
zk. For almost all ci we have G ∩ Q[z] = {m(z)} and the remaining elements of G give us
ϕ(zi). We give an example to illustrate.

Example 1. For K = Q(
√
2,
√
3) we have m1(z1) = z21 − 2 and m2(z2) = z22 − 3 and

a basis for K over Q is [1, z1, z2, z1z2]. For c1 = c2 = 1 we have γ = z1 + z2 and
F = [z21 − 2, z22 − 3, z − z1 − z2]. We obtain the Gröbner basis

G = [z4 − 10z2 + 1, z1 +
9
2z − 1

2z
3, z2 − 11

2 z +
1
2z

3].

Thus m(z) = z4 − 10z2 + 1, ϕ(z1) = − 9
2z + 1

2z
3 and ϕ(z2) = 11

2 z − 1
2z

3. We have
ϕ(1) = 1 and we compute ϕ(z1z2) = ϕ(z1)ϕ(z2).

Notice that F is also a Gröbner basis for the ideal generated by F in lexicographical order
with z1 < z2 < · · · < zk < z because the leading monomials of the polynomials in F are
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zd1
1 , z

d2
2 , . . . , z

dk

k and z which are all relatively prime! Therefore, we may computeG from F
using FGLM, the Gröbner basis conversion algorithm of Faugere, Gianni, Lazard and Mora
[2]. The FGLM algorithm does O(kd3) arithmetic operations in Q.

Method 2: Linear Algebra.

The number field K = Q(α1, . . . , αk) is a vector space over Q. Let d = dim(K : Q) and let
m(z) = zd +

∑d−1
i=0 xiz

i be the minimal polynomial for γ over Q for xi unknown. Equating
m(γ) = 0 we obtain a linear system

∑d−1
i=0 xiγ

i = −γd. In matrix form we have Ax = b
where A = [ 1 | γ | γ2 | . . . | γd−1 ] and b = −γd. We construct A then invert A and obtain
x from x = A−1b. The matrix A−1 is the mapping ϕ : K → Q(γ) thus A gives us ϕ−1.
Method 2 does O(d3) arithmetic operations in Q.

Method 3: Iterated Resultants.

Let γ =
∑k

i=1 cizi. Starting with the polynomial z−γ we use the subresultant algorithm (see
[4]) to first use mk to eliminate zk then to use mk−1 to eliminate zk−1, etc., until we have
eliminated all zi and we obtain the minimal polynomial m(z). In a second stage we succes-
sively obtain ϕ(z1), ϕ(z2), ..., ϕ(zk) using the penultimate polynomials in the subresultant
remainder sequences which are linear for almost all ci.

Example 1 (continued). First we apply the subresultant algorithm to z− z1 − z2 and z22 − 2
to eliminate z2. We obtain 3 polynomials z22 − 2, z − z1 − z2 (which is linear in z2) and
−2zz1 + z2 + 1. Next we apply the subresultant algorithm to −2zz1 + z2 + 1 and z21 − 3 to
eliminate z1. We obtain 3 polynomials z21 − 3, −2zz1 + z2 + 1 (which is linear in z1) and
z4 − 10z2 + 1 (the minimal polynomial for γ).

Now we compute ϕ(z1) by solving −2zz1 + z2 + 1 = 0 for z1 mod m(z). We must invert
−2z in Q[z]/〈m(z)〉 using he Euclidean algorithm. We then solve z−ϕ(z1)− z2 = 0 for z2
to determine ϕ(z2). Finally we compute ϕ(z1z2) = ϕ(z1)ϕ(z2).

Method 3 also does O(d3) arithmetic operations in Q. But unlike methods 1 and 2 which
solve linear systems of size d × d, it only does polynomial arithmetic. We are currently
investigating whether we can accelerate method 3.
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Lattice coding theory is an active research area in communications. An important problem
in this area is efficient lattice decoding. Label codes are crucial parameters in lattice theory,
used as a template for encoding and decoding a lattice [1].

The number of codewords in a label code gives information about the trellis complexity. Find-
ing a less complex trellis with minimum size results in a more efficient decoding algorithm
[2].

In this talk, we first show a relation between the ideal of an integer lattice and its label code
for any integer lattice. As an application, we obtain the reduced Gröbner bases for the root
lattice Dn, and then, find a generating set for Dn’s label code.
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Let f ∈ C[x, y, z]. The vanishing set of f defines an hypersurfaceX in C3. We are interested
in finding a toric resolution of X when X has singularity along one of the axes. We construct
a toric resolution of X from a regular subdivision of its dual Newton polyhedron. We first
study on the minimality of the resolution and then, we relate the minimal resolution with
the jet space Jm(X) of X which is defined as follows: Let m ∈ N. The mth jet of X is a
parametrized curve given by

ϕ :
C[x, y, z]
< f >

→ C[t]
< tm+1 >

(x, y, z) 7→ (x(t), y(t), z(t))

where x(t) = x0 + x1t+ x2t
2 + . . .+ xmt

m (mod tm+1)

y(t) = y0 + y1t+ y2t
2 + . . .+ ymt

m (mod tm+1)

z(t) = z0 + z1t+ z2t
2 + . . .+ zmt

m (mod tm+1)

This map gives

ϕ∗ : Spec(
C[t]

< tm+1 >
) → Spec(

C[x, y, z]
< f >

)

We have f(x(t), y(t), z(t)) = F0 + tF1 + t2F2 + . . .+ tmFm = 0 (mod tm+1).

The mth jet space of X is

Jm(X) := Spec(
C[xi, yi, zi; i = 1, . . .m]

< F0, F1, . . . , Fm >
)

This is a part of the joint work with C.Plénat and M.Tosun.

Keywords
Toric resolution, rational singularity, jet space.
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The evaluation of system reliability is an NP-hard problem even in the binary case. There
exist several general methodologies to analyze and compute system reliability [6, 11]. Two
main ones are the sum-of-disjoint-products (SDP), which expresses the logic function of the
system as a union of disjoint terms, and the Improved Inclusion-Exclusion (IIE) formulas
[4, 2]. The algebraic approach to system reliability, assigns a monomial ideal to the system
and computes its reliability in terms of the Hilbert series of the ideal, providing an algebraic
version of the IIE method [5, 8, 9, 7]. In this paper we make use of this monomial ideal
framework and present an algebraic version of the SDP method, based on a combinatorial
decomposition of the system’s ideal [3, 10]. Such a decomposition is obtained from an invo-
lutive basis of the ideal. This algebraic version is suitable for binary and multi-state systems.
We include computer experiments on the performance of this approach using the C++ com-
puter algebra library CoCoALib [1] and a discussion on which of the algebraic methods can
be more efficient depending on the type of system under analysis.
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There are a number of ways of generating combinatorial objects “up to isomorphism” [6].
An approach often used in the symbolic computation community is to iteratively construct
objects using an isomorph-free method such as orderly generation [4, 7]. Alternatively, the
satisfiability (SAT) community often removes isomorphic solutions from the search via the
addition of new constraints [2]. Coupling isomorph-free exhaustive generation with satisfia-
bility checking has been explored recently [1,5,8].

We use orderly generation and SAT solving to search for Kochen–Specker (KS) systems—a
crucial ingredient used in the proof of the “Free Will Theorem” that if humans have free will
then so do elementary particles [3]. We show that augmenting a SAT solver with orderly gen-
eration dramatically improves its performance, especially as the size of the search increases.
Our search for KS systems of size 21 is over a thousand times faster than the previous best
approach [9] and we derive a new lower bound by showing a KS system must be of size 23
or greater.

Keywords
Isomorph-free exhaustive generation, orderly generation, satisfiability solving, symbolic com-
putation, symmetry breaking, search, Kochen–Specker systems
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At the intersection of algebraic geometry, number theory, and combinatorics (especially in
finite geometry), an interesting problem is counting points on an algebraic curve over a finite
field. For an elliptic curve E over a finite field Fq , with q a prime power, it is classically
well known that #E(Fq) = 1 + q − aq , where the aq’s are the eigenvalues of suitable
(Hecke) operators acting on E. This can be generalized to modular curves (that are curves
parametrizing elliptic curves with some torsion data). If we know the eigenvalues of Hecke
operators, we can compute the number of points of a modular curve over finite fields very
quickly. Algorithms for computing eigenvalues of Hecke operators allowed us to make these
calculations for a very large number of examples. This data gives us a large amount of
experimental information that we can study, in particular, we are interested in curves with
many points over finite fields with respect to the genus (these kinds of curves are interesting
for applications to codes).
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Experimenting with Young Tableaux

Dron Zeilberger1 [doronzeil@gmail.com]
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Young tableaux are simple to define, easy to count, yet there are still lots of fascinating open
problems. They can also be explored by simulation, using the seminal Greene-Nijenhuis-Wilf
algorithm to generate, uniformly at random, a standard Young tableau of a given shape.

Keywords
Young Tableaux, Greene-Nijenhuis-Wilf algorithm
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Schmidt type partitions

Ae Ja Yee1 [yee@psu.edu]
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Recently, Andrews and Paule studied Schmidt type partitions using MacMahon’s Partition
Analysis and obtained various interesting results. In this talk, I will discuss the combinatorics
of the Schmidt type partition theorems of Andrews and Paule along with some generalizations
and overpartition analogues.

Keywords
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In this talk we will describe the Factorial-Basis method and its current implementation in
SageMath [7] to obtain definite-sum solutions for linear recurrences.

By definition, a P-recursive (or holonomic) sequence is given by a linear recurrence with
polynomial coefficients, together with suitable initial conditions. Often one wishes to find
explicit representations of P-recursive sequences and plenty of algorithms has been developed
to find solutions of specific shape. For example, one can find polynomial [1], rational [2],
hypergeometric [6], D’Alembertian [3] or Liouvillian [4] solutions.

However, these classes do not exhaust all possible representable P-recursive sequence. For
instance, every definite hypergeometric sum on which Zeilberger’s Creative Telescoping al-
gorithm [8] succeeds. Hence, it makes sense to consider the Inverse Creating Telescoping
Problem:

Problem. Given a linear recurrence L with polynomial coefficients and no Liouvillian solu-
tions, find its solution in the form of definite sums of a given type.

In this talk we present a small, but important, step towards solving this problem: given a linear
recurrence L with polynomial coefficients and a polynomial basis (i.e., a set B = {Pn(x) |
n ∈ N} with deg(Pn(x)) = n) that is shift-compatible and quasi-triangular, we compute
another recurrence L′ such that if

y =
∞∑

k=0

ckPk(n),

then Ly = 0 if and only if L′c = 0. Hence, we can transform recurrence operators into
simpler ones that we can solve with existing algorithms. With appropriate iteration, one can,
in the end, express the original sequence y as a definite-sum of simpler sequences.

Example. Consider the simple linear operator L = E − c where E is the shift mapping
x 7→ x+1 and c ∈ K. If we look the equation Ly(x) = 0 with x ∈ N, we know we have the
solution y(m) = αcm for any α ∈ K.
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Now, consider the binomial basis C =
{(

x
n

)
| n ∈ N

}
and y(x) =

∑
n≥0 an

(
x
n

)
. Using the

well known identity
(
x+1
n

)
=
(
x
n

)
+
(

x
n−1
)
, we have that Ly = 0 if and only if

∑

n≥0
(an+1 − (c− 1)an)

(
x

n

)
= 0,

which means that the sequence (an) satisfies the recurrence an+1 − (c − 1)an = 0. This
recurrence has as solution an = α(c − 1)n. Hence, putting everything together, we obtain a
new representation for the sequence (cn)n with a well-known binomial identity:

cm =
m∑

n=0

(c− 1)n
(
m

n

)
.

This toy example, although simple itself, shows already the key theoretical concept that al-
lows us to understand and automatize all these ideas: the compatibility of linear operators
with polynomial basis.

Definition. Let L be a linear operator over K[x] and B = {Pn(x) | n ∈ N} a polynomial
basis such that deg(Pn(x)) = n. We say that L is compatible with B if there are A,B ∈ N
and coefficients αi(n) for i = −A, . . . , B such that, for all n ∈ N:

LPn(x) =
B∑

i=−A
αi(n)Pn+i(x).

Given a particular polynomial basis B, the set of compatible operators form a K-algebra, and
computing the exact compatibility coefficients αi(n) is a straightforward computation. From
this point on we focus on a special type of polynomial bases: factorial bases. These basis
satisfy a recurrence of order one, i.e., for all n ∈ N:

Pn+1(x) = (anx+ bn)Pn(x).

We then proceed combine these factorial basis obtaining more complex factorial bases in or-
der to obtain basis that contains some products of binomial coefficients of appropriate shape.
We can do this using the concepts of Product basis and Shuffled bases. These two similar
ways of mixing factorial bases produce new factorial bases in such a way that, if the original
bases were compatible with an operator L, then the new basis is again compatible with L.

We will present all this concepts and their implementation in SageMath [7] within the package
pseries_basis. This package is freely available on Github*.

This talk is a joint work with M. Petkovšek and based on the article [5].

Keywords
hypergeometric sums, (formal) polynomial series; quasi-triangular bases; p-recursive; holo-
nomic

*https://www.github.com/Antonio-JP/pseries_basis
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Regular languages and the enumeration of
permutation classes

Vincent Vatter1 [vatter@ufl.edu]
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Attempts to apply the mature theory of regular languages to the study of permutation patterns
date to the 2003 work of Albert, Atkinson, and Ruškuc [2], who essentially reinvented the
Lehmer code. Albert, Linton, and Ruškuc [3] later generalized this approach to create the
insertion encoding. This encoding is well understood: we have a theorem characterizing
precisely which permutation classes it can handle, and Vatter [4] shows how to implement the
encoding in practice while avoiding much of the NDFA-to-DFA blow-up one might otherwise
expect. Somewhat independently, Albert, Atkinson, Bouvel, Ruškuc, and Vatter [1] have
introduced geometric grid classes of permutations, and have proved that they are in bijection
with regular languages. In contrast to the situation with the insertion encoding, here we
know frustratingly little about the encoding: we have no algorithm to determine whether
it applies to a given permutation class (described by a finite list of avoided permutations),
and the proof of the regularity of the languages is entirely non-constructive, as it rests in an
essential way on Higman’s lemma. I will describe efforts to make these results constructive
and implementable.
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Well-Indumatched Pseudoforests
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A matching in a graph G is a set of nonadjacent edges in the edge set of G. An induced
matching in a graph G is a matching such that no two end vertices of two different edges
in the matching are joined by an edge. A graph G is well-indumatched if all its maximal
induced matchings have the same size, that is, every maximal induced matching in G has the
same cardinality. The well-indumatched graphs were introduced in 2017 by Baptiste et al.
[1]. They proved that recognizing a well-indumatched graph is a co-NP-complete problem
even for (2P5,K1,5)-free graphs. More recently, Akbari et al. [2] provided a characterization
of well-indumatched acyclic graphs and this characterization yields a linear time recognition
algorithm. The authors also showed that there are infinitely many well-indumatched unicyclic
graphs of girth k, where k ∈ {3, 5, 7} or k is an even integer greater than 2 by providing the
well-indumatched graph families.

In this work, we provide a complete structural characterization of well-indumatched pseu-
dotrees, which are well-indumatched graphs whose each connected component contains at
most one cycle. That is, well-indumatched pseudotrees are disjoint union of well-indumatched
trees and well-indumatched unicyclic graphs. We define the pseudotree decomposition of a
well-indumatched unicyclic graph as pseudotrees, which contain at least two components
where only one of which is a well-indumatched unicyclic graph and all other components
are well-indumatched trees. Using the characterization of well-indumatched trees in [2] and
pseudotree decomposition, we extend the results on well-indumatched unicyclic graphs in [2]
by identifying all well-indumatched unicyclic graph families.
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Counting Labelled Trees of Certain Families
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A tree with n vertices is called a labelled tree if its vertices are distinguished from one another
by names such as, l1, l2, . . . , ln. Even if two trees are isomorphic, trees with having different
vertex labels are considered as distinct graphs. According to Cayley’s tree formula [1], there
are nn−2 labelled trees on n vertices. Prüfer used a simple way to prove this formula and
demonstrated that there exists a bijection between the set of labelled trees on n vertices and
sequences of n−2 numbers, each in the range 0, 1, 2, . . . , n−1 [2]. Such a number sequence
is called a Prüfer code and it provides an alternative to the usual representation of trees.

In this study, a computer algebra system (Maple) [3] library containing various algorithms
for trees is presented with the help of Prüfer code. Moreover, the number of labelled trees for
various families of trees such as double star, spider, centipede, firecracker, etc. is calculated
using combinatorial methods with the help of Prüfer code.
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A decomposition of a graph is a partition of its edge set into subsets. Graph decomposition
is one of the central fields of study in the intersection of Graph Theory and Combinatorial
Design Theory, with many applications in many other fields. Most graph decomposition
problems are related to cycle decompositions.

Cycle Decomposition problems, in general, are NP-complete. Cycle factorization is a par-
ticular case of the cycle decomposition problem with additional constraints such that the
decomposition can be partitioned into parallel classes which we call 2-factors. When we add
the condition that the edges must be directed, the problem becomes more difficult.

There are two well-known cycle factorization problems. One problem is the Oberwolfach
Problem where Kv (or Kv − I) decomposes into isomorphic 2-factors. Another problem is
the Hamilton-Waterloo Problem where Kv (or Kv − I) decomposes into 2-factors, and each
2-factor can be isomorphic to one of the given two 2-factors. There are numerous studies in
the literature based on the uniform versions of both problems.

The Directed Hamilton-Waterloo problem requires directed cycle factorization of the com-
plete symmetric digraphK∗

v into two non-isomorphic factors of directed cycles. If each factor
consists of either directed m-cycles or n-cycles, this version of the problem is called the uni-
form version and is denoted by HWP∗(v;mr, ns) where r and s are the number of factors
of directed m-cycles and n-cycles such that r + s = v − 1, respectively. In this study, the
necessary conditions for a solution to HWP∗(v;mr, ns) are given. Also some solutions to
the uniform version of the Directed Hamilton-Waterloo Problem depending on the parity of
the cycle sizes are presented.

Keywords
The Directed Hamilton-Waterloo Problem, cycle decomposition, directed factorization, com-
plete symmetric digraph, directed cycle
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George Andrews and Ae Ja Yee recently established beautiful results involving bivariate gen-
eralizations of the third order mock theta functions ω(q) and ν(q), thereby extending their
earlier results with the speaker. Generalizing the Andrews-Yee identities for trivariate gener-
alizations of these mock theta functions remained a mystery, as pointed out by Li and Yang in
their recent work. We have partially solved this problem and have generalized the Andrews-
Yee identities. Several new as well as well-known results have been derived. For example,
one of our two main theorems gives, as a corollary, a special case of Soon-Yi Kang’s three-
variable reciprocity theorem. A relation between a new restricted overpartition function p∗(n)
and a weighted partition function p∗(n) has also been obtained from a special case of one of
our theorems. I will present these results and also put forth some challenging problems which
would be interesting to pursue further.
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The framework of linked partition ideals, which serves as an important tool for integer par-
tition identities, was introduced by George Andrews in the 1970s. One main object of this
framework concerns the construction of Andrews–Gordon type generating functions for par-
tition sets under certain difference conditions. Briefly speaking, one may separate such parti-
tion sets into a finite number of subclasses according to their linked partition ideal decompo-
sitions. Meanwhile, the generating functions for these subclasses satisfy a certain system of
q-difference equations.

Although the theory of linked partition ideals is still in its infancy after almost fifty years, it is
clear that modern computer algebra systems are stimulating the development of this theory to
a great extent. In this talk, I will discuss how an algorithmic procedure, which relies on matrix
transformations, works in the study of the aforementioned q-difference systems. Also, I will
present several instances of making use of Mathematica packages implemented by RISC in
the construction of Andrews–Gordon type generating functions for these partition sets.

This talk contains my joint work with George Andrews and Zhitai Li [1,2].

Keywords
Linked partition ideals, Andrews–Gordon type series, Generating function, Kanade–Russell
conjectures, Schur’s theorem, Computer algebra
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In 2010, Andrews imposed parity restrictions on Rogers, Ramanujan and Gordon identities.
In the conclusion of the paper, he offered considering parity conditions for some overpartition
identities as an open problem. In 2013, Chen, Sang and Shi proved the Rogers-Ramanujan-
Gordon’s identity for overpartitions. Later, in 2020, Sang, Shi and Yee put parity restriction
for that identity and proved it for some cases. We followed their work and in a constructive
method, developed by Kurşungöz, we re-proved their identities and proved the remaining
cases.
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In the article [1] we introduced Combinatorial Exploration as a framework to algorithmically
discover the structure of combinatorial classes. When the exploration is successful a combi-
natorial specification of the initial class is output. Although the framework is domain agnostic
we have focused on the study of permutation classes. We have successfully reproduced in a
unified manner results in the literature spanning dozens of articles, as well as finding new
statements.∗ With one of our specifications in hand we always produce a polynomial time
algorithm to enumerate the elements (by length) in the class, as well as a system of equations,
sometimes in several variables. In many cases we can solve these systems of equations to ob-
tain a generating function for the enumeration. Furthermore we can often use the specifica-
tion to generate large permutations uniformly at random. This allows us to create heatmaps of
classes, by overlaying several random permutations on top of each other. We will survey our

Figure 1: Heatmaps of three permutation classes

results and discuss future directions. For examples of specifications, heatmaps, and obtaining
a copy of our implementation, please refer to the website https://permpal.com.

Keywords
Permutation patterns, algorithmic enumeration, combinatorial specification

∗In particular we have been able to find combinatorial specifications for 6 out of the 7 principal classes of length
4, and every other class defined by the avoidance of two or more length 4 patterns. See section 2.4 in our paper for
a comprehensive list with references.
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Partitions, Kernels, and the Localization Method

Nicolas Smoot1 [nsmoot@risc.jku.at]
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We provide some recent results in the arithmetic properties of the k-elongated plane partition
function. In particular, we discuss infinite congruence families for dk(n) which have been
found modulo powers of 2, 3, and 5, with possibilities for 7 and 11. These results have
stemmed from the application of new techniques for proving partition congruence families,
which reveal an unexpected internal algebraic structure within rational polynomials in a given
Hauptmodul.

Keywords
Localization method, Partition congruences
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Combinatorial constructions of generating
functions of cylindric partitions with small
profiles into unrestricted or distinct parts

Kağan Kurşungöz1, Halime Ömrüuzun Seyrek1

[halimeomruuzun@alumni.sabanciuniv.edu]

1 Mathematics Department, Sabanci University, İstanbul, Turkey

Cylindric partitions into profiles c = (1, 1) and c = (2, 0) are considered. The generating
functions into unrestricted cylindric partitions and cylindric partitions into distinct parts with
these profiles are constructed. The constructions are combinatorial and they connect the
cylindric partitions with ordinary partitions. The generating function of cylindric partitions
with the said profiles turn out to be combinations of two infinite products.

Keywords
integer partitions, cylindric partitions, partition generating function
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Sum-of-tails Identities

Rajat Gupta1 [rajatgpt@gate.sinica.edu.tw]

1 Institute of Mathematics, Academia Sinica, Taiwan

In this talk, a

finite analogue of the generalized sum-of-tails identity of Andrews and Freitas is obtained.
We derive several interesting results as special cases of this analogue, in particular, a recent
identity of Dixit, Eyyunni, Maji and Sood. We derive a new extension of Abel’s lemma
with the help of which we obtain a one-parameter generalization of a sum-of-tails identity
of Andrews, Garvan and Liang, an identity of Ramanujan as well as two new results —one
for Ramanujan’s function σ(q) and another for the function recently introduced by Andrews
and Ballantine. Later we introduce a new generalization FFWc(n) of a function of Fokkink,
Fokkink and Wang and derive an identity for its generating function. This gives, as a special
case, a recent representation for the generating function of spt(n) given by Andrews, Garvan
and Liang. We also obtain some weighted partition identities along with new representations
for two of Ramanujan’s third order mock theta functions through combinatorial techniques.

Keywords
Sum-of-tails, SPT function, Mock theta functions
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Efficient Rational Creative Telescoping
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We present a new algorithm to compute minimal telescopers for rational functions in two
discrete variables. As with recent reduction-based approaches, our algorithm has the impor-
tant feature that the computation of a telescoper is independent of its certificate. In addition,
our algorithm uses a compact representation of the certificate, which allows it to be easily
manipulated and analyzed without knowing the precise expanded form. This representation
hides potential expression swell until the final (and optional) expansion, which can be ac-
complished in time polynomial in the size of the expanded certificate. A complexity analysis,
along with a Maple implementation, indicates that our algorithm has better theoretical and
practical performance than the reduction-based approach in the rational case.

Keywords
Rational function, GGSZ reduction, Left scalar division with remainder, Telescoper

112



Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey, | August 15-19, 2021
Session on “Session Title”

A Gessel Way to the Diagonal Theorem on
D-finite Power Series

Shaoshi Chen1, Pingchuan Ma1, and Chaochao Zhu2 [schen@amss.ac.cn]

1 KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing, 100190, China
2 College of Finance and Mathematics, West Anhui University, Luan, Anhui, 237012, China

Special functions that satisfy linear differential equations with polynomial coefficients appear
ubiquitously in combinatorics and mathematical physics. Such kind of special functions
are called D-finite functions by Stanley. In the early 1980’s, many combinatorists, such
as Gessel, Stanley, Zeilberger etc., conjectured that the diagonal of rational power series
in several variables is D-finite. Gessel and Zeilberger proved this conjecture in their papers,
respectively. Later, Lipshitz pointed out that their proofs are not complete and he gave a proof
by basing on a different idea. Zeilberger completed his proof with the theory of holonomic
D-modules. In this talk, we follow the spirit of Gessel’s proof strategy and fix the gap in his
proof. The key ingredients we used are some basic properties of the diagonal operation. This
is a joint work with Pingchuan Ma and Chaochao Zhu.

Keywords
D-finite power series, Diagonal theorem
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Factorizable systems of differential equations
from particle physics: preprocessing and solving
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While solving systems of linear differential equations in one variable is straightforward when
the coefficients are constant, in the case when those coefficients depend on several variables,
the problem becomes more challenging. For example, in particle physics, computing Feyn-
man integrals can be done using the “integration by parts" method where we have to solve an
inhomogeneous first order differential system that depends also on a (regularisation) parame-
ter epsilon. There exist several methods that allow one to solve this system order by order in
epsilon, either using the differential equation setting, the difference field and ring machinery,
or the large moment method. Most of those strategies rely on an efficient preprocessing of the
system that provides the best uncoupling order and associated linear differential equations to
solve. Special care has to be done to find an uncoupling such that the underlying expansion
in epsilon is optimized. After introducing the general problem and briefly presenting the dif-
ferent methods, we will present a new preprocessing algorithm that allows to optimise the
solving of the system as indicated above.

Keywords
Feynman integrals, Factorizable systems
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D-finiteness, rationality, and height

Jason Bell1, Shaoshi Chen2, Khoa Nguyen3, Umberto Zannier4 [jpbell@uwaterloo.ca]
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Beijing, China
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We discuss the growth of heights of coefficients of a D-finite series, showing that under
conditions that ensure sufficiently slow growth, a D-finite series is necessarily rational.

Keywords
Heights, Pólya-Carlson theorem, Growth, Gap theorems
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Shift equivalence testing of polynomials and
symbolic summation of multivariate rational

functions

Shaoshi Chen1,2, Lixin Du1,2,3, Hanqian Fang4 [lx.du@hotmail.com]

1KLMM, AMSS, Chinese Academy of Sciences, Beijing, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing,
China
3Institute for Algebra, Johannes Kepler University, Linz, Austria
4School of Mathematical Sciences, Beihang University, Beijing, China

The Shift Equivalence Testing (SET) of polynomials is deciding whether two polynomials
p(x1, . . . , xn) and q(x1, . . . , xn) satisfy the relation p(x1+a1, . . . , xn+an) = q(x1, . . . , xn)
for some a1, . . . , an in the coefficient field. The SET problem is one of basic computational
problems in computer algebra and algebraic complexity theory, which was reduced by Dvir,
Oliverira and Shpilka in 2014 to the Polynomial Identity Testing (PIT) problem [1]. In this
talk, we presents a general scheme for designing algorithms to solve the SET problem which
includes Dvir-Oliverira-Shpilka’s algorithm as a special case. With the algorithms for the
SET problem over integers, we give complete solutions to two challenging problems in sym-
bolic summation of multivariate rational functions, namely the rational summability problem
and the existence problem of telescopers for multivariate rational functions. Our approach is
based on the structure of isotropy groups of polynomials introduced by Sato in 1960s [2]. Our
results can be used to detect the applicability of the Wilf-Zeilberger method to multivariate
rational functions.
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Summability, Telescopers, Isotropy Groups, Shift Equivalences
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Galois groups of linear difference-differential
equations

Ruyong Feng1,2, Wei Lu1,2 [ryfeng@amss.ac.cn]
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We consider the following σδ-linear system
{
σ(Y ) = AY

δ(Y ) = BY
, A ∈ GLn(k0(x)), B ∈ gln(k0(x))

where A,B satisfy the integrability condition: σ(B)A = δ(A) + AB. Here (k0, δ) is a
differential field with algebraically cosed C = kδ0, k0(x) is a σδ-field with shift operator
σ(x) = x + 1. With respect to the above system, there are three algebraic subgroups of
GLn(C): the σδ-Galois group G of the above system over k0(x), the σ-Galois group Gσ,c1
of σ(Y ) = Ac1Y over C(x), and the δ-Galois group Gδ,c2 of δ(Y ) = Bc2Y over k0, where
Ac1 ∈ GLn(C(x)) and Bc2 ∈ gln(k0) are specializations of A and B respectively.

We show that both Gσ,c1 and Gδ,c2 are algebraic subgroups of G under certain conditions
on c1, c2, and G = Gσ,c1Gδ,c2 for suitable c1, c2. These results enable us to reduce the
problem of determining σδ-Galois groups to the problems of determining σ-Galois groups
and δ-Galois groups. We also give a criterion for testing linear dependence of elements in a
simple σδ-ring, which generalizes the classic results for elements in a σ-field or a δ-field and
a result for hypexponential elements given by Li et al. 2007.

Keywords
Linear difference-differential equations, Galois groups, Specializations
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Symbolic-Numeric Factorization of Differential
Operators

Frédéric Chyzak1, Alexandre Goyer1, Marc Mezzarobba2 [alexandre.goyer@inria.fr]

1 Inria, France
2 CNRS, France

I am going to present a symbolic-numeric Las Vegas algorithm for factoring Fuchsian ordi-
nary differential operators with rational function coefficients. The new algorithm combines
ideas of van Hoeij’s “local-to-global” method and of the “analytic” approach proposed by
van der Hoeven. It essentially reduces to the former in “easy” cases where the local-to-global
method succeeds, and to an optimized variant of the latter in the “hardest” cases, while han-
dling intermediate cases more efficiently than both.

Keywords
Linear differential equations, Monodromy, Rigorous Numerics
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Efficient q-integer linear decomposition of
multivariate polynomials
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We present two new algorithms for the computation of the q-integer linear decomposition
of a multivariate polynomial. Such a decomposition is essential for the treatment of q-
hypergeometric symbolic summation via creative telescoping and also for describing the q-
counterpart of Ore-Sato theory. Both of our algorithms require only basic integer and polyno-
mial arithmetic and work for any unique factorization domain containing the ring of integers.
Complete complexity analyses are conducted for both our algorithms and two previous al-
gorithms in the case of multivariate integer polynomials, showing that our algorithms have
better theoretical performances. A Maple implementation is also included which suggests
that our algorithms are much faster in practice than previous algorithms.

Keywords
q-Analogue, Integer-linear polynomials, Polynomial decomposition, Newton polytope,
Creative telescoping, Ore-Sato theory
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Working with DD-finite functions automatically
on SageMath

Antonio Jiménez-Pastor1 [jimenezpastor@lix.polytechnique.fr]

1 LIX, CNRS, École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France

In this talk we are going to present the SageMath [5] package dd_functions and its latest
features concerning DD-finite functions.

DD-finite functions are a natural extension of the holonomic framework. Holonomic (or
D-finite) functions are formal power series (f(x) ∈ K[[x]]) that satisfy linear differential
equations with polynomials coefficients. These functions form a computable differential ring,
namely, the elements can be represented on the computer, and all the ring operations and the
derivative can be automatically executed [4]. Hence, they can be use again as coefficients for
new differential equations leading to the definition of DD-finite functions.

Definition. [DD-finite] Let f(x) ∈ K[[x]]. We say that f(x) is DD-finite if and only if there
is a natural number d > 0 and D-finite functions r0(x), . . . , rd(x) (rd(x) 6= 0) such that

rd(x)f
(d)(x) + . . .+ r0(x)f(x) = 0.

This definition allows representing DD-finite functions with a finite amount of data since we
only need to store the coefficients of the defining differential equation and some initial values
f(0), f ′(0), . . . , f (r)(0).

It was shown in [2] that the set of DD-finite functions is also a computable differential ring
(as it happened with the D-finite case). In fact, we can extend these results to the case were
the coefficients are in a computable differential ring.

Definition. [Differentially definable] Let R ⊂ K[[x]] be a differential subring and f(x) ∈
K[[x]]. We say that f(x) is differentially definable overR if there is d > 0 and r0, . . . , rd ∈ R
(with rd 6= 0) such that

rdf
(d)(x) + . . .+ r0f(x) = 0.

Theorem [3]. Let R ⊂ K[[x]] be a differential subring and let D(R) be the set of all
differentially definable functions over R. Then D(R) ⊂ K[[x]] is a computable differential
ring.
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With this result, we can observe that the differentially definable construction can be iterated,
obtaining a chain of computable differential rings within K[[x]]:

R ⊂ D(R) ⊂ D2(R) ⊂ . . . ⊂ Dn(R) ⊂ . . . ,

and, in this context, is clear that DD-finite functions are D2(K[x]).

These results were implemented in the SageMath [5] package dd_functions that we
present in this talk. This software allows to construct any differentially definable ring and
manipulate symbolically their elements in an automatic fashion.

This software is publicly available on GitHub*, and it is constantly updated with the new
results concerning DD-finite and differentially functions [1]. It includes:

Structures

• Definition of any differentially definable ring.
• The possibility of working in the chain of Dn(R).
• Create any differentially definable function giving the coefficients for the differential

equation and some initial conditions.
• Use an always increasing library of examples coming from special functions.

Operations

• All closure properties are included.
• Composition of differentially definable functions f(g(x)) when g(0) = 0.
• Computing closure properties keeping the singularities of the differential equations.
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d-finite; dd-finite; formal power series; SageMath; special functions
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Computing Logarithmic Parts by
Evaluation Homomorphisms
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Let (K, ′) be a differential field of characteristic zero, t be transcendental over K and t′ be-
long to K[t]. Assume that K and K(t) have the same subfield C of constants. A polynomial
p in K[t] is said to be normal if gcd(p, p′) = 1. A rational function f in K(t) is said to be
simple if it is proper and has a normal denominator.

Let f ∈ K(t) be simple. Then f has an elementary integral if and only if
∫
f = c1 log g1 + · · ·+ cm log gm

for some c1, . . . , cm in the algebraic closure of C and g1, . . . , gm in K(c1, . . . , cm)(t). We
call {(c1, g1), . . . , (cm, gm)} a logarithmic part of f when the above equality holds.

Given a simple function f , known algorithms for determining its logarithmic parts are based
on either resultants [1, 6, 7], or subresultants [1, 3, 4], or Gröbner bases [1, 2, 5]. These
algorithms need to find a polynomial r ∈ K[z], where z is a constant indeterminate and
r is either the Rothstein-Trager resultant of f [1,6,7] or its squarefree part. Then f has a
logarithmic part if and only if the monic associate p of r belongs toC[z]. It is time-consuming
to compute r when K is a field of multivariate rational functions over C.

We present a new algorithm that computes a candidate q ∈ C[z] for the monic associate
p by evaluation homomorphisms, and attempts to construct a logarithmic part of f using q
by algebraic gcd-computation. By a property of residue multiplicities, the algorithm either
confirms the non-existence of logarithmic parts or finds a logarithmic part of f . Empirical
results illustrate that the algorithm is more efficient than the known algorithms.
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Decision Problems for Second-Order Holonomic
Recurrences
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We study decision problems for sequences which obey a second-order holonomic recurrence
of the form f(n + 2) = P (n)f(n + 1) + Q(n)f(n) with rational polynomial coefficients,
where P is non-constant, Q is non-zero, and the degree of Q is smaller than or equal to
that of P . We show that existence of infinitely many zeroes is decidable. We give partial
algorithms for deciding the existence of a zero, positivity of all sequence terms, and positivity
of all but finitely many sequence terms. If Q does not have a positive integer zero then our
algorithms halt on almost all initial values (f(1), f(2)) for the recurrence. We identify a class
of recurrences for which our algorithms halt for all initial values. We further identify a class
of recurrences for which our algorithms can be extended to total ones.

Keywords
Holonomic sequences, Positivity Problem, Skolem Problem
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C2-finite Sequences: A Computational Approach
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We define a class of sequences which satisfy a linear recurrence with coefficients that, in
turn, satisfy a linear recurrence with constant coefficients themselves, i.e., are C-finite. These
C2-finite sequences are a natural generalization of P -finite sequences, they form a ring and
satisfy additional computational properties [1,2,3]. It turns out that, compared to P -finite
sequences, the algorithmic aspects are much more involved and are related to difficult prob-
lems in number theory. We give an introduction to these C2-finite sequences and present an
implementation in the computer algebra system SageMath.
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Factoring differential operators in positive
characteristic
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We present an algorithm to factor differential operators with coefficients in an algebraic func-
tion field K of characteristic p, provided with the usual derivation, as a product of irreducible
differential operators with coefficients in K. We make use of tools specific to the characteris-
tic p, such as the p-curvature or the arising central simple algebra structure. In particular we
shall see that factoring differential operators ultimately reduces to solving some "p-Ricatti"
equations, for which purpose we use tools of algebraic geometry.

Keywords
Differential operators, Factorisation, Positive characteristic, p-curvature, Central simple al-
gebras
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Arithmetic of polynomial dynamical systems

Mohammad Sadek [mohammad.sadek@sabanciuniv.edu]

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

The number theoretic properties of iterations of polynomial maps defined over number fields
are governed by the degree of the maps and the degree of the field. Although due attention
has been given to iterations of quadratic polynomial maps over number fields of small degree,
arithmetic dynamical systems produced by iterations of polynomial maps of higher degrees
have not been addressed much in literature. In this talk, we survey some of the old and new
results on arithmetic polynomial dynamical systems. The focus will be on algebraic aspects
of these systems in the case that the degree of the polynomial map is at least three.

Keywords
Arithmetic dynamics, Dynamical irreducibility, Periodic points
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Series defined by quadratic differential equations

Bertrand Teguia Tabuguia [teguia@mis.mpg.de]

Nonlinear Algebra Group, Max Planck Institute for Mathematics in the Sciences, Leipzig,
Germany

Differential polynomials of degree at most one annihilate D-finite functions. We consider
annihilators of degree at most two and present a general strategy to represent power series
solutions of resulting differential equations given enough initial values [1]. Using techniques
from algebraic geometry (see [2]), our method extends to representations of Laurent-Puiseux
series. Consequently, we can prove identities beyond D-finiteness. However, doing so raises
the question of closure properties. Indeed, to show equivalence between two expressions,
we may need to establish evidence of the zero-equivalence of their difference; therefore, in
a sense, it is relevant to know if the class under consideration contains additive group struc-
tures. We present some of our investigations around closure properties with generalization to
differential polynomials of degree at most k ∈ N.

Furthermore, we demonstrate how our method highlights a reverse methodology that finds
application in Guessing: recovering a non-D-finite function from a truncation of its power
series expansion [3].

Parts of this presentation came from joint work with Wolfram Koepf and Anna-Laura Sattel-
berger.
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Differential algebra, Power series representation, Guessing
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q-Difference Equation Systems for Cylindric
Partitions

Ali Kemal Uncu1,2 [akuncu@ricam.oeaw.ac.at]

1 Austrian Academy of Sciences, Johann Radon Institute for Computational and Applied
Mathematics, Linz AT
2 University of Bath, Department of Computer Science, Bath UK

The cylindric partitions defined by Gessel and Krattenthaler [4] attracted interest after a re-
cent paper by Corteel and Welsh [3]. In this talk, we will look at these objects and their
symmetric versions as well as skew double shifted plane partitions. We will especially focus
on the coupled q-difference equation systems that these objects are associated with and the
difficulties of solving such systems.

Parts of this work is joint with Sylvie Corteel, Jehanne Dousse [2], and Walter Bridges [1].
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Computational classification of symplectic
4-dimensional semifields over finite fields

Michel Lavrauw1, John Sheekey2 [michel.lavrauw@sabanciuniv.edu]

1 Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul 34956,
Turkey
2 School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

We will report on the classification of symplectic 4-dimensional semifields over Fq , for q ≤ 9
from [1]. This classification extends (and confirms) the previously obtained classifications
for q ≤ 7. The classification is obtained by classifying all symplectic semifield subspaces in
PG(9, q) for q ≤ 9 up to K-equivalence, where K ≤ PGL(10, q) is the lift of PGL(4, q)
under the Veronese embedding of PG(3, q) in PG(9, q) of degree two. Our results imply the
non-existence of non-associative symplectic 4-dimensional semifields for q even, q ≤ 8. For
q odd, and q ≤ 9, our results imply that the isotopism class of a symplectic non-associative
4-dimensional semifield over Fq is contained in the Knuth orbit of a Dickson commutative
semifield.

Keywords
Semifield, Veronese embedding, Isotopism class
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Divisible codes and few-weight codes in the rank
metric

John Sheekey1, Olga Polverino2, Paolo Santonastaso2, Ferdinando Zullo2 [john.sheekey@ucd.ie]

1 School of Mathematics and Statistics, University College Dublin, Ireland
2 Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy

Linear codes in which the weights of the codewords are restricted in some way have been
frequently studied in the Hamming metric; for example e-divisible codes, where all weights
are divisible by an integer e > 1, and two-weight codes, where the set of weights of nonzero
codewords has cardinality two.

Codes in the rank metric have been studied with increasing intensity in recent years. In this
work we aim to construct and characterise divisible codes with certain properties, as well as
study one-, two-, and three-weight codes.

Keywords
Rank-metric codes, divisible, two-weight
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Construction of Subspace Codes using Evaluation

Joachim Rosenthal1 [rosenthal@math.uzh.ch]

1 Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich.

A constant dimension subspace code can be viewed geometrically as a subset of the Grass-
mann variety defined over a finite field.

There exist few algebraic constructions for constant dimension subspace codes. A major
technique is the ’lifting technique’ of a rank metric code with a good distance. For rank metric
codes exist several good algebraic constructions. First and for most one should mention the
technique of constructing Gabidulin codes which can be seen as the image of a linear space
of linearized functions under an evaluation map. The technique of constructing Gabidulin
codes naturally generalizes the construction of AG-codes such as Reed-Solomon codes and
more general geometric Goppa codes.

In this talk we present a new idea on how one can construct excellent subspace codes by
evaluating points on a rational curve in the Grassmannian.

Keywords
Subspace codes, rank metric codes, evaluation codes.
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Protograph-based LDPC codes with chordless
short cycles and large minimum distance

Farzane Amirzade1, Daniel Panario1, Mohammad-Reza Sadeghi2

1 School of Mathematics and Statistics, Carleton University, Ottawa, Canada
[farzaneamirzadedana@cunet.carleton.ca, daniel@math.carleton.ca]
2 Faculty of Mathematics and Computer Science, Amirkabir University of Technology,
Tehran, Iran [msadeghi@aut.ac.ir]

Quasi-cyclic low-density parity-check codes (QC-LDPC codes) are an essential category of
LDPC codes that have simple implementation and favorable performance. One of the most
important representations for codes is the Tanner graph in which the length of the shortest
cycles, girth, has been known to influence the code performance. Since Tanner graphs with
short cycles do not produce good results, constructions which lead to the existence of 4-cycles
in their Tanner graphs are avoided. Indeed, in almost all of the algebraic-based constructions
proposed up to now Tanner graph has girth at least 6.

Another phenomenon that influences the performance of LDPC codes are trapping sets. An
(a, b) trapping set is a subgraph of the Tanner graph which is induced by a variable nodes in
the set and their check node neighbors, with b check nodes of odd degrees (the unsatisfied
check nodes) and an arbitrary number of even degree check nodes (the satisfied check nodes).
Empirical results show that among all trapping sets, the most harmful ones are those with
check nodes of degree 1 or 2. These are called elementary trapping sets (ETSs).

Controlling small size trapping sets and short cycles can result in LDPC codes with large
minimum distance dmin. We prove that short cycles with a chord are the root of several
trapping sets, and eliminating these cycles increases dmin. We show that the lower bounds on
dmin of an LDPC code with chordless short cycles, girth 6, and column weights γ is 2γ. This
is a significant improvement compared to the existing bound γ + 1.

Several exponent matrices of protograph-based LDPC codes with chordless short cycles are
proposed for any type of protographs, single-edge and multi-edge. These numerical results
as well as simulations show that the removal of short cycles with a chord improves previous
results in the literature.

Keywords
LDPC codes, girth, Tanner graph, elementary trapping set, chordless cycles, minimum dis-
tance.
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Ordered Covering Arrays and NRT-metric
Covering Codes

Lucia Moura lmoura@uottawa.ca

University of Ottawa, Ottawa, Canada

Ordered covering arrays generalize both ordered orthogonal arrays and covering arrays, which
are well-studied combinatorial designs. Classical codes using the Hamming metric can be
generalized to codes with a poset metric. The Niederreiter-Rosenbloom-Tsfasman (NRT)
metric corresponds to posets that are the disjoint union of chains of the same size. In this
talk, we discuss ordered covering arrays and their use in upper bounds for NRT-metric cov-
ering codes. This talk is based on joint work with André Guerino Castoldi, Emerson Luiz do
Monte Carmelo, Daniel Panario and Brett Stevens [1,2].
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combinatorial designs, covering codes, covering arrays
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Better CRC Codes

Anton Betten

Department of Mathematics, Kuwait University, Kuwait

CRC Codes are used to detect communication errors, for instance in TCP/IP Internet traffic.
The standard is CRC32, which adds a 32 bit checksum to the information packet. It has
been observed by Partridge et.al. that certain errors may slip by this check sum, leading
to corrupt data transfer. We will present some ideas for better checksums. Our approach
is based on BCH-codes over extension fields in characteristic two. The check sum will be
longer, leading to a slightly lower information rate, but the error detection is significantly
stronger, in particular for the type of errors that appear frequently.

This is joint work with Craig Partridge and Joseph Riva.

Keywords
CRC code, check sum, CRC polynomial, Finite Field
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Constructions of new matroids and designs over
Fq

Eimear Byrne1, Michela Ceria2, Sorina Ionica3, Relinde Jurrius4, Elif Saçikara5 [rpmj.jurrius@mindef.nl]

1 University College Dublin, Ireland
2 Politecnico di Bari, Italy
3 Netherlands Defence Academy, The Netherlands
4 University of Picardie Jules Verne, France
5 University of Zürich, Switzerland

A perfect matroid design (PMD) is a matroid whose flats of the same rank all have the same
size. As the name suggest, these matroids give rise to certain designs, and in the literature this
construction is used to find new designs. The aim of this work is to establish a q-analogue of
this construction.

We will introduce the q-analogue of a PMD and its properties. In order to do that, we first
define a q-matroid in terms of its flats. We show that q-Steiner systems are examples of q-
PMD’s, just like Steiner systems are examples of PMD’s. We use the q-matroid structure
to construct subspace designs from q-Steiner systems. We apply this construction to known
q-Steiner systems and discuss the designs coming from it.

Keywords
q-analogue, q-matroid, subspace design
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Critical Problem, q-Polymatroids and
Rank-Metric Codes

Gianira N. Alfarano1, Eimear Byrne2 [gianiranicoletta.alfarano@math.uzh.ch]

1 Institute of Mathematics, University of Zurich, Zurich,
Switzerland
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In classical combinatorics, polymatroids have been introduced as an extension of the concept
of matroid. There are many known connections between linear codes and matroids and many
invariant in coding theory are also matroid invariants. q-Matroids and q-polymatroids are the
q-analogue of matroids and polymatroids. These objects have gained a lot of interest among
an increasing number of researchers, especially in the last few years, due to their connection
with rank-metric codes. In particular, in [3] it has been shown that to an Fq-linear rank metric
code C ≤ Fn×m

q it can be associated a q-polymatroid MC and when C is also Fqm -linear, MC
is a q-matroid; see [2].

In this talk we will show some recent results on the invariants of q-polymatroids and rank-
metric codes. One of these results lead to the solution of the q-analogue of the classical
Critical Problem, proposed by Crapo and Rota in [1]. We will make use of the characteristic
polynomial of a q-polymatroid as a basic tool for this result. Finally, we will provide the
coding theoretic interpretation and we will partially solve it for maximum rank distance codes.

Keywords
Critical problems, q-polymatroids, rank-metric codes.
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On the geometry of (q + 1)-arcs of PG(3, q), q even

Michela Ceria1, Francesco Pavese1 [michela.ceria@poliba.it]

1 Department of Mechanics, Mathematics and Management, Politecnico di Bari, Italy

Let us consider the projective space PG(3, q) of dimension three over the finite field Fq , for q
a power of a prime. We call (q+1)-arc of PG(3, q) a set of q+1 points of PG(3, q) such that
no four of them are coplanar. In this talk we focus on the case q = 2n, in which a (q+ 1)-arc
is projectively equivalent to

A = {Pt = (1, t, t2
h

, t2
h+1) | t ∈ Fq} ∪ {(0, 0, 0, 1)},

where gcd(n, h) = 1 and it is also projectively equivalent to

Ā = {(1, t, t2n−h

, t2
n−h+1) | t ∈ Fq} ∪ {(0, 0, 0, 1)}.

For q ≥ 5, the group leaving A invariant, that we denote by Gh, is a subgroup of PGL(4, q)
isomorphic to to PGL(2, q).

In the case h = 1, the (q + 1)-arc A is called twisted cubic; it has been deeply studied
in literature, and, in particular, so is the action of its group G1 on points, lines and planes.
Besides being important from a geometrical point of view, its relevance relates also to its
connection to coding theory and for example to asymptotically optimal multiple covering
codes [1].

In this talk, we deal with the orbits of the groupGh on points, lines and planes of PG(3, q). In
particular, we show that, similarly to what happens for the twisted cubic, there are five orbits
on points and planes. Moreover, the orbits on lines are 2q+7+ξ, where q ≡ ξ mod 3. This
proves, in even characteristics, Conjecture 8.2 of [2].

We conclude examining the point-line incidence matrix for the case of the twisted cubic.
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Trifferent codes and affine blocking sets

Anurag Bishnoi1, Dion Gijsiwijt1, Jozefien D’haesleer2, Aditya Potukuchi3 [A.Bishnoi@tudelft.nl]
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Trifferent codes, also known as perfect 3-hash codes, are subsets of C of {0, 1, 2}n such that
for any three distinct codewords in C, there is a common coordinate position where all of
these codewords have different values. When {0, 1, 2} is identified with F3 and C is a linear
subspace of Fn

3 , then it is called a linear trifferent code. Studying the maximum possible size
of trifferent codes of length n, as a function of n, is one of the classic open problems in both
coding theory and extremal combinatorics [1,2]. The trivial upper bound of c

(
3
2

)n
has not

been improved despite considerable effort, except for the constant c. The best known lower
bound is also exponential but with a smaller base of the exponent. Recently, Pohoata and
Zakharaov [3] studied linear trifferent codes and showed a much stronger upper bound on
their size. In this talk we will see further improvements to their bound and prove exponential
lower bounds. We obtain these results by exploiting a connection of this problem with certain
affine blocking sets. In addition to this connection, we use the MRRW bound from coding
theory to obtain our new upper bounds on linear trifferent codes. For the lower bound we use
a probabilistic construction. We also propose a natural problem in finite geometry, where ex-
plicit constructions can potentially lead to the best known explicit lower bounds on trifferent
codes.
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Cameron–Liebler type sets and completely
regular codes

Morgan Rodgers1 [morgan.rodgers@istinye.edu.tr]

1 Mathematics Department, Istinye University, Istanbul, Turkey

The notion of a completely regular code was initially given by Delsarte [1] as a generalization
of a perfect code. Delsarte defined these not only for codes in the Hamming graphs, but more
generally for vertex subsets of any arbitrary distance regular graph.

One important family of completely regular codes in the Grassmann graphs is given by the
Cameron–Liebler sets of k-spaces. A Cameron–Liebler line class in PG(3, q) can be defined
as a set L of lines whose characteristic vector lies in row(A), where A is the point-line
incidence matrix of PG(3, q) [2]. These objects provide examples of completely regular
codes in the Grassmann graph Gq(4, 2). They are also connected to collineation groups of
PG(3, q) having the same number of orbits on points and lines, as well as to symmetric
tactical decompositions of the point-line design PG(3, q).

The concept of a Cameron–Liebler line class has also been generated to sets of k-spaces in
PG(n, q) for arbitrary n and k, and we again get imporant examples of completely regular
codes in the Grassmann graph Gq(n+ 1, k + 1) from these objects.

In this talk, we will look at the known results on Cameron–Liebler sets in these contexts, and
explore in detail the connection to completely regular codes. We will also look at Cameron–
Liebler sets in the context of generators in a finite classical polar space, as vertex sets in the
dual polar graphs.
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Mutually Orthogonal Latin Squares based on
e-Klenian polynomials
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A latin square of order t ∈ N is an t× t matrix L with entries from a set T of size n such that
each element of T occurs exact once in every row and every column of L, see [3].

Two Latin squares L1 and L2 of order t are orthogonal if by superimposing them one ob-
tains all ordered pairs (ti, tj) ∈ T 2, (i, j = 1, . . . , t), and mutually orthogonal latin squares
(MOLS) are sets of Latin squares that are pairwise orthogonal. The construction of MOLS is
a notoriously difficult combinatorial problem and it is one of the most studied research topics
in design theory [5]. This interest is also due to the numerous applications that MOLS have
in other fields such as cryptography [6], coding theory and many others [2].

In this talk we investigate new constructions of MOLS of prime p and prime power q =
pr size, based on local permutation polynomials. It is known every Latin square can be
represented by a local permutation polynomial, f(x, y) ∈ Fq[x, y] with coefficients in a
finite field Fq with q elements, that is, defines two permutations f(a, y) and f(x, a) in in Fq

for any a ∈ Fq . Permutation polynomials is a very well known area with a lot of interest in
mathematics and computer science community, see the excellent bible [4]. After introducing
the local permutation polynomials based on symmetric subgroups without fixed points, called
e-Klenian polynomials [1], we provide a big family of MOLS.
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On Optimal Binary Linear Complementary Pair
of Codes
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A pair of linear codes (C,D) of length n over Fq is called a linear complementary pair (LCP)
if their direct sum C ⊕ D yields Fn

q . We call (C,D) an [n, k] LCP of codes if dimC = k.
LCP of codes have drawn attention in recent years due to cryptographic applications via direct
sum masking scheme, which is proposed as a countermaeaure against side channel and fault
injection attacks ([1,2,5]).

The security parameter of an LCP of codes (C,D) is defined as min{d(C), d(D⊥)}. If we
denote by dL(n, k) the largest minimum distance of an [n, k] linear code over Fq , and by
dLCP (n, k) the highest security parameter for an [n, k] LCP of codes over Fq , it is clear that
dLCP (n, k) ≤ dL(n, k) for all q. Carlet et al. showed in [3] that dL(n, k) = dLCP (n, k) for
all n and k, if q ≥ 3 (i.e. there exists optimal LCP of codes over Fq , if q ≥ 3). For binary
linear codes, they showed in the same article that dLCP (n, k) ≥ dL(n, k) − 1. So, the best
security parameter problem is open for further study in the case of binary LCP of codes.

It has been proved in [4] that the binary LCP of codes are optimal in the following broad
cases:

• For any dimension k ≥ 2 and length n congruent to 0 or 1 modulo (2k − 1),

• For any length n and dimension 2 ≤ k ≤ 4, with the exception of two parameters:
(n, k) = (4, 3) and (8, 4).

The talk will review the problem, present the results of [4] and the ideas involved in obtaining
them, as well as some more recent observations, which yield further optimal binary LCP’s
using a family of Griesmer codes.

Part of the results have been obtained in collaboration with W.-H. Choi, J.-L. Kim and F.
Özbudak. Supported by a bilateral cooperation program between Korea and Turkey, under
TÜBİTAK grant with the project code 120N932.
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On LCP of 1-generator QC codes
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1 Faculty of Engineering and Natural Sciences, Sabanci university, Istanbul, Turkey

Linear complementary dual (LCD) codes were introduced by Massey in 1992. A linear code
C is LCD if it intersects its dual trivially. A characterization of LCD QC codes has been
given by Güneri, et.al. in 2016 through the constituents of QC codes.
Linear complementary pair (LCP) of codes, can be considered as a generalization of LCD
codes. A pair (C,D) of linear codes is called LCP of codes if C ⊕ D = Fn

q , C and D
intersect trivially. Such codes have been studied by Carlet, et. al. It has been shown that if
(C,D) is LCP of QC codes, then it does not necessary implies that C and D⊥ are equivalent.
We studied the 1-generator QC codes. A characterization of such codes is given in terms of
their generator and parity check polynomials. Moreover, LCP of this family is characterized
via the generator elements of C and D. If (C,D) is LCP of cyclic codes, or more generally
abelian codes, it has been shown that C and D⊥ are equivalent codes. However this is not
true for general linear codes or quasi cyclic codes. Moreover, equivalence of C and D⊥ is
studied for an LCP of 1-generator quasi cyclic codes. This is a joint work with Cem Güneri1,
Tekgül Kalaycı1.

Keywords
Linear Complementary Dual, Linear Complementary pair, Quasi Cyclic Code, 1-generator
Quasi Cyclic codes, Code Equivalence
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A deterministic method for computing Bertini
type invariants of parametric ideals
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Let us start by recalling the classical theorem of Bertini. Let X be a smooth algebraic variety
in a projective space Pn. Let H ⊂ Pn be a hyperplane. Then, the theorem of Bertini says
that the hyperplane section X ∩H is smooth, if H is general. General objects are ubiquitous
in many fields. In fact, especially in algebraic geometry, there are many properties, concepts
and invariants that involve generality conditions. In this paper, w call such a kind of invariant
Bertini type invariant. It is difficult to compute Bertini type invariants for singular varieties
because of genericities. There are two major methods for computing Bertini invariants. One
is the use of random numbers. The other method utilized tools from numerical algebraic
geometry, the software Bertini developed by Daniel J. Bates et al [2]. Both methods are
widely used, however, they are not deterministic.

We propose an alternative, deterministic method for computing Bertini type invariants. The
key of our approach is the Gröbner basis computation with coefficients in the field of rational
functions of new auxiliary indeterminates. For the case that a family of varieties or ideals
depending on deformation parameters are given. Computing parameter dependency of Bertini
type invariants is of fundamental importance. In this talk, we address such parametric cases
and show that by utilizing the theory of comprehensive Gröbner systems, our approach can
be extended to treat parametric cases.

Here we give an example to illustrate a role of auxiliary indeterminates in our approach.

Chern-Schwartz-MacPherson class

Let φ : Pn −→ Pn be a rational map. Let gi = card(φ−1(Pn−i) ∩ Pi), where Pn−i and Pi
are general planes of dimension n − i and i respectively. Then, g = (g0, g1, g2, . . . , gn) is
called the projective degrees of the map φ. (See [6].)

Let V = V (f) be a hypersurface of Pn, where f is a defining polynomial of V . Let cSM (V )
be the Chern-Schwartz-MacPherson class of V . (See [7].)

Theorem (P. Aluffi[1]) Let g = (g0, g1, . . . , gn) be the projective degrees of the polar map
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φ : Pn −→ Pn defined to be

φ : p 7→ (
∂f

∂z0
(p),

∂f

∂z1
(p), · · · , ∂f

∂zn
(p))

Then,

cSM (V ) = (1 + h)n+1 −
n∑

j=0

gj(−h)j(1 + h)n−j ∈ A∗(Pn)

holds, where h is the class of a hyperplane defined by a general linear form and A∗(Pn) is
the Chow ring of the projective space Pn.

The next result is due to M. Helmer [4].

Proposition (M. Helmer) Let S = 1− s∑n
j=0 cj

∂f
∂zj

, LA = 1−∑n
j=0 rjzj and

Pk =
∑n
j=0 aj,k

∂f
∂zj

, Lk =
∑n
j=0 bj,kzj , k = 1, 2, . . . , n.

Assume that all the coefficients aj,k, bj,k, cj , rj are general. Then the projective degrees
g = (g0, g1, g2, . . . , gn) of the polar map defined in the above theorem are given by

gi = dimK(K[z0, z1, . . . , zn, s]/(P1 +P2 + · · ·+Pi +L1 +L2 + · · ·+Ln−i +LA +S)).

M. Helmer utilized probabilistic method and tools from numerical algebraic geometry for
computing projective degrees and he obtained an algorithm for computing Chern-Schwartz-
MacPherson classes [4].

Now, we regard aj,k, bj,k, cj , rj as indeterminates and set u = (aj,k, bj,k, cj , rj), j, k =
1, 2, . . . , n and x = (z1, z2, · · · , zn, s). Let K(u)[x] denote the polynomial ring with coef-
ficients in K(u), where K(u) is the fields of rational functions of u. We have the following
result.

Proposition Let Gi be a Gröbner basis, in the ring K(u)[x], of the ideal generated by
P1, P2, . . . , Pi, L1, L2, . . . , Ln−i, LA. Then, gi = dimK(u)(K(u)[x]/(Gi)), i = 1, 2, . . . , n
hold.

The above proposition togather with the theorem of Aluffi allow us to construct a determin-
istic method for computing Chern-Schwartz-MacPherson classes!!

Comprehensive Gröbner systems with auxiliary indeterminates

Let x = {x1, x2, . . . , xn}, t = {t1, t2, . . . , tm}, u = {u1, u2, . . . , u`} and let (K(u)[t][x]
denote the ring of polynomials with coefficients in K(u)[t]. Here we regard x as main vari-
ables, t as parameters and u as auxiliary indeterminates.

Let K(u) be an algebraic closure of the field K(u) of rational functions. For an arbitrary

t̄ ∈
(
K(u)

)m
, the specialization homomorphism

σt̄ : (K(u)[t])[x] −→ K(u)[x]
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is defined as the map that substitutes t̄ into m variables t. For G ⊂ (K(u)[t]){x}, σt̄(G) =
{σt̄(g)|g ∈ G} ⊂ K(u){x}. For g1, . . . , gr ∈ K(u)[t],

V
K(u)

(g1, . . . , gr) =
{
t̄ ∈

(
K(u)

)m
| g1(t̄) = · · · = gr(t̄) = 0

}
.

We call an algebraic constructible set of the form V
K(u)

(g1, . . . , gr)\VK(u)
(g′1, . . . , g

′
r′), a

stratum. Notations A1, A2, . . . , Ar are frequently used to represent strata.

Definition Fix a term ordering�x onK[x]. LetF ⊂ (K(u)[t])[x],A1, . . . , Ar ⊂
(
K(u)

)m
,

S1, . . . , Sr ⊂ (K(u)[t])[x]. If a finite set G = {(A1, S1), . . . , (Ar, Sr)} of pairs satisfies
the properties such that (i) for i 6= j, Ai ∩ Aj = ∅, and (ii) for all t̄ ∈ Ai and g ∈ Si,
ht�x(g) = ht�x(σt̄(g)) and σt̄(Si) is a Gröbner basis of 〈σt̄(F )〉 in K(u)[x], (ht�x stands
for the head term) then, G is called a comprehensive Gröbner system (CGS) of 〈F 〉 over
K(u) on A1 ∪ · · · ∪ Ar. We call a pair (Ai, Si) segment of G. We simply say that G is a

comprehensive Gröbner system of 〈F 〉 over K(u) if A1 ∪ · · · ∪Ar =
(
K(u)

)m
.

We have the following

Proposition Let VC(u)
(E) be a non-empty stratum in C(u)

m
where E ⊂ C(u)[t]. Set E′ =

{hq ∈ C[u][t]|∀h ∈ E, q is the least common multiple of all denominators of coefficients in
C(u) of h} and T = {cα|

∑
cαu

α ∈ E′, cα ∈ C[t]} ⊂ C[t]. Then, VC(E) = VC(T ) in Cm.
(Notice that VC(u)

(E) ∩ Cm = VC(E).)

The above proposition allows us to design a deterministic method for computing Bertini type
invariants for parametric cases.

Keywords
comprehensive Gröbner system, parametric ideal, Chern-Schewartz-MacPherson class
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Imaginary projections:
Complex versus real coefficients
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1,2,3 Goethe-Universität, Institut für Mathematik, Frankfurt am Main, Germany

Given a multivariate complex polynomial p ∈ C[z1, . . . , zn], the imaginary projection I(p)
of p is defined as the projection of the variety V(p) onto its imaginary part. We focus on
studying the imaginary projection of complex polynomials and we state explicit results for
certain families of them with arbitrarily large degree or dimension. Then, we restrict to
complex conic sections and give a full characterization of their imaginary projections, which
generalizes a classification for the case of real conics. That is, given a bivariate complex poly-
nomial p ∈ C[z1, z2] of total degree two, we describe the number and the boundedness of
the components in the complement of I(p) as well as their boundary curves and the spectra-
hedral structure of the components. We further show a realizability result for strictly convex
complement components which is in sharp contrast to the case of real polynomials.

Keywords
Imaginary projection, Complex varieties, Convex algebraic geometry, Spectrahedron, Stable
polynomial
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Generic Gröbner basis of a parametric ideal and
its application to a comprehensive Gröbner

system
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We introduce a new computational method for stability conditions of Gröbner bases and a
new algorithm for computing comprehensive Gröbner systems.

The concepts of a comprehensive Gröbner basis and a comprehensive Gröbner system
were introduced by V. Weispfenning [5] as a special basis of a parametric polynomial system
and has been regarded as one of the new most important tools to study parametric systems.
After 2001, by utilizing results of M. Kalkbrener [1], new effective algorithms have been
introduced in A. Suzuki and Y. Sato [4]; D. Kapur et al. [2]; K. Nabeshima [3] for computing
comprehensive Gröbner systems in a commutative polynomial ring.

We remark that since algorithms, that are presented in [2,3], are generalizations of the
Suzuki-Sato algorithm [4], thus all the first steps of the algorithms, in [2,3,4], for computing
comprehensive Gröbner systems are the same “computing a Gröbner basis in a polynomial
ring over a polynomial ring”. Hence, the first steps also become the bottlenecks. Here we
give a new method to become the substitute for computing the Gröbner basis.

We use the notation t as the abbreviation of m variables t1, . . . , tm and the notation x as
the abbreviation of n variables x1, . . . , xn. Let K and K̄ be fields such that K̄ is an alge-
braic closure field of K. Let K[t][x] be a polynomial ring with coefficients in a polynomial
ring K[t]. For f1, . . . , fs ∈ K[x] (or K[t][x]), 〈f1, . . . , fs〉 = {∑s

i=1 hifi|h1, . . . , hs ∈
K[x](or K[t][x])}. A symbol Term(x) means the set of terms of x. Fix a term order-
ing � on Term(x). Let f ∈ K[x] (or f ∈ K[t][x]), then ht(f), ßhm(f) and hc(f) de-
note the head term, head monomial and head coefficient of f i.e. hm(f) = hc(f)ht(f).
For F ⊂ K[x] (or F ⊂ K[t][x]), ht(F ) = {ht(f)|f ∈ F}. For g1, . . . , gr ∈ K[t],
V(g1, . . . , gr) ⊂ K̄m denote the affine variety of g1, . . . , gr, i.e. V(g1, . . . , gr) = {t̄ ∈
K̄m | g1(t̄) = · · · = gr(t̄) = 0}. In this talk, we use an algebraically constructible set that
has a form V(f1, . . . , f`)\V(f ′1, . . . , f

′
`′) ⊂ K̄m where f1, . . . , f`, f

′
1, . . . , f

′
`′ ∈ K[t]. For

t̄ ∈ K̄m, the canonical specialization homomorphism σt̄ : K[t][x] → K̄[x] (or K[t] → K̄)
is defined as the map that substitutes t by t̄ in f(t, x) ∈ K[t][x]. The image σt̄ of a set
F ⊂ K[t][x] is denoted by σt̄(F ) = {σt̄(f)|f ∈ F} ⊂ K̄[x].

We adopt the following as a definition of comprehensive Gröbner system.

Definition 1. Fix a term ordering � on Term(x). Let F ⊂ K[t][x], A1, . . . ,Ar ⊂ K
m

,
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G1, . . . , Gr ⊂ K[t][x]. If a finite set G = {(A1, G1), . . . , (Ar, Gr)} of pairs satisfies the
properties such that
• for i 6= j, Ai ∩ Aj = ∅, and
• for all t̄ ∈ Ai and g ∈ Gi, ht(g) = ht(σt̄(g)) and σt̄(Gi) is a Gröbner basis of
〈σt̄(F )〉 in K[x],
then, G is called a comprehensive Gröbner system (CGS) of 〈F 〉 overK on A1∪· · ·∪Ar. We
call a pair (Ai, Gi) segment of G. We simply say that G is a comprehensive Gröbner system
of 〈F 〉 over K if A1 ∪ · · · ∪ Ar = K

m
.

Let I be a monomial ideal in K[x]. Then, the minimal basis of I is written as MB(I). In [3],
Nabeshima gives the following theorem.

Theorem 2 (Nabeshima [3]). Let G be a Gröbner basis of an ideal 〈F 〉 ⊂ K[t][x] w.r.t. a
term order � on Term(x) and MB(〈ht(G)〉) = {m1, . . . ,m`} where F ⊂ K[t][x]. Suppose
thatGi = {f ∈ G|ht(f) = mi} for each i ∈ {1, . . . , `}. Then, ∀ā ∈ K̄m\⋃`

i=1 V(ht(Gi)),
σā(G1 ∪G2 ∪ · · · ∪G`) is a Gröbner basis of 〈σā(F )〉 w.r.t. � in K̄[x].

In [2], Kapur-Sun-Wang give the following theorem.

Theorem 3 (Kapur-Sun-Wang [2]). Using the same notation as in Theorem 2, let gi ∈ Gi
and hi = hc(gi) for each i ∈ {1, . . . , `}. Then, ∀ā ∈ K̄m\V(h1 · · ·h`), σā({g1, . . . , g`} is
a minimal Gröbner basis of 〈σā(F )〉 w.r.t. � in K̄[x].

The bottleneck of the both theorems above for getting the pairs (K̄m\⋃`
i=1 V(ht(Gi)), {G1∪

G2 ∪ · · · ∪ G`}) or (K̄m\V(h1 · · ·h`), {g1, . . . , g`}) is comptuing the Gröbner basis G of
〈F 〉 in K[t][x].

Method 1
Step 1: Computing a Gröbner basis G of 〈F 〉 in K[t][x].

Let g =

r∑

i=1

cαix
αi ∈ K(t)[x] where cαi ∈ K(t), αi ∈ Nn and K(t) is a field of rational

functions. Then, dlcm(g) = lcm(nd(cα1), . . . ,nd(cαr )) where nd(cαi) is the denominator
of cαi

.

The following theorem is a main result that is utilized in the new algorithm for computing
comprehensive Gröbner systems.

Theorem 4. Using the same notation as in Theorem 2, let G′ be a reduced Gröbner basis of
〈F 〉 w.r.t. � in K(t)[x], G′′ = {dlcm(g) · g|g ∈ G′}, h =

∏
g∈G′′ hc(g) and S a reduced

Gröbner basis of the ideal quotient 〈F 〉 : 〈G′′〉 w.r.t. a block term order with x � t in
K[t, x]. Then,
(1) S ∩K[t] 6= ∅,
(2) for all ā ∈ K̄m\((S ∩K[t]) ∪ V(h)), σā(G′) is the reduced Gröbner basis of 〈σā(F )〉
w.r.t. � in K̄[x].

In order to obtain the pair (K̄m\((S ∩ K[t]) ∪ V(h)), G′), we have to compute a Gröbner
basis G′ of 〈F 〉 in K(t)[x] and a reduced Gröbner basis of the ideal quotient 〈F 〉 : 〈G′′〉.
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Method 2
Step 1: Computing a reduced Gröbner basis G′ of 〈F 〉 in K(t)[x].
Step 2: Computing the reduced Gröbner basis of the ideal quotient 〈F 〉 : 〈G′′〉.

In this talk, we report the comparison between Method 1 and Method 2, too.

Corollary 5. Using the same notation as in Theorem 4, let g ∈ S ∩ K[t]. Then, for all
ā ∈ K̄m\V(g · h), σā(G′) is the reduced Gröbner basis of 〈σā(F )〉 w.r.t. � in K̄[x].

We also give a new algorithm for computing comprehensive Gröbner systems.
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comprehensive Gröbner system, stability of Gröbner basis, ideal quotient
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A comprehensive Gröbner system (CGS) is a powerful tool for handling a parametric poly-
nomial system, and plays a role as a Gröbner basis (GB) of a parametric polynomial ideal.
By the algorithm introduced in [6] together with its improvements achieved in [3, 4, 5], it
is now possible to build an efficient program for computing CGSs. So we have several its
application programs. For example, a program for computing CGSs over an infinite field is
applied to a real quantifier elimination program such as the one introduced in [2].

Since the theory of GBs allows us to analyze the algebraic structure of a given polynomial
system, it is used in the security evaluation of multivariate public key cryptography (MPKC).
In MPKC, a parametric polynomial system P over a finite field is constructed in some way,
and a public key is generated by substituting random numbers r into the parameters of P .
Then a public key P(r) is a (non-parametric) polynomial system and varies with the value of
r. The security of MPKC is analyzed by computing GBs of P(r) for some r. However, to
our best knowledge, there has been no study to analyze the parametric polynomial system P .
We believe that we provide a new perspective in security evaluation of MPKC by computing
a CGS of P . Therefore, it is important to be able to compute CGSs over finite fields.

In this talk, we report on our program for computing CGSs over finite fields.
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1 Rikkyo University, Tokyo 171-8501, Japan.

This is a continuation of the author’s paper [6] where a computational strategy for parametric
polynomial ideal decomposition, where a parametric polynomial ideal means an ideal gener-
ated by polynomials with parametric coefficients. In [6], the notion of the stability of ideal
structures, such as radicalness and certain primality, is given by using the notion of so-called
comprehensive Gröbner bases. Moreover, computational methods are proposed for classify-
ing the values of parameters for such stable structures of ideals . (As references, see [1, 5] for
the stability of Gröbner basis, [2, 3, 4] for computational methods of comprehensive Gröbner
bases of polynomial ideals.)

Actually, for a parametric polynomial ideal, its radical computation and prime/primary
decomposition, can be described uniformly and we may call them parametric decomposi-
tion. But, the practicality of such parametric decomposition or its efficient realization on real
computer is not investigated yet.

For prime/primary decomposition, the most important and difficult part is to classify the
values of parameters for the stable primality of ideals as semi-algebraic sets. And such de-
composition is certainly reduced to absolutely irreducible factorization of polynomials with
parametric coefficient. (Here we call it parametric factorization, in short.) Also in [6], a naive
method is given for handling parametric factorization. We note that absolute irreducibil-
ity is necessary for our classification on parameter values in semi-algebraic sets. Because,
irreducibility condition on parameters may not be semi-algebraic in non-algebraic closure
fields. Also, as univariate polynomials can be decomposed into their linear factors in alge-
braic closed fields, we consider multi-variate polynomials.

In this talk, we report our current status of realization of parametric factorization based on
the naive method, and give some practical improvement.
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Simplification of comprehesive Gröbner systems
using disequalities
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A comprehensive Gröbner system (CGS) is a powerful tool for handling parametric polyno-
mial systems. Its first practical computation algorithm was introduced in [6]. With improve-
ments of the subsequent works such as [3,4,5], we now have several its application programs
such as the one introduced in [2].

It seems that a basic framework of its practical computation algorithm was established by the
work of [5] at least from a theoretical point of view, however, there still remain many im-
portant issues concerning its efficient implementation. We have developed several techniques
which improve the existing implementations of CGS. In the talk [7] of the last ACA2021, we
reported that our techniques are quite effective through our implementation in SageMath [1].
Since our work was on going at that point, however, several important theoretical issues were
still remaied open.

In the talk, we introduce several concepts concerning simplification of CGS and settle the
above open problems.
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An alternative for the q-matroid axiom (I4)
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A q-matroid can be defined as a pair (E, I) where E is a finite dimensional space and I is a
collection of independent spaces, satisfying

(I1) I 6= ∅.

(I2) If J ∈ I and I ⊆ J , then I ∈ I.

(I3) If I, J ∈ I with dim I < dim J , then there is some 1-dimensional subspace x ⊆ J ,
x 6⊆ I with I + x ∈ I.

(I4) LetA,B ⊆ E and let I, J be maximal independent subspaces ofA andB, respectively.
Then there is a maximal independent subspace of A+B that is contained in I + J .

Contrary to the classical case, the axiom (I4) is really needed to define a q-matroid [1]. Apart
from the fact that it makes the proof of q-cryptomorphisms work [2], it is not straightforward
to see where this axiom comes from. In this talk we will zoom in on the q-matroid axioms
(I3) and (I4), and propose an alternative version of (I3). This new axiom can also be seen as
a q-analogue of the axiom (I3) for classical matroids, and moreover it make the axiom (I4)
obsolete.
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The direct sum of q-matroids

Michela Ceria1,Relinde Jurrius2 [michela.ceria@poliba.it]

1 Department of Mechanics, Mathematics and Management, Politecnico di Bari, Italy 2 Fac-
ulty of Military Sciences, Netherlands Defence Academy, The Netherlands

For classical matroids, the direct sum is one of the most straightforward methods to make a
new matroid out of existing ones.

In this talk we will define a direct sum for q-matroids, the q-analogue of matroids. This is a
lot less straightforward than in the classical case, and we will see the reasons of that.

With the use of q-polymatroids and the q-analogue of matroid union we come to a definition
of the direct sum of q-matroids.

As a motivation for this definition, we show it has some desirable properties.

This talk is based on the paper [1].
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q-Matroids and Rank-Metric Codes
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In classical combinatorics, matroids generalize the notion of linear independence of vectors
over a field. In this talk, we will introduce the concept of Fqm -independence of Fq-spaces and
we show that q-matroids generalize this notion. As a consequence, the independent spaces of
a representable q-matroid will be defined as the Fqm -independent subspaces of the q-system
associated to an Fqm -linear rank-metric code. Moreover, we will further investigate the link
between codes and matroids.

This talk is based on the paper [1].
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A Geometric Characterization of Near MRD
Codes
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The notion of q-system has been introduced in [4] in order to give a geometric interpretation
for rank-metric codes which are linear over an extension field Fqm . An [n, k]qm/q system (or
simply q-system) is an Fq-subspace U ⊆ Fk

qm of dimension n, which is not contained in any
Fqm -hyperplane. It was shown that to a k-dimensional Fqm -linear rank-metric code C ⊆ Fn

qm

one can associate – up to equivalence – the [n, k]qm/q system U given by the Fq-span of the
columns of a generator matrix G ∈ Fk×n

qm for C.

From a combinatorial point of view, the q-system captures the geometry of the rank supports
of a rank-metric code C. It was indeed shown in [3] that for any nonzero u ∈ Fk

qm , one has

supp(uG)⊥ = ψ−1G (U ∩ u⊥),

where
ψG : Fn

q −→ U
λ 7−→ λG>.

This implies that the rank weights of the codewords of C are fully determined by the in-
tersections of Fqm -hyperplanes of Fk

qm with the q-system U . Furthermore, one also can
determine the i-th generalized rank weight of C by intersecting U with (k − i)-dimensional
Fqm -subspaces; see [4].

In this talk, we will discuss the interplay between the generalized rank weights of a rank-
metric code C and the evasiveness properties of the associated q-system U . Evasiveness
is a concept originally introduced for explicit constructions of Ramsey graphs and of list
decodable codes with optimal rate. This notion gives a measure on the intersection of a q-
system with r-dimensional Fqm -subspaces of Fk

qm . Formally, a q-system U is (h, r)-evasive
if dimFq

(U ∩H) ≤ r for every h-dimensional Fqm -subspace H of Fk
qm .

We will see how geometric results can be helpful to determine features of rank-metric codes
and, vice versa, how known properties of the generalized rank weights can be helpful to
determine evasiveness of the associated q-system. We will conclude by giving a geometric
characterization of near MRD codes, and bounds on their maximal length obtained in [2],
settling an analogue of the main conjecture on near MDS codes posed in [1].
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q-analog of Sidon sets and linear sets
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vitelli”, Caserta, Italy

The q-analog of Sidon sets is known as Sidon spaces, introduced by Bachoc, Serra and Zémor
in 2017 in [1] in relation with the linear analogue of Vosper’s Theorem. An Fq-subspace U of
Fqn is called a Sidon space if the product of any two elements of U has a unique factorization
over U , up to multiplying by some elements in Fq . More precisely, U is a Sidon space if for
all nonzero a, b, c, d ∈ U , if ab = cd, then

{aFq, bFq} = {cFq, dFq},

where if e ∈ Fqn then eFq = {eλ : λ ∈ Fq}. In this talk we will see an application of
Sidon spaces to linear sets. Linear sets have been deeply studied and there is still a massive
attention on them, as they have been used to construct and classify several objects. In this talk
we will deal with linear sets of minimum size in PG(1, qn) [2]. Examples of these linear
sets have been found by Lunardon and Polverino in 2000 and, more recently, by Jena and
Van de Voorde in [3]. However, classification results for minimum size linear sets of rank k
are known only for k ≤ 5. In this talk we will provide classification results for linear sets
of minimum size when n is prime, answering to a question in [3]. Then we construct new
examples when n is not prime. The main tool relies on studying pairs of subspaces (critical
pairs) attaining the equality in the linear analogue of Cauchy-Davenport’s theorem. The talk
is based on the paper arXiv:2201.02003.
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Independent Spaces of q-Polymatroids
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It is well known that Fqm -linear rank-metric codes in Fn
qm give rise to q-matroids [5], whereas

the more general Fq-linear rank-metric codes in Fn×m
q lead to q-polymatroids [4]. The latter

differ from q-matroids in that the rank function may assume rational values. This seem-
ingly slight generality has vast consequences for the theory of q-polymatroids. While for
q-matroids a variety of cryptomorphic descriptions have been established [1], little is known
so far for q-polymatroids.

In this talk we introduce, for any common denominator µ of the rank function, a notion of µ-
independent spaces for q-polymatroids. With the aid of an auxiliary q-matroid, we establish
properties of the collection of independent spaces similar to those for q-matroids. It follows
that the entire q-polymatroid is fully determined by the collection of µ-independent spaces
along with the rank values on those spaces. All of this can be used to derive a cryptomorphism
for q-polymatroids based on independent spaces along with a rank function defined on those
spaces. Examples show that no such cryptomorphism is possible using, for instance, bases,
dependent spaces, or circuits. The talk is based on the material in [2, 3].
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Categories of q-Matroids
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In recent years, q-matroids, the q-analogue of a matroid, have been a focus of research in
coding theory because of their usefulness in studying rank metric codes. Because of their
q-analogue nature, it has been of interest to find which matroidal notions and properties gen-
eralize to q-matroids. Similarly to matroids, one can define weak and strong maps between
q-matroids which respectively respect the rank and flat structure. These maps can be used
to define categories of q-matroids, allowing to study q-matroids from a more category the-
ory approach. Taking this approach helps in finding similarities and differences between the
structure of matroids and that of q-matroids. In this talk, we will introduce the notions of
weak and strong maps for matroids and q-matroids. We will then show the existence of a
functor from categories of q-matroids to categories of matroids given by projectivizing the
groundspace of a q-matroid. Finally we will discuss differences between the two type of cat-
egories by showing that unlike for categories of matroids, a coproduct may not always exist
in the category of q-matroids with strong maps but does always exist when the morphisms
are linear weak maps.
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A q-analogue of Critical Theorem for
polymatroids
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The Critical Problem posed by H. Crapo and G.-C. Rota is one of the significant problems
in matroid theory. It is the problem for finding the maximum dimension of a subspace that
contains no member of a fixed subset S of Fk

q . The problem is also equivalent to determining
the critical exponent of the associated matroid, and J.P.S. Kung [4] gave an upper bound
on it. The Critical Theorem, which provides another approach to the Critical Problem, has
been interpreted in terms of code theory in [1]. After that, Kung’s results were generalized
to linear codes over finite fields in [2], and then extended to the case of finite chain rings
[3]. In this talk, to formulate the Critical Problem for a q-analogue of polymatroids which
was introduced in [5], we will define the critical exponent of them as an analogue of that of
representable matroids. Consequently, we will generalize the Critical Theorem and Kung’s
upper bound to a q-analogue of polymatroids by associating them with Delsarte rank-metric
codes.
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The notion of a q-complex is a straightforward generalization of the classical notion of an
abstract simplicial complex, and it goes back at least to Rota (1971). Shellability for a q-
complex was defined by Alder (2010), thus providing a q-analogue of a property of simplicial
complexes that has proved to be immensely useful in algebraic combinatorics and combina-
torial topology. The study of q-matroids goes back to Crapo (1964) and has seen a resurgence
in the recent past owing to the work of Jurrius and Pellikaan (2018) where the relevance of
q-matroids for the study of rank metric codes was shown. It thus seems natural to ask for a
q-analogue of the classical result that simplicial complexes formed by independent subsets of
a matroid are shellable.

In this talk, we will begin by outlining a recent work [1] where it is shown that any q-matroid
complex, i.e., any q-complex formed by the independent subspaces of a q-matroid, is always
shellable. Furthermore, we outline the results in [1] which determine the homology of several
(but not all) q-matroid complexes. We will then explain some parts of a newer work [2]
where more complete results on the homology of q-matroid complexes as well as their order
complexes are obtained and also it is shown that the order complex of a q-matroid complex
is shellable.

This is a joint work [1] with Rakhi Pratihar and Tovohery Randrianarisoa, and also a joint
work [2] with Rakhi Pratihar, Tovohery Randrianarisoa, Glen Wilson, and Hugues Verdure.
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In 2013, Johnsen and Verdure showed how one can associate a fine set of invariants, called
Betti numbers to linear codes (with the Hamming metric) and more generally, to matroids.
They also showed that the Betti numbers of a linear code determine its generalized Ham-
ming weights. We consider the question of defining an analogous notion of Betti numbers for
Gabidulin rank-metric codes, and more generally, q-matroids, in such a way that the general-
ized rank weights are determined by these Betti numbers.

Motivated partly by a topological approach to the above question, it was shown in a recent
work [1] that q-complexes corresponding to q-matroids are shellable and moreover, their
singular homology can be determined in several cases. But to relate the singular homology
with the generalized rank weights, one needs to know how the singular homology is related
to the nullity of q-cycles of the concerned q-matroid. This is far from clear.

In this talk, I will present a combinatorial approach to answer the question raised above. I
will show how the generalized rank weights and the weight spectra of Gabidulin rank-metric
codes can be determined from the Betti numbers of a classical matroid corresponding to
the q-matroid associated to the code. I will also briefly discuss how the singular homology
mentioned above are not related to the Betti numbers the way it does in the classical case.

This talk is mostly based on a joint work [2] with Trygve Johnsen and Hugues Verdure. Key-
words
Rank-metric codes, q-Matroids, q-Cycles, Singular Homology, Betti numbers, Möbius func-
tion
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Detecting and precluding toricity in reaction
network theory
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One of the big themes in algebraic reaction network theory is the attempt to understand the
qualitative properties of the steady states of a network under the assumption of mass action
kinetics. Examples of such properties include stability, absolute concentration robustness and
multistationarity. Some of these properties are easier to study when the positive steady state
variety is known to be toric, in the sense that it admits a monomial parameterization, and it is
therefore desirable to find criteria for when such parameterizations exist.

Previous work in this direction has focused on deficiency theory, binomiality of the steady
state ideal, and quantifier elimination methods. In this talk, I will present new conditions for
asserting and precluding toricity, based on the polyhedral geometry of the flux cone, as well
as previously known results on injectivity of monomial maps restricted to linear subspaces.
These conditions allow us to quickly deduce information about the potential for toricity and
multistationarity for moderately sized networks, which we demonstrate by testing our meth-
ods on networks from the database ODEbase.

Keywords
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171



Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey | August 15-19, 2022
Session on “Computer Algebra Applications in the Life Sciences”

Estimating Genomic Periodicities

Daniel Lichtblau [danl@wolfram.com]

Kernel Technology group at Wolfram Research, US

Determining the periodicity of phenomena from unevenly sampled data is an important prob-
lem in several fields. This is particularly a challenge when the data is not numeric, as is the
case with genomic sequences. I will show two approaches to this task that can be applied
directly to such strings, that is, without first converting to numeric values. One is related to
the Fourier Transform while the other is an application of simultaneous Diophantine approx-
imation. Despite their very different origins, they share a surprising feature: both involve
binning along the “wrong” axis. I will illustrate these methods on a reference yeast sequence.
One gives a notable improvement over prior studies. Time permitting I may also show an
application with the SARS-CoV-2 genome.

Keywords
Genomic periodicities, Fourier transform, Diophantine approximation
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Are generic bifurcations always generic on
chemical reaction networks?

Nicola Vassena [nicola.vassena@fu-berlin.de]

Institute of Mathematics, Free University Berlin, Berlin, Germany

In dynamical systems, bifurcation analysis is a powerful tool to detect parameter areas that
show important features such as multistationarity and oscillations. Saddle-node, Hopf, and
Takens-Bogdanov bifurcations are examples of generic bifurcations, i.e., happening generi-
cally in the set of parametric vector fields with an equilibrium whose Jacobian satisfies some
simple spectral conditions. Since any bifurcation can be perturbed to a generic bifurcation,
we shall always expect generic bifurcations in applications, unless there is “something spe-
cial” about the formulation of the problem that strongly restricts the context.

For vector fields arising from chemical reaction networks, we may choose with quite a free-
dom the nonlinearities (kinetics) governing the reaction rates, but the network structure is
typically considered fixed. In this talk we address a natural question: Can the algebraic
structure of the network itself be “something special” preventing generic bifurcations from
occurring? In other words, do such generic bifurcations always happen generically in the
set of vector fields with a fixed network structure? Focusing on saddle-node bifurcation, we
discuss a few (counter)examples.
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Stability analysis and Hopf bifurcations in a
tumor growth model

Dániel András Drexler 1, Ilona Nagy2 Valery G. Romanovski3,4
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We carry out qualitative analysis of a fourth-order tumor growth control model using ordinary
differential equations. We show that the system has one positive equilibrium point and its
stability is independent of the feedback gain. Using a Lyapunov functions method we prove
that there exist realistic parameter values for which the systems admits limit cycle oscillations
due to a supercritical Hopf bifurcation [1]. The time evolution of the state variables is also
represented. The study is a continuation of the analysis performed in [2].

Keywords
Tumor therapy, Cancer therapy, Tumor control, Singular point, Bifurcation, Limit cycle

References
[1] D. A. DREXLER, I. NAGY, AND V. G. ROMANOVSKI, Stability analysis of the singu-
lar points and Hopf bifurcations of a tumor growth control model (Mathematica notebook),
(2022), http://math.bme.hu/~nagyi/Mathematica_notebooks/index.html.
[2] D. A. DREXLER, I. NAGY, AND V. G. ROMANOVSKI, Bifurcations in a closed-loop
model of tumor growth control. In Proceedings of the 21th IEEE International Symposium
on Computational Intelligence and Informatics, 329–334, Budapest, 2021.

174



Applications of Computer Algebra – ACA 2022
Gebze-Istanbul, Turkey | August 15-19, 2022
Session on “Computer Algebra Applications in the Life Sciences”

The shape of the parameter region of
multistationarity in reaction networks
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Despite recent developments, describing the set of parameters that enable multistationarity
in a chemical reaction network is a challenging problem. In this talk, I will present a new
algorithm that permits insights into the shape of the parameter region of multistationarity,
in particular on its connectivity. The method is based on the observation that, under some
assumptions on the network, one can decide the connectivity of the parameter region of
multistationarity, based on the connectivity of the preimage of the negative real line under
a multivariate signomial function. The later problem can be addressed by considering the
geometry of the Newton Polytope of the signomial function.

I will give several examples of reaction networks where our algorithm can be applied. In
particular, we show that the parameter region of multistationarity of the sequential and dis-
tributive phosphorylation cycle with two or three sites is connected.
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Disaster Incident Analysis via Algebra Stories
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Natural disasters increasingly threaten the safety of modern humanity and a trend of
more and more frequent natural disasters have been observed in recent decades [1]. There-
fore, it is very important to analyze past disasters or crises that have happened for the purpose
of their prevention or damage reduction in the future. One of the main sources for analyzing
former disaster response actions are the official reports of emergency services and govern-
mental case studies [2]. These documents often contain detailed descriptions of the timeline
of disasters in natural language and their automated large-scale analysis can be done by mod-
ern natural language processing (NLP) [3] software solutions.

In this talk, we enhance the analysis capabilities of former disasters by integrating
computer algebra techniques into this process and present the design of an automated infor-
mation ex-traction framework for post-disaster case study reports based on NLP. In particular,
we will showcase how to interpret the extraction of mathematical data and information from
such case studies by NLP as an algebra story problem [4], thereby greatly increasing the data
ex-traction capabilities. We will illustrate what kind of embedded mathematical information
can be extracted from disaster reports with several examples. Further, the extracted informa-
tion can be used as an input for a Structured Scientific Knowledge Representation (SSKR)
object for further analysis [5], with one important use case being disaster scenario generation
for evaluating different disaster response management strategies.
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Nondegenerate Andronov–Hopf bifurcations in a
class of bimolecular mass-action systems (Part I)
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We systematically address the question of which small, bimolecular, chemical reaction net-
works endowed with mass-action kinetics are capable of Hopf bifurcation. It is easily shown
that any such network must have at least three species and at least four irreversible reactions.
We are able to fully classify three-species, four-reaction, bimolecular networks: with the ex-
tensive help of computer algebra, we divide these networks into those which forbid Hopf
bifurcation and those which admit Hopf bifurcation. We find that a previously known exam-
ple due to Thomas Wilhelm is only one of many networks in this class which admit Hopf
bifurcation.

The task of deciding which small networks admit Hopf bifurcation naturally breaks into two
parts. First, we focus on ruling out Hopf bifurcation in the great majority of the networks;
and second, we focus on confirming, where possible, that a nondegenerate bifurcation occurs
in the remaining networks.

Part I. Beginning with 14,670 three-species, four-reaction, bimolecular networks which admit
positive equilibria, we show that the great majority of these are incapable of Hopf bifurcation.
Often we can declare the absence of Hopf bifurcation in a given network by proving the
positivity of an associated polynomial. This task can be approached using software, including
semidefinite programming, to decompose the polynomials into sums of squares and positive
terms. At the end of this process, we are left 138 networks with the potential for Hopf
bifurcation. These fall into 87 distinct classes, up to a natural equivalence.

Part II. Having shown that there are 87 distinct classes of three-species, four-reaction, bi-
molecular chemical reaction networks with the potential for Hopf bifurcation, the next ques-
tion is how many of these networks actually admit a nondegenerate Hopf bifurcation. Out of
the 87 classes we find that 86 admit nondegenerate Hopf bifurcation. The remaining excep-
tional network robustly admits a degenerate Hopf bifurcation.

Amongst the 86 networks capable of nondegenerate Hopf bifurcation, we find that 57 admit
a supercritical Hopf bifurcation, 54 admit a subcritical Hopf bifurcation. At the intersection
of these networks are 25 networks which admit both bifurcations and hence can have both
stable and unstable periodic orbits. These claims involve extensive use of computer algebra to
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automate the process of checking nondegeneracy and transversality conditions. With the help
of these computations, we are able to show that many of the networks admit the coexistence
of a stable equilibrium and a stable periodic orbit for some choices of rate constants. We also
make some progress towards showing the occurrence of bifurcations of higher codimension
in these networks.

Finally, we can use the results on three-species, four-reaction, bimolecular networks, along
with previously developed theory, to predict the occurrence of Hopf bifurcation in networks
with more species and/or reactions. Thus, in fact, finding all small networks with the capacity
for Hopf bifurcation greatly expands our knowledge of which chemical reaction networks, not
necessarily small, admit Hopf bifurcation.

Keywords
Hopf bifurcation, chemical reaction networks, oscillation
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class of bimolecular mass-action systems (Part II)
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We systematically address the question of which small, bimolecular, chemical reaction net-
works endowed with mass-action kinetics are capable of Hopf bifurcation. It is easily shown
that any such network must have at least three species and at least four irreversible reactions.
We are able to fully classify three-species, four-reaction, bimolecular networks: with the ex-
tensive help of computer algebra, we divide these networks into those which forbid Hopf
bifurcation and those which admit Hopf bifurcation. We find that a previously known exam-
ple due to Thomas Wilhelm is only one of many networks in this class which admit Hopf
bifurcation.

The task of deciding which small networks admit Hopf bifurcation naturally breaks into two
parts. First, we focus on ruling out Hopf bifurcation in the great majority of the networks;
and second, we focus on confirming, where possible, that a nondegenerate bifurcation occurs
in the remaining networks.

Part I. Beginning with 14,670 three-species, four-reaction, bimolecular networks which admit
positive equilibria, we show that the great majority of these are incapable of Hopf bifurcation.
Often we can declare the absence of Hopf bifurcation in a given network by proving the
positivity of an associated polynomial. This task can be approached using software, including
semidefinite programming, to decompose the polynomials into sums of squares and positive
terms. At the end of this process, we are left 138 networks with the potential for Hopf
bifurcation. These fall into 87 distinct classes, up to a natural equivalence.

Part II. Having shown that there are 87 distinct classes of three-species, four-reaction, bi-
molecular chemical reaction networks with the potential for Hopf bifurcation, the next ques-
tion is how many of these networks actually admit a nondegenerate Hopf bifurcation. Out of
the 87 classes we find that 86 admit nondegenerate Hopf bifurcation. The remaining excep-
tional network robustly admits a degenerate Hopf bifurcation.

Amongst the 86 networks capable of nondegenerate Hopf bifurcation, we find that 57 admit
a supercritical Hopf bifurcation, 54 admit a subcritical Hopf bifurcation. At the intersection
of these networks are 25 networks which admit both bifurcations and hence can have both
stable and unstable periodic orbits. These claims involve extensive use of computer algebra to
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automate the process of checking nondegeneracy and transversality conditions. With the help
of these computations, we are able to show that many of the networks admit the coexistence
of a stable equilibrium and a stable periodic orbit for some choices of rate constants. We also
make some progress towards showing the occurrence of bifurcations of higher codimension
in these networks.

Finally, we can use the results on three-species, four-reaction, bimolecular networks, along
with previously developed theory, to predict the occurrence of Hopf bifurcation in networks
with more species and/or reactions. Thus, in fact, finding all small networks with the capacity
for Hopf bifurcation greatly expands our knowledge of which chemical reaction networks, not
necessarily small, admit Hopf bifurcation.

Keywords
Hopf bifurcation, chemical reaction networks, oscillation
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Polynomial Systems Theories in Biology
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Biochemical systems consist, from our point of view, of various substances in various concen-
trations. The concentrations satisfy systems of ordinary differential equations, which them-
selves depend on parameters. The qualitative behaviour of these systems is of great interest
to the biologists, in particular whether they permit multiple (locally) steasy states.

How might computer algebra help understand these questions, both in theory and in practice?
This talk will look at some answers to these questions, and pose more questions.

Keywords
systems biology, parameter space, multistationarity, computer algebra.
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Open problems in parameteric dynamical systems
from life sciences
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1 CUNY Queens College, Department of Mathematics, Queens, NY 11367 and CUNY Grad-
uate Center, Ph.D. Programs in Mathematics and Computer Science, 365 Fifth Avenue, New
York, NY 10016, USA

The parameter identifiability problem of a dynamical system is to determine whether the
parameters of the system can be found from a given subset of variables of the system. Differ-
ential algebra and symbolic computation have played a central role in tackling this problem.
However, there are still many open questions that are important in the applications to life sci-
ences. These questions pose challenges both in theory and implementation. We will highlight
several of these questions.

Keywords
parameter identifiability, mathematical biology, differential algebra, difference algebra, sym-
bolic computation
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Algebraic sequence modelling for disaster
management

Klaus Kieseberg1, Bernhard Garn1, Dimitris E. Simos1
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1 SBA Research, Vienna, Austria

Training exercises are key instruments in crisis management as they assist in a multitude of
tasks, such as planning pre-crisis resource requirements and allocation, response planning
and helping train emergency personnel for actual crises [1]. To be effective, exercises must
provide a safe but realistic environment and allow for conclusive evaluation. To this end, ex-
ercises have to utilize well constructed scenarios which are not only able to replicate certain
characteristics of a crisis situation, but are also easily adaptable and provide ample training
diversity [2]. Here, certain mathematical structures [3] derived from the field of combinato-
rial testing [4,5] can greatly help with the generation of such scenarios, since their abstract
properties can be linked to certain characteristics of exercises and exercise scenarios.

In this talk, we will take a look at suitable combinatorial sequence structures and their usage
in the domain of disaster management. We will present how computer algebra techniques can
be used for the modelling and generation of these combinatorial sequence structures, which
will then be translated into exercise scenarios. In particular, we will highlight how real-world
requirements from the domain of disaster exercises are translated into semantically equivalent
algebraic expressions. Finally, we will showcase the importance of the notion of (sequential)
coverage in disaster relief strategies with an example based on a real-life disaster scenario of
a bushfire.
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Algebraic Network Analysis for Anti-Money
Laundering
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Network models manifest in various areas within computer science, from the hardware level
up to the application layer. Prominent examples for networks include social networks and
– more recently – network structures derived from blockchain data. Especially in the case
of cryptocurrencies, the relationships between buyers and sellers, as well as the underlying
’money flow’, have come under scrutiny as of late, since cryptocurrencies can be misused
for various criminal activities. One major interest there is the identification and prevention of
money laundering activities involving cryptocurrencies, which currently poses severe chal-
lenges to anti money-laundering (AML) efforts. To this end, various graph based models and
their properties have been proposed in the literature [6][7][8][9][10].

In this talk, we are interested in exploring algebraic versions of network or graph properties
[3,5], that are of potential interest to AML efforts. In particular, we consider algebraic ap-
proaches for analyzing social network from the literature [11][1][2], for example the Cayley
color graph for graphically representing the relationship structure in a network. We provide a
survey-style overview of methods that have been used, together with some of the experienced
challenges. Furthermore, in our analysis, we pay particular attention to generalizations of the
considered properties to hypergraphs and multiplex-networks, since these structures provide
additional modelling capabilities. We conclude with an outlook on possible future research
directions.
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APN functions have an important place in the fields of coding theory, cryptography,sequence
design, combinatorics, algebra and projective geometry. Carlet [1] proposed a construction
of APN functions using the bent functions B(x, y) = xy. With Theorem 5.6 in [4], they
considered the general bivariate construction from [1],and they revealed its relation to the
infinite families of bivariate APN functions in [2] and [3]. We propose a more general version
of Carlet’s construction.

Theorem 1. Let F (x, y) = (xy, a(x2
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In [4] it is given a necessary condition for a function F1 with h = m/2, k = 0, r = 0 to be
APN. They checked the conditions 1,2,3 of Section 1 in [1]. The condition 1 and 2 are clearly
satisfied. We dealth with the third condition.
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We found out that the condition is satisfied when h/k/r/m or h = k = r/m.
Actually F1 is APN if and only if Lβ is a permutation of F2m . Lβ is a linearized polynomial.
We extended the Theorem 6.2 in [4] with h = m/4, k = 2m/4, r = 3m/4.
Lβ(x) = x+Ax2

m/4
+Bx2

2m/4
+Cx2

3m/4 and A, B, C are coefficients depending on b′,
c′, β. Lβ is a permutation if and only if
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is nonzero.
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Handover Authentication Protocols in Mobile
Networks
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With the announcement of new generations in mobile wireless networks, new capabilities,
higher bandwidth capacity, and increased robustness are expected [1]. In order to reach those
ambitions, a huge number of small base stations which work in high frequencies and low
coverage areas are used [2]. Mobile device users need to encounter more frequent handovers.
The increase in the frequency of handovers and expectations from the new mobile wireless
networks necessitates possessing a handover protocol that is secure, and efficient. In order to
create such a handover protocol, it is required to understand the cryptographic methods used
in handover authentication protocols, performance, and security requirements of a handover
protocol. In this work, our aim is to give useful information regarding handover authen-
tication, security, and performance characteristics of handover authentication methods, and
cryptographic algorithms used in handover authentication. We study handover authentication
protocols based on bilinear pairing cryptography. We analyze protocols satisfying all security
requirements of a secure handover authentication protocol which are Mutual Authentication,
User Anonymity, Non Traceability, Conditional Privacy Presentation, Session Key Establish-
ment, Perfect Forward Secrecy, and Attack Resistance [3]. We also discuss possible opti-
mizations of this approach and show that network consumption and computation complexity
can be further diminished.
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Key exchange (KE) protocols are one of the basic principles of public-key cryptography used
to achieve secure communication by providing parties with a shared key. Authenticated key
exchange (AKE) and password-based AKE (PAKE) versions are constructed to ensure that
the parties and the adversary are not part of the communication [1]. PAKE protocols are not
commonly used because there is no usable and suitable version of widespread applications.
Those are generally preferred in some areas, such as e-passport applications, web browser
synchronization, and Wi-Fi communication [3]. The first PAKE protocol is proposed as a
traditional Diffie-Hellman KE version by relying on the hardness of the discrete logarithm
problem (DLP). In that protocol, a password with low entropy and easy memorability was
used to get authentication [2]. With the proposal of Shor algorithm in 1994, it was realized
that the DLP problem will be solved in the presence of large quantum computers. As a result
of this development, researchers and companies started to make provisions to maintain the
security of public key cryptographic (PKC) primitives in the post-quantum era. The main
method to construct post-quantum secure protocols is obtained by changing the computa-
tional hard mathematical problem with some problems which do not solve by using quantum
computing power. Lattice, code, hash, and multivariate-based hard problems are generally
used to propose new post-quantum secure PKC protocols. Thanks to strong security guar-
antees and worst-case hardness properties of the lattice-based cryptosystem family, they are
commonly preferred in constructing post-quantum secure protocols [4].

The main advantages of lattice-based PAKE protocols against AKE are low communica-
tion cost and storage space, which are obtained thanks to low entropy passwords. Different
lattice-based KE protocols were initially proposed to obtain solutions against post-quantum
secure KE requirements. Adding structures such as hash functions and digital signatures,
AKE and PAKE versions of these approaches, which can be used for two or multiple parties’
communication, were constructed to procure authentication. In [5], a lattice-based two-party
PAKE protocol with the anonymity property was proposed. The hardness assumption of this
protocol is based on the ring version of the learning with errors (RLWE) problem. In that pro-
tocol, the practical randomized KE design approach was used to add resistance against mobile
users’ signal leakage attack (SLA). To overcome reconciliation problem, Sig and Mod2 func-
tions were used. According to the presented security analysis, the proposed protocol can be
used to obtain post-quantum secure mobile network communication. However, in real-world
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applications, the number of devices in the network is much more than two parties. The first
step to overcome this problem is to create protocol designs in which the number of commu-
nicating parties increases. In [6], a three-party lattice-based PAKE protocol was constructed.
It is also based on RLWE hardness and uses Cha and Mod2 functions to obtain agreement
between the parties. In the proposed protocol, the server allows two different mobile users to
receive the shared key using timestamps. The design methodology of [6] is also an appropri-
ate and recently used method to secure two mobile users and one server communication. The
main aim of this paper, by combining approaches [5] and [6], is to obtain a three-party PAKE
protocol with the anonymity feature.

In this paper, a hybrid lattice-based three-party PAKE protocol is proposed to provide the
KE requirement of mobile devices in the post-quantum era. We choose [5] and [6] PAKE
protocols to construct hybrid protocol. The main aim is to design a scheme that generates
the shared key between two mobile users thanks to the server’s guidance using low entropy
passwords. By using [6] design approach, we increase the number of communicated parties of
[5]. The hardness assumption of the proposed PAKE is based on the RLWE problem. It uses
Sig and Mod2 reconciliation structures to obtain the shared key. Unlike [6], the proposed
hybrid protocol has anonymity due to the additional identity component of [5]. Thanks to
the randomized KE components, an adversary does not make any SLA attack against the
proposed PAKE.

Keywords
post-quantum cryptography, lattice-based cryptography, password authenticated key exchange,
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Digital signatures are used to ensure the integrity of the message, non-repudiation of the
sender, and verify the sender’s identity. Most existing digital signature schemes are based
on hard problems such as discrete logarithm and factorization problems. With the increasing
development of internet technologies, the need for digital signatures is increasing daily. Many
digital signature schemes, such as group, ring, blind, proxy, and multi-signature, are proposed
for different purposes in the literature.

The concept of group signature was introduced by Chaum and van Heyst [1]. With the group
signatures, any group member can sign messages on behalf of the group. Group members are
guaranteed to be a member of a specified group without revealing their identity. Moreover, the
group manager reveals the identities of the group members who sign the message in case of a
dispute. The group signatures must satisfy anonymity, traceability, and non-frameability [2].
Due to its advantages, group signatures are used in many real-life applications such as anony-
mous online communication, trusted computing platforms, privacy protection mechanisms,
digital rights management, and auction protocols (voting, bidding, and anonymous approval)
[3]. Group signatures can be used in blockchain, having specific applications in finance and
e-commerce. Since most of the identification schemes used in the blockchain are based on
public key-based signatures, it primarily aims to reveal the transaction identity. However, the
signer’s public key remains anonymous as the group signatures can only verify the signer’s
group. In this study, we propose a lattice-based group signature scheme that can be used in
blockchain. The hardness of the proposed scheme depends on the SIS and LWE problems.
Besides, we prove security of the proposed scheme in random oracle model. With the pro-
posed group signature scheme, we ensure the privacy of requesters who are not performed in
many blockchain markets. In other words, bidders can only access group information instead
of requester’s identities.
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The classical public key cryptosystems such as RSA and DSA are based on computation-
ally hard problems such as integer factorization problem and discrete logarithm problem.
These hard problems can be broken in polynomial time on quantum computers. To introduce
quantum-secure public key cryptosystems, some quantum-safe hard problems have been used
in the literature. One of them is syndrome decoding problem. Code-based cryptography was
introduced in 1978 by McEliece [1] using binary Goppa codes. The security of the McEliece
cryptosystem [1] relies on the hardness of decoding a random linear code. Code-based sys-
tems are of great importance in terms of working principle and providing efficient results,
so efficient code families have been used when developing a new cryptosystem. Further
code-based quantum-secure cryptosystems such as Niederreiter [2], Mcnie [3], RQC, HQC
have been proposed. McEliece and Niederreiter cryptosystems are two famous quantum-
safe cryptosystems. They are robust and versatile cryptosystems. They work with any linear
error-correcting codes.

McNie cryptosystem [3] was proposed as a new code-based public key encryption scheme.
McNie is a hybrid version of the McEliece and Niederreiter cryptosystems and its security
is reduced to the hard problem of syndrome decoding. The 3-semi-cyclic and 4-semi-cyclic
LPRC codes were used in the McNie cryptosystem with a probabilistic decoding algorithm,
which is a disadvantage for this system. A message recovery attack has been made to the
McNie cryptosystem and it reduces the size of the random matrix. Due to this attack, it was
proposed to redesign the McNie cryptosystem, and so the Mcnie-2 algorithm was proposed
by using the Gabudilin code family instead of the LPRC code family.

In this work, we propose two new code-based public key encryption algorithms, called McNie
variant-1 and McNie variant-2. The working principle of these systems is basically based on
the McNie cryptosystem. The McNie system uses 3-semi-cyclic and 4-semi-cyclic classes
of LPRC codes, a special class of the BCH code family. Unlike McNie, we use the Goppa
code family in the proposed cryptosystems. In addition, to ensure the the desired security, the
encryption phase is performed by dividing the message into two parts: identity and message.

Keywords
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Automata theory is well-established as a means to model and test software systems [1]. In
the past, researchers have used automata to model a system under test (SUT), e.g. event-
driven software systems such as internet protocols [1], [2]. In other works, automata have
been used to describe the generation of test inputs for event-driven SUTs [3], [4]. Vice versa,
we may even advance our understanding of automata theory via techniques used in software
testing. For example, a work by Neeman uses ideas from equivalence partitioning to minimize
(deterministic) finite automatons [5].

The terminology of automata theory lends itself to the description of software artifacts. For
example, the grammar of a programming language is often specified in a notation such as the
Backus-Naur form. Similarly, program behavior can be described using finite state machines
(FSMs). However, many works apply automata theory merely to provide a problem descrip-
tion, foregoing the opportunity to utilize methods from this field to develop elegant solutions.
In other cases, some results from this domain are successfully applied, but a more rigorous
treatment holds the potential to increase the efficacy of devised methods.

For example, Yu et al. [3] use an automata theory formulation for their proposed approach
for t-way test sequence generation utilized in sequential combinatorial testing. In this setting,
one is interested in finding a minimized set of sequences over a finite alphabet such that all
sequences of length t appear as a subsequence in at least one of the sequences in the test set
[3], [4]. More formally, we can give a definition of t-way sequence test sets similar to that in
the original work [3].

Definition. Consider a (non-deterministic) finite automaton A = (Q,M, q0, F ), with a
finite set of states Q, a transition matrix M ∈ P(Σ)Q×Q where Σ is the input alphabet, q0
the initial state and F the set of final states. A sequential t-way test set Π is a set of words
accepted by A, such that for each t-sequence σ ∈ Σt that can appear as a subsequence of an
accepted word, there exists at least one such word in Π.

We believe that the presented approach [3] has great merit and provides a useful framework
for the construction of t-way test sequences. At the same time, we believe that by applying
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results from automata theory, some of the presented algorithms can be modified and sped-up.
For example, the algorithm presented for target sequence generation in the original work [3]
can be improved by taking the t-th power of the transition matrix describing the transitions
of the given finite automaton.

Another work [4] presents an automata theory approach for generating t-way sequences for
event-driven software testing. In order to generate a sequential t-way test set that is in ac-
cordance with the SUT’s constraints, an automaton modeling the SUT is intersected with
an automaton that accepts all words that contain a specific target t-sequence σ ∈ Σt as a
sub-word, called t-sequence automaton (respectively t-wise automaton in [4]). This process
can be iterated with additional t-sequence automata. A test sequence is then obtained by
selecting a (shortest) word accepted by the automaton resulting from these intersections. By
construction, this test sequence is accepted by the automaton modeling the SUT and contains
multiple σ ∈ Σt as a sub-words. As automata are incrementally intersected, this soon be-
comes time-consuming and certainly represents the bottleneck of the presented methodology.
This process immediately raises the question how we can construct the intersection of these
t-sequence automata more efficiently. We believe that this approach might be leveraged even
further.

While the original work [4] represents a very elegant application of automata theory for the
objectives of sequential combinatiorial testing, it is directly linked to theoretically interesting
aspects of automata theory. As the resulting automata are mainly used in order to obtain a
word of minimum length (or, in a weakened version, of minimized length) that is accepted
by the automaton, the application described above also bears the following problem inher-
ent to automata theory: Given two languages L1 and L2, what is the shortest word in the
intersection L1 ∩ L2 of these two languages?

The construction of (minimal) intersections of automata seems to be a well-known yet dif-
ficult problem [7], with several contributions on that topic [8]. However, there appear to be
only basic results regarding the problem of words of minimal length accepted by the inter-
section of automata [9]. In the work on t-way sequences [4], at least one of the automata
appearing in the intersection is a t-sequence automaton (thus bearing a very specific struc-
ture). Accordingly, there may be more efficient ways to determine a w ∈ L1∩L2 of minimal
length for this particular application.
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Online teaching and assessment tools are typically lacking for mathematical subjects in two
different ways: The first is in producing sufficiently numerous questions of equivalent diffi-
culty for a given topic. The second is to be able to evaluate student-generated answers that
may have many mathematically equivalent forms. A computer algebra system is needed to
do both these things well. The Möbius platform uses an embedded Maple system for this
purpose. Möbius has been deployed to more than 400 educational institutions and has evalu-
ated more than 35,000,000 student problems. This has been used to collect anonymized data
for analysis. This data can be used to measure and identify factors in learner engagement and
course pathways. We summarize one study of how this has been used to measure the rela-
tionship between uniformity of engagement and student outcomes [2]. The talk concludes
with some forward-looking ideas on learner modelling.
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Let I = 〈f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] be a zero dimensional radical ideal defined by poly-
nomials given with exact rational coefficients. Assume that we are given approximations
{z1, . . . , zk} ⊂ Cn for the common roots {ξ1, . . . , ξk} = V (I) ⊆ Cn. In this paper we
show how to construct and certify the rational entries of Hermite matrices for I from the
approximate roots {z1, . . . , zk}. When I is non-radical, we give methods to construct and
certify Hermite matrices for

√
I from the approximate roots. Furthermore, we use signatures

of these Hermite matrices to give rational certificates of non-negativity of a given polynomial
over a (possibly positive dimensional) real variety, as well as certificates that there is a real
root within an ε distance from a given point z ∈ Qn.

Keywords
Symbolic–Numeric Computation, Polynomial Systems, Approximate Roots, Hermite Matri-
ces, Certification
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